diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..2c852b4 --- /dev/null +++ b/.gitignore @@ -0,0 +1,27 @@ +docs/html +docs/tagfile.xml + +.AppleDouble +#bin +obj + +*.mode1v3 + +# xcode +*.pbxuser +*.perspectivev3 +xcuserdata +build +*.app +#*.a + +# OSX +.DS_Store + +# codeblocks +*.layout +example/obj + +# Win +*.exe +*.dll diff --git a/README.md b/README.md new file mode 100644 index 0000000..6822707 --- /dev/null +++ b/README.md @@ -0,0 +1 @@ +Please use https://github.com/bakercp/ofxSQLiteCpp diff --git a/example/Makefile b/example/Makefile new file mode 100644 index 0000000..7a7fe8b --- /dev/null +++ b/example/Makefile @@ -0,0 +1,13 @@ +# Attempt to load a config.make file. +# If none is found, project defaults in config.project.make will be used. +ifneq ($(wildcard config.make),) + include config.make +endif + +# make sure the the OF_ROOT location is defined +ifndef OF_ROOT + OF_ROOT=../../.. +endif + +# call the project makefile! +include $(OF_ROOT)/libs/openFrameworksCompiled/project/makefileCommon/compile.project.mk diff --git a/example/Project.xcconfig b/example/Project.xcconfig new file mode 100644 index 0000000..c90f7b1 --- /dev/null +++ b/example/Project.xcconfig @@ -0,0 +1,17 @@ +//THE PATH TO THE ROOT OF OUR OF PATH RELATIVE TO THIS PROJECT. +//THIS NEEDS TO BE DEFINED BEFORE CoreOF.xcconfig IS INCLUDED +OF_PATH = ../../.. + +//THIS HAS ALL THE HEADER AND LIBS FOR OF CORE +#include "../../../libs/openFrameworksCompiled/project/osx/CoreOF.xcconfig" + +//ICONS - NEW IN 0072 +ICON_NAME_DEBUG = icon-debug.icns +ICON_NAME_RELEASE = icon.icns +ICON_FILE_PATH = $(OF_PATH)/libs/openFrameworksCompiled/project/osx/ + +//IF YOU WANT AN APP TO HAVE A CUSTOM ICON - PUT THEM IN YOUR DATA FOLDER AND CHANGE ICON_FILE_PATH to: +//ICON_FILE_PATH = bin/data/ + +OTHER_LDFLAGS = $(OF_CORE_LIBS) +HEADER_SEARCH_PATHS = $(OF_CORE_HEADERS) diff --git a/example/addons.make b/example/addons.make new file mode 100644 index 0000000..6271179 --- /dev/null +++ b/example/addons.make @@ -0,0 +1 @@ +ofxSQLite diff --git a/example/bin/data/.gitkeep b/example/bin/data/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/example/config.make b/example/config.make new file mode 100644 index 0000000..836fce7 --- /dev/null +++ b/example/config.make @@ -0,0 +1,141 @@ +################################################################################ +# CONFIGURE PROJECT MAKEFILE (optional) +# This file is where we make project specific configurations. +################################################################################ + +################################################################################ +# OF ROOT +# The location of your root openFrameworks installation +# (default) OF_ROOT = ../../.. +################################################################################ +# OF_ROOT = ../../.. + +################################################################################ +# PROJECT ROOT +# The location of the project - a starting place for searching for files +# (default) PROJECT_ROOT = . (this directory) +# +################################################################################ +# PROJECT_ROOT = . + +################################################################################ +# PROJECT SPECIFIC CHECKS +# This is a project defined section to create internal makefile flags to +# conditionally enable or disable the addition of various features within +# this makefile. For instance, if you want to make changes based on whether +# GTK is installed, one might test that here and create a variable to check. +################################################################################ +# None + +################################################################################ +# PROJECT EXTERNAL SOURCE PATHS +# These are fully qualified paths that are not within the PROJECT_ROOT folder. +# Like source folders in the PROJECT_ROOT, these paths are subject to +# exlclusion via the PROJECT_EXLCUSIONS list. +# +# (default) PROJECT_EXTERNAL_SOURCE_PATHS = (blank) +# +# Note: Leave a leading space when adding list items with the += operator +################################################################################ +# PROJECT_EXTERNAL_SOURCE_PATHS = + +################################################################################ +# PROJECT EXCLUSIONS +# These makefiles assume that all folders in your current project directory +# and any listed in the PROJECT_EXTERNAL_SOURCH_PATHS are are valid locations +# to look for source code. The any folders or files that match any of the +# items in the PROJECT_EXCLUSIONS list below will be ignored. +# +# Each item in the PROJECT_EXCLUSIONS list will be treated as a complete +# string unless teh user adds a wildcard (%) operator to match subdirectories. +# GNU make only allows one wildcard for matching. The second wildcard (%) is +# treated literally. +# +# (default) PROJECT_EXCLUSIONS = (blank) +# +# Will automatically exclude the following: +# +# $(PROJECT_ROOT)/bin% +# $(PROJECT_ROOT)/obj% +# $(PROJECT_ROOT)/%.xcodeproj +# +# Note: Leave a leading space when adding list items with the += operator +################################################################################ +# PROJECT_EXCLUSIONS = + +################################################################################ +# PROJECT LINKER FLAGS +# These flags will be sent to the linker when compiling the executable. +# +# (default) PROJECT_LDFLAGS = -Wl,-rpath=./libs +# +# Note: Leave a leading space when adding list items with the += operator +# +# Currently, shared libraries that are needed are copied to the +# $(PROJECT_ROOT)/bin/libs directory. The following LDFLAGS tell the linker to +# add a runtime path to search for those shared libraries, since they aren't +# incorporated directly into the final executable application binary. +################################################################################ +# PROJECT_LDFLAGS=-Wl,-rpath=./libs + +################################################################################ +# PROJECT DEFINES +# Create a space-delimited list of DEFINES. The list will be converted into +# CFLAGS with the "-D" flag later in the makefile. +# +# (default) PROJECT_DEFINES = (blank) +# +# Note: Leave a leading space when adding list items with the += operator +################################################################################ +# PROJECT_DEFINES = + +################################################################################ +# PROJECT CFLAGS +# This is a list of fully qualified CFLAGS required when compiling for this +# project. These CFLAGS will be used IN ADDITION TO the PLATFORM_CFLAGS +# defined in your platform specific core configuration files. These flags are +# presented to the compiler BEFORE the PROJECT_OPTIMIZATION_CFLAGS below. +# +# (default) PROJECT_CFLAGS = (blank) +# +# Note: Before adding PROJECT_CFLAGS, note that the PLATFORM_CFLAGS defined in +# your platform specific configuration file will be applied by default and +# further flags here may not be needed. +# +# Note: Leave a leading space when adding list items with the += operator +################################################################################ +# PROJECT_CFLAGS = + +################################################################################ +# PROJECT OPTIMIZATION CFLAGS +# These are lists of CFLAGS that are target-specific. While any flags could +# be conditionally added, they are usually limited to optimization flags. +# These flags are added BEFORE the PROJECT_CFLAGS. +# +# PROJECT_OPTIMIZATION_CFLAGS_RELEASE flags are only applied to RELEASE targets. +# +# (default) PROJECT_OPTIMIZATION_CFLAGS_RELEASE = (blank) +# +# PROJECT_OPTIMIZATION_CFLAGS_DEBUG flags are only applied to DEBUG targets. +# +# (default) PROJECT_OPTIMIZATION_CFLAGS_DEBUG = (blank) +# +# Note: Before adding PROJECT_OPTIMIZATION_CFLAGS, please note that the +# PLATFORM_OPTIMIZATION_CFLAGS defined in your platform specific configuration +# file will be applied by default and further optimization flags here may not +# be needed. +# +# Note: Leave a leading space when adding list items with the += operator +################################################################################ +# PROJECT_OPTIMIZATION_CFLAGS_RELEASE = +# PROJECT_OPTIMIZATION_CFLAGS_DEBUG = + +################################################################################ +# PROJECT COMPILERS +# Custom compilers can be set for CC and CXX +# (default) PROJECT_CXX = (blank) +# (default) PROJECT_CC = (blank) +# Note: Leave a leading space when adding list items with the += operator +################################################################################ +# PROJECT_CXX = +# PROJECT_CC = diff --git a/example/example.xcodeproj/project.pbxproj b/example/example.xcodeproj/project.pbxproj new file mode 100644 index 0000000..ddc7092 --- /dev/null +++ b/example/example.xcodeproj/project.pbxproj @@ -0,0 +1,664 @@ +// !$*UTF8*$! +{ + archiveVersion = 1; + classes = { + }; + objectVersion = 46; + objects = { + +/* Begin PBXBuildFile section */ + 177441cb16308facd05bd0368a5ac278 /* sqlite3.c in Sources */ = {isa = PBXBuildFile; fileRef = 1496270cb7e196b01e8af00746fbe80b /* sqlite3.c */; }; + 1a531b818af1f0f724df27f33b98e351 /* ofxSQLiteInsert.cpp in Sources */ = {isa = PBXBuildFile; fileRef = c1cb2b8df183871900ebf0482d762bf0 /* ofxSQLiteInsert.cpp */; }; + 549452a66580e9ad408511d9759487ef /* ofxSQLiteSimpler.cpp in Sources */ = {isa = PBXBuildFile; fileRef = befb6a10c51eaaed6423d3edc7f2973e /* ofxSQLiteSimpler.cpp */; }; + 62988d07e9fb5af07bcec364dd5f4448 /* ofxSQLiteSelect.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 5b249aac1f5303021bc7063fc19bebc0 /* ofxSQLiteSelect.cpp */; }; + BBAB23CB13894F3D00AA2426 /* GLUT.framework in CopyFiles */ = {isa = PBXBuildFile; fileRef = BBAB23BE13894E4700AA2426 /* GLUT.framework */; }; + E4328149138ABC9F0047C5CB /* openFrameworksDebug.a in Frameworks */ = {isa = PBXBuildFile; fileRef = E4328148138ABC890047C5CB /* openFrameworksDebug.a */; }; + E45BE97B0E8CC7DD009D7055 /* AGL.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E45BE9710E8CC7DD009D7055 /* AGL.framework */; }; + E45BE97C0E8CC7DD009D7055 /* ApplicationServices.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E45BE9720E8CC7DD009D7055 /* ApplicationServices.framework */; }; + E45BE97D0E8CC7DD009D7055 /* AudioToolbox.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E45BE9730E8CC7DD009D7055 /* AudioToolbox.framework */; }; + E45BE97E0E8CC7DD009D7055 /* Carbon.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E45BE9740E8CC7DD009D7055 /* Carbon.framework */; }; + E45BE97F0E8CC7DD009D7055 /* CoreAudio.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E45BE9750E8CC7DD009D7055 /* CoreAudio.framework */; }; + E45BE9800E8CC7DD009D7055 /* CoreFoundation.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E45BE9760E8CC7DD009D7055 /* CoreFoundation.framework */; }; + E45BE9810E8CC7DD009D7055 /* CoreServices.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E45BE9770E8CC7DD009D7055 /* CoreServices.framework */; }; + E45BE9830E8CC7DD009D7055 /* OpenGL.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E45BE9790E8CC7DD009D7055 /* OpenGL.framework */; }; + E45BE9840E8CC7DD009D7055 /* QuickTime.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E45BE97A0E8CC7DD009D7055 /* QuickTime.framework */; }; + E4B69E200A3A1BDC003C02F2 /* main.cpp in Sources */ = {isa = PBXBuildFile; fileRef = E4B69E1D0A3A1BDC003C02F2 /* main.cpp */; }; + E4B69E210A3A1BDC003C02F2 /* ofApp.cpp in Sources */ = {isa = PBXBuildFile; fileRef = E4B69E1E0A3A1BDC003C02F2 /* ofApp.cpp */; }; + E4C2424710CC5A17004149E2 /* AppKit.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E4C2424410CC5A17004149E2 /* AppKit.framework */; }; + E4C2424810CC5A17004149E2 /* Cocoa.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E4C2424510CC5A17004149E2 /* Cocoa.framework */; }; + E4C2424910CC5A17004149E2 /* IOKit.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E4C2424610CC5A17004149E2 /* IOKit.framework */; }; + E4EB6799138ADC1D00A09F29 /* GLUT.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = BBAB23BE13894E4700AA2426 /* GLUT.framework */; }; + E7E077E515D3B63C0020DFD4 /* CoreVideo.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E7E077E415D3B63C0020DFD4 /* CoreVideo.framework */; }; + E7E077E815D3B6510020DFD4 /* QTKit.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E7E077E715D3B6510020DFD4 /* QTKit.framework */; }; + E7F985F815E0DEA3003869B5 /* Accelerate.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = E7F985F515E0DE99003869B5 /* Accelerate.framework */; }; + b4d2a9c28de2a6848da5ccb3d6973027 /* ofxSQLiteUpdate.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 463798329517f90dde7d8ed0a4bad94d /* ofxSQLiteUpdate.cpp */; }; + c08edacd89de62c509d6dbab90e50fa4 /* ofxSQLiteFieldValues.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 620b0b9b0fd973a25ff83a0713ddf135 /* ofxSQLiteFieldValues.cpp */; }; + f56555c5ed12c88182b7d43f18a8f9b2 /* ofxSQLiteDelete.cpp in Sources */ = {isa = PBXBuildFile; fileRef = c67d4ce69267eb39de7fd340beb77c9f /* ofxSQLiteDelete.cpp */; }; + fcc6121c4b6e524d0e895fd725dd1faf /* ofxSQLite.cpp in Sources */ = {isa = PBXBuildFile; fileRef = ae23321016b7a9f855e21a17602b9706 /* ofxSQLite.cpp */; }; +/* End PBXBuildFile section */ + +/* Begin PBXContainerItemProxy section */ + E4328147138ABC890047C5CB /* PBXContainerItemProxy */ = { + isa = PBXContainerItemProxy; + containerPortal = E4328143138ABC890047C5CB /* openFrameworksLib.xcodeproj */; + proxyType = 2; + remoteGlobalIDString = E4B27C1510CBEB8E00536013; + remoteInfo = openFrameworks; + }; + E4EEB9AB138B136A00A80321 /* PBXContainerItemProxy */ = { + isa = PBXContainerItemProxy; + containerPortal = E4328143138ABC890047C5CB /* openFrameworksLib.xcodeproj */; + proxyType = 1; + remoteGlobalIDString = E4B27C1410CBEB8E00536013; + remoteInfo = openFrameworks; + }; +/* End PBXContainerItemProxy section */ + +/* Begin PBXCopyFilesBuildPhase section */ + E4C2427710CC5ABF004149E2 /* CopyFiles */ = { + isa = PBXCopyFilesBuildPhase; + buildActionMask = 2147483647; + dstPath = ""; + dstSubfolderSpec = 10; + files = ( + BBAB23CB13894F3D00AA2426 /* GLUT.framework in CopyFiles */, + ); + runOnlyForDeploymentPostprocessing = 0; + }; +/* End PBXCopyFilesBuildPhase section */ + +/* Begin PBXFileReference section */ + 1496270cb7e196b01e8af00746fbe80b /* sqlite3.c */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.c; fileEncoding = 30; name = sqlite3.c; path = ../../../addons/ofxSQLite/libs/sqlite/sqlite3.c; sourceTree = SOURCE_ROOT; }; + 230e9ec8c6f2946c58016e236a848e4c /* sqlite3ext.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = sqlite3ext.h; path = ../../../addons/ofxSQLite/libs/sqlite/sqlite3ext.h; sourceTree = SOURCE_ROOT; }; + 29181138b61d323be3a014b09c1aaf3a /* ofxSQLite.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLite.h; path = ../../../addons/ofxSQLite/src/ofxSQLite.h; sourceTree = SOURCE_ROOT; }; + 3b5e21b6df495ecb59f9300e35108862 /* ofxSQLiteInsert.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLiteInsert.h; path = ../../../addons/ofxSQLite/src/ofxSQLiteInsert.h; sourceTree = SOURCE_ROOT; }; + 463798329517f90dde7d8ed0a4bad94d /* ofxSQLiteUpdate.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 30; name = ofxSQLiteUpdate.cpp; path = ../../../addons/ofxSQLite/src/ofxSQLiteUpdate.cpp; sourceTree = SOURCE_ROOT; }; + 4b6ea6d13850ecddfacc57c766394f65 /* ofxSQLiteDelete.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLiteDelete.h; path = ../../../addons/ofxSQLite/src/ofxSQLiteDelete.h; sourceTree = SOURCE_ROOT; }; + 5b249aac1f5303021bc7063fc19bebc0 /* ofxSQLiteSelect.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 30; name = ofxSQLiteSelect.cpp; path = ../../../addons/ofxSQLite/src/ofxSQLiteSelect.cpp; sourceTree = SOURCE_ROOT; }; + 620b0b9b0fd973a25ff83a0713ddf135 /* ofxSQLiteFieldValues.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 30; name = ofxSQLiteFieldValues.cpp; path = ../../../addons/ofxSQLite/src/ofxSQLiteFieldValues.cpp; sourceTree = SOURCE_ROOT; }; + 8676ebb45fb7877102f493f3d16476cf /* ofxSQLiteUpdate.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLiteUpdate.h; path = ../../../addons/ofxSQLite/src/ofxSQLiteUpdate.h; sourceTree = SOURCE_ROOT; }; + 95b0bd0746ac0920a783edb072990a2f /* ofxSQLiteFieldValues.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLiteFieldValues.h; path = ../../../addons/ofxSQLite/src/ofxSQLiteFieldValues.h; sourceTree = SOURCE_ROOT; }; + BBAB23BE13894E4700AA2426 /* GLUT.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = GLUT.framework; path = ../../../libs/glut/lib/osx/GLUT.framework; sourceTree = ""; }; + E4328143138ABC890047C5CB /* openFrameworksLib.xcodeproj */ = {isa = PBXFileReference; lastKnownFileType = "wrapper.pb-project"; name = openFrameworksLib.xcodeproj; path = ../../../libs/openFrameworksCompiled/project/osx/openFrameworksLib.xcodeproj; sourceTree = SOURCE_ROOT; }; + E45BE9710E8CC7DD009D7055 /* AGL.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = AGL.framework; path = /System/Library/Frameworks/AGL.framework; sourceTree = ""; }; + E45BE9720E8CC7DD009D7055 /* ApplicationServices.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = ApplicationServices.framework; path = /System/Library/Frameworks/ApplicationServices.framework; sourceTree = ""; }; + E45BE9730E8CC7DD009D7055 /* AudioToolbox.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = AudioToolbox.framework; path = /System/Library/Frameworks/AudioToolbox.framework; sourceTree = ""; }; + E45BE9740E8CC7DD009D7055 /* Carbon.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Carbon.framework; path = /System/Library/Frameworks/Carbon.framework; sourceTree = ""; }; + E45BE9750E8CC7DD009D7055 /* CoreAudio.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = CoreAudio.framework; path = /System/Library/Frameworks/CoreAudio.framework; sourceTree = ""; }; + E45BE9760E8CC7DD009D7055 /* CoreFoundation.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = CoreFoundation.framework; path = /System/Library/Frameworks/CoreFoundation.framework; sourceTree = ""; }; + E45BE9770E8CC7DD009D7055 /* CoreServices.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = CoreServices.framework; path = /System/Library/Frameworks/CoreServices.framework; sourceTree = ""; }; + E45BE9790E8CC7DD009D7055 /* OpenGL.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = OpenGL.framework; path = /System/Library/Frameworks/OpenGL.framework; sourceTree = ""; }; + E45BE97A0E8CC7DD009D7055 /* QuickTime.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = QuickTime.framework; path = /System/Library/Frameworks/QuickTime.framework; sourceTree = ""; }; + E4B69B5B0A3A1756003C02F2 /* exampleDebug.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = exampleDebug.app; sourceTree = BUILT_PRODUCTS_DIR; }; + E4B69E1D0A3A1BDC003C02F2 /* main.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = main.cpp; path = src/main.cpp; sourceTree = SOURCE_ROOT; }; + E4B69E1E0A3A1BDC003C02F2 /* ofApp.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 30; name = ofApp.cpp; path = src/ofApp.cpp; sourceTree = SOURCE_ROOT; }; + E4B69E1F0A3A1BDC003C02F2 /* ofApp.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = ofApp.h; path = src/ofApp.h; sourceTree = SOURCE_ROOT; }; + E4B6FCAD0C3E899E008CF71C /* openFrameworks-Info.plist */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text.plist.xml; path = "openFrameworks-Info.plist"; sourceTree = ""; }; + E4C2424410CC5A17004149E2 /* AppKit.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = AppKit.framework; path = /System/Library/Frameworks/AppKit.framework; sourceTree = ""; }; + E4C2424510CC5A17004149E2 /* Cocoa.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Cocoa.framework; path = /System/Library/Frameworks/Cocoa.framework; sourceTree = ""; }; + E4C2424610CC5A17004149E2 /* IOKit.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = IOKit.framework; path = /System/Library/Frameworks/IOKit.framework; sourceTree = ""; }; + E4EB691F138AFCF100A09F29 /* CoreOF.xcconfig */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.xcconfig; name = CoreOF.xcconfig; path = ../../../libs/openFrameworksCompiled/project/osx/CoreOF.xcconfig; sourceTree = SOURCE_ROOT; }; + E4EB6923138AFD0F00A09F29 /* Project.xcconfig */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.xcconfig; path = Project.xcconfig; sourceTree = ""; }; + E7E077E415D3B63C0020DFD4 /* CoreVideo.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = CoreVideo.framework; path = /System/Library/Frameworks/CoreVideo.framework; sourceTree = ""; }; + E7E077E715D3B6510020DFD4 /* QTKit.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = QTKit.framework; path = /System/Library/Frameworks/QTKit.framework; sourceTree = ""; }; + E7F985F515E0DE99003869B5 /* Accelerate.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Accelerate.framework; path = /System/Library/Frameworks/Accelerate.framework; sourceTree = ""; }; + ae23321016b7a9f855e21a17602b9706 /* ofxSQLite.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 30; name = ofxSQLite.cpp; path = ../../../addons/ofxSQLite/src/ofxSQLite.cpp; sourceTree = SOURCE_ROOT; }; + befb6a10c51eaaed6423d3edc7f2973e /* ofxSQLiteSimpler.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 30; name = ofxSQLiteSimpler.cpp; path = ../../../addons/ofxSQLite/src/ofxSQLiteSimpler.cpp; sourceTree = SOURCE_ROOT; }; + bfe726e2d8aa4012ca9eff46075f1e13 /* ofxSQLiteSelect.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLiteSelect.h; path = ../../../addons/ofxSQLite/src/ofxSQLiteSelect.h; sourceTree = SOURCE_ROOT; }; + c1cb2b8df183871900ebf0482d762bf0 /* ofxSQLiteInsert.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 30; name = ofxSQLiteInsert.cpp; path = ../../../addons/ofxSQLite/src/ofxSQLiteInsert.cpp; sourceTree = SOURCE_ROOT; }; + c67d4ce69267eb39de7fd340beb77c9f /* ofxSQLiteDelete.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 30; name = ofxSQLiteDelete.cpp; path = ../../../addons/ofxSQLite/src/ofxSQLiteDelete.cpp; sourceTree = SOURCE_ROOT; }; + cb5c9e7cc2d4a6bc681bf6d35fdaacd4 /* ofxSQLiteTypeNow.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLiteTypeNow.h; path = ../../../addons/ofxSQLite/src/ofxSQLiteTypeNow.h; sourceTree = SOURCE_ROOT; }; + ddea41a923690d80b0f7b1322c4fc95d /* ofxSQLiteType.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLiteType.h; path = ../../../addons/ofxSQLite/src/ofxSQLiteType.h; sourceTree = SOURCE_ROOT; }; + de612608b1f6132d9d9b0f416aa4338f /* ofxSQLiteSimpler.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLiteSimpler.h; path = ../../../addons/ofxSQLite/src/ofxSQLiteSimpler.h; sourceTree = SOURCE_ROOT; }; + e1cf2492d2f7746030bb13a57fb7d1cb /* sqlite3.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = sqlite3.h; path = ../../../addons/ofxSQLite/libs/sqlite/sqlite3.h; sourceTree = SOURCE_ROOT; }; + e4cb804407d348c6eff0a63567e32b3c /* ofxSQLiteWhere.h */ = {isa = PBXFileReference; explicitFileType = sourcecode.c.h; fileEncoding = 30; name = ofxSQLiteWhere.h; path = ../../../addons/ofxSQLite/src/ofxSQLiteWhere.h; sourceTree = SOURCE_ROOT; }; +/* End PBXFileReference section */ + +/* Begin PBXFrameworksBuildPhase section */ + E4B69B590A3A1756003C02F2 /* Frameworks */ = { + isa = PBXFrameworksBuildPhase; + buildActionMask = 2147483647; + files = ( + E7F985F815E0DEA3003869B5 /* Accelerate.framework in Frameworks */, + E7E077E815D3B6510020DFD4 /* QTKit.framework in Frameworks */, + E4EB6799138ADC1D00A09F29 /* GLUT.framework in Frameworks */, + E4328149138ABC9F0047C5CB /* openFrameworksDebug.a in Frameworks */, + E45BE97B0E8CC7DD009D7055 /* AGL.framework in Frameworks */, + E45BE97C0E8CC7DD009D7055 /* ApplicationServices.framework in Frameworks */, + E45BE97D0E8CC7DD009D7055 /* AudioToolbox.framework in Frameworks */, + E45BE97E0E8CC7DD009D7055 /* Carbon.framework in Frameworks */, + E45BE97F0E8CC7DD009D7055 /* CoreAudio.framework in Frameworks */, + E45BE9800E8CC7DD009D7055 /* CoreFoundation.framework in Frameworks */, + E45BE9810E8CC7DD009D7055 /* CoreServices.framework in Frameworks */, + E45BE9830E8CC7DD009D7055 /* OpenGL.framework in Frameworks */, + E45BE9840E8CC7DD009D7055 /* QuickTime.framework in Frameworks */, + E4C2424710CC5A17004149E2 /* AppKit.framework in Frameworks */, + E4C2424810CC5A17004149E2 /* Cocoa.framework in Frameworks */, + E4C2424910CC5A17004149E2 /* IOKit.framework in Frameworks */, + E7E077E515D3B63C0020DFD4 /* CoreVideo.framework in Frameworks */, + ); + runOnlyForDeploymentPostprocessing = 0; + }; +/* End PBXFrameworksBuildPhase section */ + +/* Begin PBXGroup section */ + 5182c3b2935fe0eb621a28410d0c76aa /* src */ = { + isa = PBXGroup; + children = ( + ae23321016b7a9f855e21a17602b9706 /* ofxSQLite.cpp */, + 29181138b61d323be3a014b09c1aaf3a /* ofxSQLite.h */, + c67d4ce69267eb39de7fd340beb77c9f /* ofxSQLiteDelete.cpp */, + 4b6ea6d13850ecddfacc57c766394f65 /* ofxSQLiteDelete.h */, + 620b0b9b0fd973a25ff83a0713ddf135 /* ofxSQLiteFieldValues.cpp */, + 95b0bd0746ac0920a783edb072990a2f /* ofxSQLiteFieldValues.h */, + c1cb2b8df183871900ebf0482d762bf0 /* ofxSQLiteInsert.cpp */, + 3b5e21b6df495ecb59f9300e35108862 /* ofxSQLiteInsert.h */, + 5b249aac1f5303021bc7063fc19bebc0 /* ofxSQLiteSelect.cpp */, + bfe726e2d8aa4012ca9eff46075f1e13 /* ofxSQLiteSelect.h */, + befb6a10c51eaaed6423d3edc7f2973e /* ofxSQLiteSimpler.cpp */, + de612608b1f6132d9d9b0f416aa4338f /* ofxSQLiteSimpler.h */, + ddea41a923690d80b0f7b1322c4fc95d /* ofxSQLiteType.h */, + cb5c9e7cc2d4a6bc681bf6d35fdaacd4 /* ofxSQLiteTypeNow.h */, + 463798329517f90dde7d8ed0a4bad94d /* ofxSQLiteUpdate.cpp */, + 8676ebb45fb7877102f493f3d16476cf /* ofxSQLiteUpdate.h */, + e4cb804407d348c6eff0a63567e32b3c /* ofxSQLiteWhere.h */, + ); + name = src; + sourceTree = ""; + }; + BB4B014C10F69532006C3DED /* addons */ = { + isa = PBXGroup; + children = ( + dda36efeb58775871ed0be7bea1b2b14 /* ofxSQLite */, + ); + name = addons; + sourceTree = ""; + }; + BBAB23C913894ECA00AA2426 /* system frameworks */ = { + isa = PBXGroup; + children = ( + E7F985F515E0DE99003869B5 /* Accelerate.framework */, + E4C2424410CC5A17004149E2 /* AppKit.framework */, + E4C2424510CC5A17004149E2 /* Cocoa.framework */, + E4C2424610CC5A17004149E2 /* IOKit.framework */, + E45BE9710E8CC7DD009D7055 /* AGL.framework */, + E45BE9720E8CC7DD009D7055 /* ApplicationServices.framework */, + E45BE9730E8CC7DD009D7055 /* AudioToolbox.framework */, + E45BE9740E8CC7DD009D7055 /* Carbon.framework */, + E45BE9750E8CC7DD009D7055 /* CoreAudio.framework */, + E45BE9760E8CC7DD009D7055 /* CoreFoundation.framework */, + E45BE9770E8CC7DD009D7055 /* CoreServices.framework */, + E45BE9790E8CC7DD009D7055 /* OpenGL.framework */, + E45BE97A0E8CC7DD009D7055 /* QuickTime.framework */, + E7E077E415D3B63C0020DFD4 /* CoreVideo.framework */, + E7E077E715D3B6510020DFD4 /* QTKit.framework */, + ); + name = "system frameworks"; + sourceTree = ""; + }; + BBAB23CA13894EDB00AA2426 /* 3rd party frameworks */ = { + isa = PBXGroup; + children = ( + BBAB23BE13894E4700AA2426 /* GLUT.framework */, + ); + name = "3rd party frameworks"; + sourceTree = ""; + }; + E4328144138ABC890047C5CB /* Products */ = { + isa = PBXGroup; + children = ( + E4328148138ABC890047C5CB /* openFrameworksDebug.a */, + ); + name = Products; + sourceTree = ""; + }; + E45BE5980E8CC70C009D7055 /* frameworks */ = { + isa = PBXGroup; + children = ( + BBAB23CA13894EDB00AA2426 /* 3rd party frameworks */, + BBAB23C913894ECA00AA2426 /* system frameworks */, + ); + name = frameworks; + sourceTree = ""; + }; + E4B69B4A0A3A1720003C02F2 = { + isa = PBXGroup; + children = ( + E4B6FCAD0C3E899E008CF71C /* openFrameworks-Info.plist */, + E4EB6923138AFD0F00A09F29 /* Project.xcconfig */, + E4B69E1C0A3A1BDC003C02F2 /* src */, + E4EEC9E9138DF44700A80321 /* openFrameworks */, + BB4B014C10F69532006C3DED /* addons */, + E45BE5980E8CC70C009D7055 /* frameworks */, + E4B69B5B0A3A1756003C02F2 /* exampleDebug.app */, + ); + sourceTree = ""; + }; + E4B69E1C0A3A1BDC003C02F2 /* src */ = { + isa = PBXGroup; + children = ( + E4B69E1D0A3A1BDC003C02F2 /* main.cpp */, + E4B69E1E0A3A1BDC003C02F2 /* ofApp.cpp */, + E4B69E1F0A3A1BDC003C02F2 /* ofApp.h */, + ); + path = src; + sourceTree = SOURCE_ROOT; + }; + E4EEC9E9138DF44700A80321 /* openFrameworks */ = { + isa = PBXGroup; + children = ( + E4EB691F138AFCF100A09F29 /* CoreOF.xcconfig */, + E4328143138ABC890047C5CB /* openFrameworksLib.xcodeproj */, + ); + name = openFrameworks; + sourceTree = ""; + }; + dda36efeb58775871ed0be7bea1b2b14 /* ofxSQLite */ = { + isa = PBXGroup; + children = ( + 5182c3b2935fe0eb621a28410d0c76aa /* src */, + e59b54e989b7151f268c0e4a60e073e5 /* libs */, + ); + name = ofxSQLite; + sourceTree = ""; + }; + e024f7ef6607388d9a73a7e5e1e0b3ec /* sqlite */ = { + isa = PBXGroup; + children = ( + 1496270cb7e196b01e8af00746fbe80b /* sqlite3.c */, + e1cf2492d2f7746030bb13a57fb7d1cb /* sqlite3.h */, + 230e9ec8c6f2946c58016e236a848e4c /* sqlite3ext.h */, + ); + name = sqlite; + sourceTree = ""; + }; + e59b54e989b7151f268c0e4a60e073e5 /* libs */ = { + isa = PBXGroup; + children = ( + e024f7ef6607388d9a73a7e5e1e0b3ec /* sqlite */, + ); + name = libs; + sourceTree = ""; + }; +/* End PBXGroup section */ + +/* Begin PBXNativeTarget section */ + E4B69B5A0A3A1756003C02F2 /* example */ = { + isa = PBXNativeTarget; + buildConfigurationList = E4B69B5F0A3A1757003C02F2 /* Build configuration list for PBXNativeTarget "example" */; + buildPhases = ( + E4B69B580A3A1756003C02F2 /* Sources */, + E4B69B590A3A1756003C02F2 /* Frameworks */, + E4B6FFFD0C3F9AB9008CF71C /* ShellScript */, + E4C2427710CC5ABF004149E2 /* CopyFiles */, + ); + buildRules = ( + ); + dependencies = ( + E4EEB9AC138B136A00A80321 /* PBXTargetDependency */, + ); + name = example; + productName = myOFApp; + productReference = E4B69B5B0A3A1756003C02F2 /* exampleDebug.app */; + productType = "com.apple.product-type.application"; + }; +/* End PBXNativeTarget section */ + +/* Begin PBXProject section */ + E4B69B4C0A3A1720003C02F2 /* Project object */ = { + isa = PBXProject; + attributes = { + LastUpgradeCheck = 0460; + }; + buildConfigurationList = E4B69B4D0A3A1720003C02F2 /* Build configuration list for PBXProject "example" */; + compatibilityVersion = "Xcode 3.2"; + developmentRegion = English; + hasScannedForEncodings = 0; + knownRegions = ( + English, + Japanese, + French, + German, + ); + mainGroup = E4B69B4A0A3A1720003C02F2; + productRefGroup = E4B69B4A0A3A1720003C02F2; + projectDirPath = ""; + projectReferences = ( + { + ProductGroup = E4328144138ABC890047C5CB /* Products */; + ProjectRef = E4328143138ABC890047C5CB /* openFrameworksLib.xcodeproj */; + }, + ); + projectRoot = ""; + targets = ( + E4B69B5A0A3A1756003C02F2 /* example */, + ); + }; +/* End PBXProject section */ + +/* Begin PBXReferenceProxy section */ + E4328148138ABC890047C5CB /* openFrameworksDebug.a */ = { + isa = PBXReferenceProxy; + fileType = archive.ar; + path = openFrameworksDebug.a; + remoteRef = E4328147138ABC890047C5CB /* PBXContainerItemProxy */; + sourceTree = BUILT_PRODUCTS_DIR; + }; +/* End PBXReferenceProxy section */ + +/* Begin PBXShellScriptBuildPhase section */ + E4B6FFFD0C3F9AB9008CF71C /* ShellScript */ = { + isa = PBXShellScriptBuildPhase; + buildActionMask = 2147483647; + files = ( + ); + inputPaths = ( + ); + outputPaths = ( + ); + runOnlyForDeploymentPostprocessing = 0; + shellPath = /bin/sh; + shellScript = "cp -f ../../../libs/fmodex/lib/osx/libfmodex.dylib \"$TARGET_BUILD_DIR/$PRODUCT_NAME.app/Contents/MacOS/libfmodex.dylib\"; install_name_tool -change ./libfmodex.dylib @executable_path/libfmodex.dylib \"$TARGET_BUILD_DIR/$PRODUCT_NAME.app/Contents/MacOS/$PRODUCT_NAME\";\nmkdir -p \"$TARGET_BUILD_DIR/$PRODUCT_NAME.app/Contents/Resources/\"\ncp -f \"$ICON_FILE\" \"$TARGET_BUILD_DIR/$PRODUCT_NAME.app/Contents/Resources/\"\n"; + }; +/* End PBXShellScriptBuildPhase section */ + +/* Begin PBXSourcesBuildPhase section */ + E4B69B580A3A1756003C02F2 /* Sources */ = { + isa = PBXSourcesBuildPhase; + buildActionMask = 2147483647; + files = ( + E4B69E200A3A1BDC003C02F2 /* main.cpp in Sources */, + E4B69E210A3A1BDC003C02F2 /* ofApp.cpp in Sources */, + fcc6121c4b6e524d0e895fd725dd1faf /* ofxSQLite.cpp in Sources */, + f56555c5ed12c88182b7d43f18a8f9b2 /* ofxSQLiteDelete.cpp in Sources */, + c08edacd89de62c509d6dbab90e50fa4 /* ofxSQLiteFieldValues.cpp in Sources */, + 1a531b818af1f0f724df27f33b98e351 /* ofxSQLiteInsert.cpp in Sources */, + 62988d07e9fb5af07bcec364dd5f4448 /* ofxSQLiteSelect.cpp in Sources */, + 549452a66580e9ad408511d9759487ef /* ofxSQLiteSimpler.cpp in Sources */, + b4d2a9c28de2a6848da5ccb3d6973027 /* ofxSQLiteUpdate.cpp in Sources */, + 177441cb16308facd05bd0368a5ac278 /* sqlite3.c in Sources */, + ); + runOnlyForDeploymentPostprocessing = 0; + }; +/* End PBXSourcesBuildPhase section */ + +/* Begin PBXTargetDependency section */ + E4EEB9AC138B136A00A80321 /* PBXTargetDependency */ = { + isa = PBXTargetDependency; + name = openFrameworks; + targetProxy = E4EEB9AB138B136A00A80321 /* PBXContainerItemProxy */; + }; +/* End PBXTargetDependency section */ + +/* Begin XCBuildConfiguration section */ + E4B69B4E0A3A1720003C02F2 /* Debug */ = { + isa = XCBuildConfiguration; + baseConfigurationReference = E4EB6923138AFD0F00A09F29 /* Project.xcconfig */; + buildSettings = { + ARCHS = "$(NATIVE_ARCH)"; + CLANG_CXX_LIBRARY = "libstdc++"; + CONFIGURATION_BUILD_DIR = "$(SRCROOT)/bin/"; + COPY_PHASE_STRIP = NO; + DEAD_CODE_STRIPPING = YES; + GCC_AUTO_VECTORIZATION = YES; + GCC_ENABLE_SSE3_EXTENSIONS = YES; + GCC_ENABLE_SUPPLEMENTAL_SSE3_INSTRUCTIONS = YES; + GCC_INLINES_ARE_PRIVATE_EXTERN = NO; + GCC_OPTIMIZATION_LEVEL = 0; + GCC_SYMBOLS_PRIVATE_EXTERN = NO; + GCC_WARN_ABOUT_DEPRECATED_FUNCTIONS = YES; + GCC_WARN_ABOUT_INVALID_OFFSETOF_MACRO = NO; + GCC_WARN_ALLOW_INCOMPLETE_PROTOCOL = NO; + GCC_WARN_UNINITIALIZED_AUTOS = NO; + GCC_WARN_UNUSED_VALUE = NO; + GCC_WARN_UNUSED_VARIABLE = NO; + HEADER_SEARCH_PATHS = ( + "$(OF_CORE_HEADERS)", + ../../../addons/ofxSQLite/libs, + ../../../addons/ofxSQLite/libs/sqlite, + ../../../addons/ofxSQLite/src, + ); + MACOSX_DEPLOYMENT_TARGET = 10.6; + OTHER_CPLUSPLUSFLAGS = ( + "-D__MACOSX_CORE__", + "-lpthread", + "-mtune=native", + ); + SDKROOT = macosx; + }; + name = Debug; + }; + E4B69B4F0A3A1720003C02F2 /* Release */ = { + isa = XCBuildConfiguration; + baseConfigurationReference = E4EB6923138AFD0F00A09F29 /* Project.xcconfig */; + buildSettings = { + ARCHS = "$(NATIVE_ARCH)"; + CLANG_CXX_LIBRARY = "libstdc++"; + CONFIGURATION_BUILD_DIR = "$(SRCROOT)/bin/"; + COPY_PHASE_STRIP = YES; + DEAD_CODE_STRIPPING = YES; + GCC_AUTO_VECTORIZATION = YES; + GCC_ENABLE_SSE3_EXTENSIONS = YES; + GCC_ENABLE_SUPPLEMENTAL_SSE3_INSTRUCTIONS = YES; + GCC_INLINES_ARE_PRIVATE_EXTERN = NO; + GCC_OPTIMIZATION_LEVEL = 3; + GCC_SYMBOLS_PRIVATE_EXTERN = NO; + GCC_UNROLL_LOOPS = YES; + GCC_WARN_ABOUT_DEPRECATED_FUNCTIONS = YES; + GCC_WARN_ABOUT_INVALID_OFFSETOF_MACRO = NO; + GCC_WARN_ALLOW_INCOMPLETE_PROTOCOL = NO; + GCC_WARN_UNINITIALIZED_AUTOS = NO; + GCC_WARN_UNUSED_VALUE = NO; + GCC_WARN_UNUSED_VARIABLE = NO; + HEADER_SEARCH_PATHS = ( + "$(OF_CORE_HEADERS)", + ../../../addons/ofxSQLite/libs, + ../../../addons/ofxSQLite/libs/sqlite, + ../../../addons/ofxSQLite/src, + ); + MACOSX_DEPLOYMENT_TARGET = 10.6; + OTHER_CPLUSPLUSFLAGS = ( + "-D__MACOSX_CORE__", + "-lpthread", + "-mtune=native", + ); + SDKROOT = macosx; + }; + name = Release; + }; + E4B69B600A3A1757003C02F2 /* Debug */ = { + isa = XCBuildConfiguration; + buildSettings = { + COMBINE_HIDPI_IMAGES = YES; + COPY_PHASE_STRIP = NO; + FRAMEWORK_SEARCH_PATHS = ( + "$(inherited)", + "$(FRAMEWORK_SEARCH_PATHS_QUOTED_FOR_TARGET_1)", + ); + FRAMEWORK_SEARCH_PATHS_QUOTED_FOR_TARGET_1 = "\"$(SRCROOT)/../../../libs/glut/lib/osx\""; + GCC_DYNAMIC_NO_PIC = NO; + GCC_GENERATE_DEBUGGING_SYMBOLS = YES; + GCC_MODEL_TUNING = NONE; + ICON = "$(ICON_NAME_DEBUG)"; + ICON_FILE = "$(ICON_FILE_PATH)$(ICON)"; + INFOPLIST_FILE = "openFrameworks-Info.plist"; + INSTALL_PATH = "$(HOME)/Applications"; + LIBRARY_SEARCH_PATHS = ( + "$(inherited)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_1)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_2)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_3)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_4)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_5)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_6)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_7)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_8)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_9)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_10)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_11)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_12)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_13)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_14)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_15)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_2)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_3)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_7)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_8)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_9)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_10)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_11)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_12)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_13)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_16)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_17)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_18)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_19)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_20)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_21)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_22)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_23)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_24)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_25)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_26)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_27)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_28)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_29)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_30)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_31)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_32)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_33)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_34)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_35)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_36)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_37)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_38)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_39)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_40)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_41)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_42)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_43)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_44)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_45)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_46)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_47)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_48)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_49)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_50)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_51)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_52)", + ); + PRODUCT_NAME = "$(TARGET_NAME)Debug"; + WRAPPER_EXTENSION = app; + }; + name = Debug; + }; + E4B69B610A3A1757003C02F2 /* Release */ = { + isa = XCBuildConfiguration; + buildSettings = { + COMBINE_HIDPI_IMAGES = YES; + COPY_PHASE_STRIP = YES; + FRAMEWORK_SEARCH_PATHS = ( + "$(inherited)", + "$(FRAMEWORK_SEARCH_PATHS_QUOTED_FOR_TARGET_1)", + ); + FRAMEWORK_SEARCH_PATHS_QUOTED_FOR_TARGET_1 = "\"$(SRCROOT)/../../../libs/glut/lib/osx\""; + GCC_GENERATE_DEBUGGING_SYMBOLS = YES; + GCC_MODEL_TUNING = NONE; + ICON = "$(ICON_NAME_RELEASE)"; + ICON_FILE = "$(ICON_FILE_PATH)$(ICON)"; + INFOPLIST_FILE = "openFrameworks-Info.plist"; + INSTALL_PATH = "$(HOME)/Applications"; + LIBRARY_SEARCH_PATHS = ( + "$(inherited)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_1)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_2)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_3)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_4)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_5)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_6)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_7)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_8)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_9)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_10)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_11)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_12)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_13)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_14)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_15)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_2)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_1)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_3)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_7)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_8)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_9)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_10)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_11)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_12)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_13)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_16)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_17)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_18)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_19)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_20)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_21)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_22)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_23)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_24)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_25)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_26)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_27)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_28)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_29)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_30)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_31)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_32)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_33)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_34)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_35)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_36)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_37)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_38)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_39)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_40)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_41)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_42)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_43)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_44)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_45)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_46)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_47)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_48)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_49)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_50)", + "$(LIBRARY_SEARCH_PATHS_QUOTED_FOR_TARGET_51)", + ); + PRODUCT_NAME = "$(TARGET_NAME)"; + WRAPPER_EXTENSION = app; + }; + name = Release; + }; +/* End XCBuildConfiguration section */ + +/* Begin XCConfigurationList section */ + E4B69B4D0A3A1720003C02F2 /* Build configuration list for PBXProject "example" */ = { + isa = XCConfigurationList; + buildConfigurations = ( + E4B69B4E0A3A1720003C02F2 /* Debug */, + E4B69B4F0A3A1720003C02F2 /* Release */, + ); + defaultConfigurationIsVisible = 0; + defaultConfigurationName = Release; + }; + E4B69B5F0A3A1757003C02F2 /* Build configuration list for PBXNativeTarget "example" */ = { + isa = XCConfigurationList; + buildConfigurations = ( + E4B69B600A3A1757003C02F2 /* Debug */, + E4B69B610A3A1757003C02F2 /* Release */, + ); + defaultConfigurationIsVisible = 0; + defaultConfigurationName = Release; + }; +/* End XCConfigurationList section */ + }; + rootObject = E4B69B4C0A3A1720003C02F2 /* Project object */; +} diff --git a/example/example.xcodeproj/project.xcworkspace/contents.xcworkspacedata b/example/example.xcodeproj/project.xcworkspace/contents.xcworkspacedata new file mode 100644 index 0000000..e35a4f1 --- /dev/null +++ b/example/example.xcodeproj/project.xcworkspace/contents.xcworkspacedata @@ -0,0 +1,7 @@ + + + + + diff --git a/example/example.xcodeproj/project.xcworkspace/xcshareddata/example.xccheckout b/example/example.xcodeproj/project.xcworkspace/xcshareddata/example.xccheckout new file mode 100644 index 0000000..52398db --- /dev/null +++ b/example/example.xcodeproj/project.xcworkspace/xcshareddata/example.xccheckout @@ -0,0 +1,53 @@ + + + + + IDESourceControlProjectFavoriteDictionaryKey + + IDESourceControlProjectIdentifier + 09A090DF-E6F2-4EBE-8A14-E7567F2C9034 + IDESourceControlProjectName + example + IDESourceControlProjectOriginsDictionary + + 3B34514A-1075-456B-8AF0-DAEFD698200B + ssh://github.com/bakercp/openFrameworks.git + D3E600ED-7506-47AD-9567-F193B30ED2E8 + ssh://github.com/bakercp/ofxSQLite.git + + IDESourceControlProjectPath + addons/ofxSQLite/example/example.xcodeproj/project.xcworkspace + IDESourceControlProjectRelativeInstallPathDictionary + + 3B34514A-1075-456B-8AF0-DAEFD698200B + ../../../../.. + D3E600ED-7506-47AD-9567-F193B30ED2E8 + ../../.. + + IDESourceControlProjectURL + ssh://github.com/bakercp/openFrameworks.git + IDESourceControlProjectVersion + 110 + IDESourceControlProjectWCCIdentifier + 3B34514A-1075-456B-8AF0-DAEFD698200B + IDESourceControlProjectWCConfigurations + + + IDESourceControlRepositoryExtensionIdentifierKey + public.vcs.git + IDESourceControlWCCIdentifierKey + D3E600ED-7506-47AD-9567-F193B30ED2E8 + IDESourceControlWCCName + ofxSQLite + + + IDESourceControlRepositoryExtensionIdentifierKey + public.vcs.git + IDESourceControlWCCIdentifierKey + 3B34514A-1075-456B-8AF0-DAEFD698200B + IDESourceControlWCCName + openFrameworks + + + + diff --git a/example/example.xcodeproj/project.xcworkspace/xcuserdata/bakercp.xcuserdatad/UserInterfaceState.xcuserstate b/example/example.xcodeproj/project.xcworkspace/xcuserdata/bakercp.xcuserdatad/UserInterfaceState.xcuserstate new file mode 100644 index 0000000..77ba882 Binary files /dev/null and b/example/example.xcodeproj/project.xcworkspace/xcuserdata/bakercp.xcuserdatad/UserInterfaceState.xcuserstate differ diff --git a/example/example.xcodeproj/project.xcworkspace/xcuserdata/bakercp.xcuserdatad/WorkspaceSettings.xcsettings b/example/example.xcodeproj/project.xcworkspace/xcuserdata/bakercp.xcuserdatad/WorkspaceSettings.xcsettings new file mode 100644 index 0000000..bfffcfe --- /dev/null +++ b/example/example.xcodeproj/project.xcworkspace/xcuserdata/bakercp.xcuserdatad/WorkspaceSettings.xcsettings @@ -0,0 +1,10 @@ + + + + + HasAskedToTakeAutomaticSnapshotBeforeSignificantChanges + + SnapshotAutomaticallyBeforeSignificantChanges + + + diff --git a/example/example.xcodeproj/xcshareddata/xcschemes/example Debug.xcscheme b/example/example.xcodeproj/xcshareddata/xcschemes/example Debug.xcscheme new file mode 100644 index 0000000..988a673 --- /dev/null +++ b/example/example.xcodeproj/xcshareddata/xcschemes/example Debug.xcscheme @@ -0,0 +1,86 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/example/example.xcodeproj/xcshareddata/xcschemes/example Release.xcscheme b/example/example.xcodeproj/xcshareddata/xcschemes/example Release.xcscheme new file mode 100644 index 0000000..45d1617 --- /dev/null +++ b/example/example.xcodeproj/xcshareddata/xcschemes/example Release.xcscheme @@ -0,0 +1,86 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/example/example.xcodeproj/xcuserdata/bakercp.xcuserdatad/xcschemes/xcschememanagement.plist b/example/example.xcodeproj/xcuserdata/bakercp.xcuserdatad/xcschemes/xcschememanagement.plist new file mode 100644 index 0000000..13dfb6e --- /dev/null +++ b/example/example.xcodeproj/xcuserdata/bakercp.xcuserdatad/xcschemes/xcschememanagement.plist @@ -0,0 +1,14 @@ + + + + + SuppressBuildableAutocreation + + E4B69B5A0A3A1756003C02F2 + + primary + + + + + diff --git a/example/main.cpp b/example/main.cpp deleted file mode 100644 index 6a32c6a..0000000 --- a/example/main.cpp +++ /dev/null @@ -1,16 +0,0 @@ -#include "ofMain.h" -#include "testApp.h" -#include "ofAppGlutWindow.h" - -//======================================================================== -int main( ){ - - ofAppGlutWindow window; - ofSetupOpenGL(&window, 1024,768, OF_WINDOW); // <-------- setup the GL context - - // this kicks off the running of my app - // can be OF_WINDOW or OF_FULLSCREEN - // pass in width and height too: - ofRunApp( new testApp()); - -} diff --git a/example/openFrameworks-Info.plist b/example/openFrameworks-Info.plist new file mode 100644 index 0000000..8d64d2b --- /dev/null +++ b/example/openFrameworks-Info.plist @@ -0,0 +1,22 @@ + + + + + CFBundleDevelopmentRegion + English + CFBundleExecutable + ${EXECUTABLE_NAME} + CFBundleIdentifier + cc.openFrameworks.ofapp + CFBundleInfoDictionaryVersion + 6.0 + CFBundlePackageType + APPL + CFBundleSignature + ???? + CFBundleVersion + 1.0 + CFBundleIconFile + ${ICON} + + diff --git a/example/src/main.cpp b/example/src/main.cpp new file mode 100644 index 0000000..325e7f7 --- /dev/null +++ b/example/src/main.cpp @@ -0,0 +1,9 @@ +#include "ofMain.h" +#include "ofApp.h" + + +int main() +{ + ofSetupOpenGL(1024, 768, OF_WINDOW); + ofRunApp(new ofApp()); +} diff --git a/example/src/ofApp.cpp b/example/src/ofApp.cpp new file mode 100644 index 0000000..fe16e71 --- /dev/null +++ b/example/src/ofApp.cpp @@ -0,0 +1,236 @@ +#include "ofApp.h" + + +void ofApp::setup() +{ + ofSetLogLevel(OF_LOG_VERBOSE); + + sqlite.setup("test.db"); + + sqlite.simpleQuery(""\ + "CREATE TABLE IF NOT EXISTS scores (" \ + " id INTEGER PRIMARY KEY AUTOINCREMENT" \ + " ,time TEXT" \ + ", score INTEGER" \ + ");" + ); + + sqlite.simpleQuery(""\ + "CREATE TABLE IF NOT EXISTS stats ("\ + "id INTEGER PRIMARY KEY AUTOINCREMENT" \ + ", time TEXT" \ + ");" + ); + + sqlite.simpleQuery(""\ + "CREATE TABLE IF NOT EXISTS game_runs( " \ + " id INTEGER PRIMARY KEY AUTOINCREMENT" \ + ",start_time TEXT" \ + ", end_time TEXT" \ + ");" + ); + + if (SQLITE_OK != sqlite.simpleQuery(""\ + "CREATE TABLE IF NOT EXISTS game_run_data( " \ + " gid INTEGER PRIMARY KEY AUTOINCREMENT" \ + ",runid INTEGER" \ + ",gdata TEXT" \ + ");" + )) { + cout << "ERROR CREATE TABLE\n"; + } + + // insert + sqlite.insert("game_runs") + .use("start_time", "today") + .use("end_time","tomorrow") + .execute(); + + // lastInsertID + int last_run_id = sqlite.lastInsertID(); + sqlite.insert("game_run_data") + .use("runid",last_run_id) + .use("gdata", "MyData") + .execute(); + + cout << "insert into game_run_data error: " << sqlite.getError() << endl; + + // insert + sqlite.insert("scores") + .use("score", 5999) + .use("time" + ,ofToString(ofGetDay()) + +"-" +ofToString(ofGetMonth()) + +"-" +ofToString(ofGetYear()) + +" " +ofToString(ofGetHours()) + +":" +ofToString(ofGetMinutes()) + +":" +ofToString(ofGetSeconds()) + ).execute(); + + // get last inserted row id + cout << "inserted row id: " << sqlite.lastInsertID() << endl; + + ofxSQLiteSelect sel = sqlite.select("id, time").from("scores"); + + sel.execute().begin(); + + while(sel.hasNext()) + { + int id = sel.getInt(); + std::string name = sel.getString(); + cout << id << ", " << name << endl; + sel.next(); + } + + // select + sel = sqlite.select("id, start_time") + .from("game_runs") + .join("game_run_data", "runid = id", "runid, gdata") + .where("runid", 3) + .orWhere("runid",13) + .orWhere("runid", last_run_id) + //.limit(5) + .order("runid", " DESC ") + .execute().begin(); + + while(sel.hasNext()) { + int runid = sel.getInt(); + string gdata = sel.getString(); + cout << "runid: " << runid << ", gdata: " << gdata << endl; + sel.next(); + } + + // update + sqlite.update("game_runs") + .use("end_time", "past") + .where("id", last_run_id) + .execute(); + + + // delete + sqlite.remove("game_runs") + .where("id",last_run_id) + .execute(); + + // auto increment field and auto-timestamp field. on each insert + // the value for date_created is added automatically. + // ------------------------------------------------------------------------- + if (SQLITE_OK != sqlite.simpleQuery(""\ + "CREATE TABLE IF NOT EXISTS photos( " \ + " id INTEGER PRIMARY KEY AUTOINCREMENT" \ + ",old_name VARCHAR(255)" \ + ",new_name VARCHAR(255)" \ + ",dir_name VARCHAR(255)" \ + ",file_path VARCHAR(255)" \ + ",synchronized BOOLEAN" \ + ",date_synchronized DATETIME" \ + ",date_created DATETIME DEFAULT CURRENT_TIMESTAMP" \ + ");" + )) + { + cout << "ERROR CREATE TABLE\n"; + } + + // just pasted this example here from a project I did.. (did no test it, + // but shows you some things you can do with sqlite tables + // ------------------------------------------------------------------------ + int r = sqlite.simpleQuery("CREATE TABLE IF NOT EXISTS tweets (" \ + " id INTEGER PRIMARY KEY AUTOINCREMENT " \ + ",avatar VARCHAR(255) " \ + ",user_id VARCHAR(100) " \ + ",screen_name VARCHAR(50)" \ + ",tweet_id VARCHAR(50) " \ + ",date_created DATETIME DEFAULT CURRENT_TIMESTAMP "\ + ",date_exported DATETIME "\ + ",contains_face BOOLEAN " \ + ",is_used BOOLEAN " \ + ",is_fetched BOOLEAN " \ + ",is_exported BOOLEAN " \ + ");" + ); + +// // inserting mass amount of entries: use transations +// // ------------------------------------------------------------------------- +// if (SQLITE_OK != sqlite.simpleQuery("BEGIN TRANSACTION;")) { +// cout << "ERROR: cannot begin transaction" << std::endl; +// } +// +// for(int i = 0; i < num_entries; ++i) { +// int result = sqlite.insert("photos") +// .use("old_name", "old_name") +// .use("new_name","new_name") +// .use("dir_name", "IMAGE2008.08.06/") +// .use("file_path", "dirname/image0001.jpg") +// .use("synchronized",0) +// .execute(); +// if(result != SQLITE_OK) { +// cout << "error: " << result << endl; +// cout << "message:" << sqlite.getError() << endl; +// break; +// } +// else { +// ok++; +// } +// +// } + +// cout << "Inserted: " << ok << std::endl; +// if (SQLITE_OK != sqlite.simpleQuery("COMMIT;")) { +// cout << "ERROR: cannot commit" << std::endl; +// } +// +// // Get amount of rows. +// //------------------------------------------------------------------------- +// ofxSQLiteSelect sel = sqlite.select("count(id) as total").from("photos"); +// sel.execute().begin(); +// int count = sel.getInt(); +// cout << "total entries:" << count << std::endl; + + // Example of using a timestamp (not tested in this code; purely as example) + // ------------------------------------------------------------------------- + /* + // table with a couple of date fields + db = new ofxSQLite(ofToDataPath("tweets.db")); + int r = db->simpleQuery("CREATE TABLE IF NOT EXISTS tweets (" \ + " id INTEGER PRIMARY KEY AUTOINCREMENT " \ + ",avatar VARCHAR(255) " \ + ",user_id VARCHAR(100) " \ + ",screen_name VARCHAR(50)" \ + ",tweet_id VARCHAR(50) " \ + ",date_created DATETIME DEFAULT CURRENT_TIMESTAMP "\ + ",date_exported DATETIME "\ + ",contains_face BOOLEAN " \ + ",is_used BOOLEAN " \ + ",is_fetched BOOLEAN " \ + ",is_exported BOOLEAN " \ + ");" + ); + + // Updating the time field with a current timestamp: + // you can use "now()" to get a timestamp object + int r = db->update("tweets").use("is_exported",true).use("date_exported",db->now()).execute(); + if(r != SQLITE_OK) { + ofLog(OF_LOG_ERROR, "error: cannot set export to true"); + } + */ + +} + +void ofApp::draw() +{ + ofBackground(0); + + ofEnableAlphaBlending(); + + for (int i=0; i<100; i++) { + // This should be a shade of orange but it's red + ofSetColor(255, 132, 0, 1); + ofCircle(ofGetWidth()/3.0, ofGetHeight()/2.0, ofGetWidth()/6.0); + + // This should be a shade orange and it is. + ofSetColor(255, 132, 0, 2); + ofCircle(ofGetWidth()*2.0/3.0, ofGetHeight()/2.0, ofGetWidth()/6.0); + } + + +} diff --git a/example/src/ofApp.h b/example/src/ofApp.h new file mode 100644 index 0000000..e06461d --- /dev/null +++ b/example/src/ofApp.h @@ -0,0 +1,17 @@ +#pragma once + + +#include "ofMain.h" +#include "ofxSQLite.h" + + +class ofApp: public ofBaseApp +{ +public: + void setup(); + void draw(); + +private: + ofxSQLite sqlite; + +}; diff --git a/example/testApp.cpp b/example/testApp.cpp deleted file mode 100644 index 493bcc7..0000000 --- a/example/testApp.cpp +++ /dev/null @@ -1,257 +0,0 @@ -#include "testApp.h" -#include "stdio.h" - -//-------------------------------------------------------------- -testApp::testApp(){ - sqlite = new ofxSQLite("test.db"); - sqlite->simpleQuery(""\ - "CREATE TABLE IF NOT EXISTS scores (" \ - " id INTEGER PRIMARY KEY AUTOINCREMENT" \ - " ,time TEXT" \ - ", score INTEGER" \ - ");" - ); - - sqlite->simpleQuery(""\ - "CREATE TABLE IF NOT EXISTS stats ("\ - "id INTEGER PRIMARY KEY AUTOINCREMENT" \ - ", time TEXT" \ - ");" - ); - - sqlite->simpleQuery(""\ - "CREATE TABLE IF NOT EXISTS game_runs( " \ - " id INTEGER PRIMARY KEY AUTOINCREMENT" \ - ",start_time TEXT" \ - ", end_time TEXT" \ - ");" - ); - - if (SQLITE_OK != sqlite->simpleQuery(""\ - "CREATE TABLE IF NOT EXISTS game_run_data( " \ - " gid INTEGER PRIMARY KEY AUTOINCREMENT" \ - ",runid INTEGER" \ - ",gdata TEXT" \ - ");" - )) { - cout << "ERROR CREATE TABLE\n"; - } - - // insert - sqlite->insert("game_runs") - .use("start_time", "today") - .use("end_time","tomorrow") - .execute(); - - // lastInsertID - int last_run_id = sqlite->lastInsertID(); - sqlite->insert("game_run_data") - .use("runid",last_run_id) - .use("gdata", "MyData") - .execute(); - cout << "insert into game_run_data error:" << sqlite->getError() << endl;; - - - // insert - sqlite->insert("scores") - .use("score", 5999) - .use( - "time" - ,ofToString(ofGetDay()) - +"-" +ofToString(ofGetMonth()) - +"-" +ofToString(ofGetYear()) - +" " +ofToString(ofGetHours()) - +":" +ofToString(ofGetMinutes()) - +":" +ofToString(ofGetSeconds()) - ).execute(); - - // get last inserted row id - cout << "inserted row id: " << sqlite->lastInsertID() << endl; - - - ofxSQLiteSelect sel = sqlite->select("id, time").from("scores"); - sel.execute().begin(); - - while(sel.hasNext()) { - int id = sel.getInt(); - std::string name = sel.getString(); - cout << id << ", " << name << endl; - sel.next(); - } - - // select - sel = sqlite->select("id, start_time") - .from("game_runs") - .join("game_run_data", "runid = id", "runid, gdata") - .where("runid", 3) - .orWhere("runid",13) - .orWhere("runid", last_run_id) - //.limit(5) - .order("runid", " DESC ") - .execute().begin(); - - while(sel.hasNext()) { - int runid = sel.getInt(); - string gdata = sel.getString(); - cout << "runid: " << runid << ", gdata: " << gdata << endl; - sel.next(); - } - - // update - sqlite->update("game_runs") - .use("end_time", "past") - .where("id", last_run_id) - .execute(); - - - // delete - sqlite->remove("game_runs") - .where("id",last_run_id) - .execute(); - - // auto increment field and auto-timestamp field. on each insert - // the value for date_created is added automatically. - // ------------------------------------------------------------------------- - if (SQLITE_OK != sqlite->simpleQuery(""\ - "CREATE TABLE IF NOT EXISTS photos( " \ - " id INTEGER PRIMARY KEY AUTOINCREMENT" \ - ",old_name VARCHAR(255)" \ - ",new_name VARCHAR(255)" \ - ",dir_name VARCHAR(255)" \ - ",file_path VARCHAR(255)" \ - ",synchronized BOOLEAN" \ - ",date_synchronized DATETIME" \ - ",date_created DATETIME DEFAULT CURRENT_TIMESTAMP" \ - ");" - )) { - cout << "ERROR CREATE TABLE\n"; - } - - // just pasted this example here from a project I did.. (did no test it, - // but shows you some things you can do with sqlite tables - // ------------------------------------------------------------------------ - int r = sqlite->simpleQuery("CREATE TABLE IF NOT EXISTS tweets (" \ - " id INTEGER PRIMARY KEY AUTOINCREMENT " \ - ",avatar VARCHAR(255) " \ - ",user_id VARCHAR(100) " \ - ",screen_name VARCHAR(50)" \ - ",tweet_id VARCHAR(50) " \ - ",date_created DATETIME DEFAULT CURRENT_TIMESTAMP "\ - ",date_exported DATETIME "\ - ",contains_face BOOLEAN " \ - ",is_used BOOLEAN " \ - ",is_fetched BOOLEAN " \ - ",is_exported BOOLEAN " \ - ");" - ); - - // inserting mass amount of entries: use transations - // ------------------------------------------------------------------------- - if (SQLITE_OK != sqlite->simpleQuery("BEGIN TRANSACTION;")) { - cout << "ERROR: cannot begin transaction" << std::endl; - } - - for(int i = 0; i < num_entries; ++i) { - int result = sqlite->insert("photos") - .use("old_name", "old_name") - .use("new_name","new_name") - .use("dir_name", "IMAGE2008.08.06/") - .use("file_path", "dirname/image0001.jpg") - .use("synchronized",0) - .execute(); - if(result != SQLITE_OK) { - cout << "error: " << result << endl; - cout << "message:" << sqlite->getError() << endl; - break; - } - else { - ok++; - } - - } - cout << "Inserted: " << ok << std::endl; - if (SQLITE_OK != sqlite->simpleQuery("COMMIT;")) { - cout << "ERROR: cannot commit" << std::endl; - } - - // Get amount of rows. - //------------------------------------------------------------------------- - ofxSQLiteSelect sel = sqlite->select("count(id) as total").from("photos"); - sel.execute().begin(); - int count = sel.getInt(); - cout << "total entries:" << count << std::endl; - - // Example of using a timestamp (not tested in this code; purely as example) - // ------------------------------------------------------------------------- - /* - // table with a couple of date fields - db = new ofxSQLite(ofToDataPath("tweets.db")); - int r = db->simpleQuery("CREATE TABLE IF NOT EXISTS tweets (" \ - " id INTEGER PRIMARY KEY AUTOINCREMENT " \ - ",avatar VARCHAR(255) " \ - ",user_id VARCHAR(100) " \ - ",screen_name VARCHAR(50)" \ - ",tweet_id VARCHAR(50) " \ - ",date_created DATETIME DEFAULT CURRENT_TIMESTAMP "\ - ",date_exported DATETIME "\ - ",contains_face BOOLEAN " \ - ",is_used BOOLEAN " \ - ",is_fetched BOOLEAN " \ - ",is_exported BOOLEAN " \ - ");" - ); - - // Updating the time field with a current timestamp: - // you can use "now()" to get a timestamp object - int r = db->update("tweets").use("is_exported",true).use("date_exported",db->now()).execute(); - if(r != SQLITE_OK) { - ofLog(OF_LOG_ERROR, "error: cannot set export to true"); - } - */ - -} - -//-------------------------------------------------------------- -void testApp::setup(){ -} - -//-------------------------------------------------------------- -void testApp::update(){ -} - - -//-------------------------------------------------------------- -void testApp::draw(){ -} - -//-------------------------------------------------------------- -void testApp::keyPressed (int key){ -} - -//-------------------------------------------------------------- -void testApp::keyReleased(int key){ - -} - -//-------------------------------------------------------------- -void testApp::mouseMoved(int x, int y ){ -} - -//-------------------------------------------------------------- -void testApp::mouseDragged(int x, int y, int button){ -} - -//-------------------------------------------------------------- -void testApp::mousePressed(int x, int y, int button){ - -} -//-------------------------------------------------------------- -void testApp::mouseReleased(int x, int y, int button){ - -} - -//-------------------------------------------------------------- -void testApp::resized(int w, int h){ - -} - diff --git a/example/testApp.h b/example/testApp.h deleted file mode 100644 index 7991100..0000000 --- a/example/testApp.h +++ /dev/null @@ -1,28 +0,0 @@ -#ifndef _TEST_APP -#define _TEST_APP - - -#include "ofMain.h" -#include "ofxSQLiteHeaders.h" -class testApp : public ofBaseApp{ - - public: - - testApp(); - void setup(); - void update(); - void draw(); - - void keyPressed (int key); - void keyReleased(int key); - void mouseMoved(int x, int y ); - void mouseDragged(int x, int y, int button); - void mousePressed(int x, int y, int button); - void mouseReleased(int x, int y, int button); - void resized(int w, int h); - private: - ofxSQLite* sqlite; - -}; - -#endif diff --git a/install.xml b/install.xml deleted file mode 100644 index 8baed5b..0000000 --- a/install.xml +++ /dev/null @@ -1,30 +0,0 @@ - - ofxSQLite - 0.01 - Diederick Huijbers - sqlite database.]]> - - http://www.roxlu.com - https://github.com/roxlu/ofxSQLite - http://www.roxlu.com - https://github.com/roxlu/ofxSQLite/zipball/master - - - y - y - n - - y - - - - - ..\..\..\addons_diederick\ofxSQlite\src\ - ..\..\..\addons_diederick\ofxSQLite\src\lib\* - - - - - - - diff --git a/src/lib/sqlite/sqlite3.c b/libs/sqlite/sqlite3.c similarity index 55% rename from src/lib/sqlite/sqlite3.c rename to libs/sqlite/sqlite3.c index 889f509..76ec66a 100644 --- a/src/lib/sqlite/sqlite3.c +++ b/libs/sqlite/sqlite3.c @@ -1,23 +1,21 @@ /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite -** version 3.6.16. By combining all the individual C code files into this -** single large file, the entire code can be compiled as a one translation +** version 3.8.3.1. By combining all the individual C code files into this +** single large file, the entire code can be compiled as a single translation ** unit. This allows many compilers to do optimizations that would not be ** possible if the files were compiled separately. Performance improvements -** of 5% are more are commonly seen when SQLite is compiled as a single +** of 5% or more are commonly seen when SQLite is compiled as a single ** translation unit. ** ** This file is all you need to compile SQLite. To use SQLite in other ** programs, you need this file and the "sqlite3.h" header file that defines ** the programming interface to the SQLite library. (If you do not have -** the "sqlite3.h" header file at hand, you will find a copy in the first -** 5626 lines past this header comment.) Additional code files may be -** needed if you want a wrapper to interface SQLite with your choice of -** programming language. The code for the "sqlite3" command-line shell -** is also in a separate file. This file contains only code for the core -** SQLite library. -** -** This amalgamation was generated on 2009-06-27 14:10:06 UTC. +** the "sqlite3.h" header file at hand, you will find a copy embedded within +** the text of this file. Search for "Begin file sqlite3.h" to find the start +** of the embedded sqlite3.h header file.) Additional code files may be needed +** if you want a wrapper to interface SQLite with your choice of programming +** language. The code for the "sqlite3" command-line shell is also in a +** separate file. This file contains only code for the core SQLite library. */ #define SQLITE_CORE 1 #define SQLITE_AMALGAMATION 1 @@ -27,492 +25,6 @@ #ifndef SQLITE_API # define SQLITE_API #endif -/************** Begin file sqliteInt.h ***************************************/ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** Internal interface definitions for SQLite. -** -** @(#) $Id: sqliteInt.h,v 1.890 2009/06/26 15:14:55 drh Exp $ -*/ -#ifndef _SQLITEINT_H_ -#define _SQLITEINT_H_ - -/* -** Include the configuration header output by 'configure' if we're using the -** autoconf-based build -*/ -#ifdef _HAVE_SQLITE_CONFIG_H -#include "config.h" -#endif - -/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/ -/************** Begin file sqliteLimit.h *************************************/ -/* -** 2007 May 7 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file defines various limits of what SQLite can process. -** -** @(#) $Id: sqliteLimit.h,v 1.10 2009/01/10 16:15:09 danielk1977 Exp $ -*/ - -/* -** The maximum length of a TEXT or BLOB in bytes. This also -** limits the size of a row in a table or index. -** -** The hard limit is the ability of a 32-bit signed integer -** to count the size: 2^31-1 or 2147483647. -*/ -#ifndef SQLITE_MAX_LENGTH -# define SQLITE_MAX_LENGTH 1000000000 -#endif - -/* -** This is the maximum number of -** -** * Columns in a table -** * Columns in an index -** * Columns in a view -** * Terms in the SET clause of an UPDATE statement -** * Terms in the result set of a SELECT statement -** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement. -** * Terms in the VALUES clause of an INSERT statement -** -** The hard upper limit here is 32676. Most database people will -** tell you that in a well-normalized database, you usually should -** not have more than a dozen or so columns in any table. And if -** that is the case, there is no point in having more than a few -** dozen values in any of the other situations described above. -*/ -#ifndef SQLITE_MAX_COLUMN -# define SQLITE_MAX_COLUMN 2000 -#endif - -/* -** The maximum length of a single SQL statement in bytes. -** -** It used to be the case that setting this value to zero would -** turn the limit off. That is no longer true. It is not possible -** to turn this limit off. -*/ -#ifndef SQLITE_MAX_SQL_LENGTH -# define SQLITE_MAX_SQL_LENGTH 1000000000 -#endif - -/* -** The maximum depth of an expression tree. This is limited to -** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might -** want to place more severe limits on the complexity of an -** expression. -** -** A value of 0 used to mean that the limit was not enforced. -** But that is no longer true. The limit is now strictly enforced -** at all times. -*/ -#ifndef SQLITE_MAX_EXPR_DEPTH -# define SQLITE_MAX_EXPR_DEPTH 1000 -#endif - -/* -** The maximum number of terms in a compound SELECT statement. -** The code generator for compound SELECT statements does one -** level of recursion for each term. A stack overflow can result -** if the number of terms is too large. In practice, most SQL -** never has more than 3 or 4 terms. Use a value of 0 to disable -** any limit on the number of terms in a compount SELECT. -*/ -#ifndef SQLITE_MAX_COMPOUND_SELECT -# define SQLITE_MAX_COMPOUND_SELECT 500 -#endif - -/* -** The maximum number of opcodes in a VDBE program. -** Not currently enforced. -*/ -#ifndef SQLITE_MAX_VDBE_OP -# define SQLITE_MAX_VDBE_OP 25000 -#endif - -/* -** The maximum number of arguments to an SQL function. -*/ -#ifndef SQLITE_MAX_FUNCTION_ARG -# define SQLITE_MAX_FUNCTION_ARG 127 -#endif - -/* -** The maximum number of in-memory pages to use for the main database -** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE -*/ -#ifndef SQLITE_DEFAULT_CACHE_SIZE -# define SQLITE_DEFAULT_CACHE_SIZE 2000 -#endif -#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE -# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500 -#endif - -/* -** The maximum number of attached databases. This must be between 0 -** and 30. The upper bound on 30 is because a 32-bit integer bitmap -** is used internally to track attached databases. -*/ -#ifndef SQLITE_MAX_ATTACHED -# define SQLITE_MAX_ATTACHED 10 -#endif - - -/* -** The maximum value of a ?nnn wildcard that the parser will accept. -*/ -#ifndef SQLITE_MAX_VARIABLE_NUMBER -# define SQLITE_MAX_VARIABLE_NUMBER 999 -#endif - -/* Maximum page size. The upper bound on this value is 32768. This a limit -** imposed by the necessity of storing the value in a 2-byte unsigned integer -** and the fact that the page size must be a power of 2. -** -** If this limit is changed, then the compiled library is technically -** incompatible with an SQLite library compiled with a different limit. If -** a process operating on a database with a page-size of 65536 bytes -** crashes, then an instance of SQLite compiled with the default page-size -** limit will not be able to rollback the aborted transaction. This could -** lead to database corruption. -*/ -#ifndef SQLITE_MAX_PAGE_SIZE -# define SQLITE_MAX_PAGE_SIZE 32768 -#endif - - -/* -** The default size of a database page. -*/ -#ifndef SQLITE_DEFAULT_PAGE_SIZE -# define SQLITE_DEFAULT_PAGE_SIZE 1024 -#endif -#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE -# undef SQLITE_DEFAULT_PAGE_SIZE -# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE -#endif - -/* -** Ordinarily, if no value is explicitly provided, SQLite creates databases -** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain -** device characteristics (sector-size and atomic write() support), -** SQLite may choose a larger value. This constant is the maximum value -** SQLite will choose on its own. -*/ -#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE -# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192 -#endif -#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE -# undef SQLITE_MAX_DEFAULT_PAGE_SIZE -# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE -#endif - - -/* -** Maximum number of pages in one database file. -** -** This is really just the default value for the max_page_count pragma. -** This value can be lowered (or raised) at run-time using that the -** max_page_count macro. -*/ -#ifndef SQLITE_MAX_PAGE_COUNT -# define SQLITE_MAX_PAGE_COUNT 1073741823 -#endif - -/* -** Maximum length (in bytes) of the pattern in a LIKE or GLOB -** operator. -*/ -#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH -# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 -#endif - -/************** End of sqliteLimit.h *****************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ - -/* Disable nuisance warnings on Borland compilers */ -#if defined(__BORLANDC__) -#pragma warn -rch /* unreachable code */ -#pragma warn -ccc /* Condition is always true or false */ -#pragma warn -aus /* Assigned value is never used */ -#pragma warn -csu /* Comparing signed and unsigned */ -#pragma warn -spa /* Suspicious pointer arithmetic */ -#endif - -/* Needed for various definitions... */ -#ifndef _GNU_SOURCE -# define _GNU_SOURCE -#endif - -/* -** Include standard header files as necessary -*/ -#ifdef HAVE_STDINT_H -#include -#endif -#ifdef HAVE_INTTYPES_H -#include -#endif - -/* -** This macro is used to "hide" some ugliness in casting an int -** value to a ptr value under the MSVC 64-bit compiler. Casting -** non 64-bit values to ptr types results in a "hard" error with -** the MSVC 64-bit compiler which this attempts to avoid. -** -** A simple compiler pragma or casting sequence could not be found -** to correct this in all situations, so this macro was introduced. -** -** It could be argued that the intptr_t type could be used in this -** case, but that type is not available on all compilers, or -** requires the #include of specific headers which differs between -** platforms. -** -** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on -** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). -** So we have to define the macros in different ways depending on the -** compiler. -*/ -#if defined(__GNUC__) -# if defined(HAVE_STDINT_H) -# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) -# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) -# else -# define SQLITE_INT_TO_PTR(X) ((void*)(X)) -# define SQLITE_PTR_TO_INT(X) ((int)(X)) -# endif -#else -# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) -# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) -#endif - -/* -** These #defines should enable >2GB file support on POSIX if the -** underlying operating system supports it. If the OS lacks -** large file support, or if the OS is windows, these should be no-ops. -** -** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any -** system #includes. Hence, this block of code must be the very first -** code in all source files. -** -** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch -** on the compiler command line. This is necessary if you are compiling -** on a recent machine (ex: Red Hat 7.2) but you want your code to work -** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 -** without this option, LFS is enable. But LFS does not exist in the kernel -** in Red Hat 6.0, so the code won't work. Hence, for maximum binary -** portability you should omit LFS. -** -** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. -*/ -#ifndef SQLITE_DISABLE_LFS -# define _LARGE_FILE 1 -# ifndef _FILE_OFFSET_BITS -# define _FILE_OFFSET_BITS 64 -# endif -# define _LARGEFILE_SOURCE 1 -#endif - - -/* -** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. -** Older versions of SQLite used an optional THREADSAFE macro. -** We support that for legacy -*/ -#if !defined(SQLITE_THREADSAFE) -#if defined(THREADSAFE) -# define SQLITE_THREADSAFE THREADSAFE -#else -# define SQLITE_THREADSAFE 1 -#endif -#endif - -/* -** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. -** It determines whether or not the features related to -** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can -** be overridden at runtime using the sqlite3_config() API. -*/ -#if !defined(SQLITE_DEFAULT_MEMSTATUS) -# define SQLITE_DEFAULT_MEMSTATUS 1 -#endif - -/* -** Exactly one of the following macros must be defined in order to -** specify which memory allocation subsystem to use. -** -** SQLITE_SYSTEM_MALLOC // Use normal system malloc() -** SQLITE_MEMDEBUG // Debugging version of system malloc() -** SQLITE_MEMORY_SIZE // internal allocator #1 -** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator -** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator -** -** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as -** the default. -*/ -#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ - defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ - defined(SQLITE_POW2_MEMORY_SIZE)>1 -# error "At most one of the following compile-time configuration options\ - is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\ - SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE" -#endif -#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ - defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ - defined(SQLITE_POW2_MEMORY_SIZE)==0 -# define SQLITE_SYSTEM_MALLOC 1 -#endif - -/* -** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the -** sizes of memory allocations below this value where possible. -*/ -#if !defined(SQLITE_MALLOC_SOFT_LIMIT) -# define SQLITE_MALLOC_SOFT_LIMIT 1024 -#endif - -/* -** We need to define _XOPEN_SOURCE as follows in order to enable -** recursive mutexes on most Unix systems. But Mac OS X is different. -** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, -** so it is omitted there. See ticket #2673. -** -** Later we learn that _XOPEN_SOURCE is poorly or incorrectly -** implemented on some systems. So we avoid defining it at all -** if it is already defined or if it is unneeded because we are -** not doing a threadsafe build. Ticket #2681. -** -** See also ticket #2741. -*/ -#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE -# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ -#endif - -/* -** The TCL headers are only needed when compiling the TCL bindings. -*/ -#if defined(SQLITE_TCL) || defined(TCLSH) -# include -#endif - -/* -** Many people are failing to set -DNDEBUG=1 when compiling SQLite. -** Setting NDEBUG makes the code smaller and run faster. So the following -** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 -** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out -** feature. -*/ -#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) -# define NDEBUG 1 -#endif - -/* -** The testcase() macro is used to aid in coverage testing. When -** doing coverage testing, the condition inside the argument to -** testcase() must be evaluated both true and false in order to -** get full branch coverage. The testcase() macro is inserted -** to help ensure adequate test coverage in places where simple -** condition/decision coverage is inadequate. For example, testcase() -** can be used to make sure boundary values are tested. For -** bitmask tests, testcase() can be used to make sure each bit -** is significant and used at least once. On switch statements -** where multiple cases go to the same block of code, testcase() -** can insure that all cases are evaluated. -** -*/ -#ifdef SQLITE_COVERAGE_TEST -SQLITE_PRIVATE void sqlite3Coverage(int); -# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } -#else -# define testcase(X) -#endif - -/* -** The TESTONLY macro is used to enclose variable declarations or -** other bits of code that are needed to support the arguments -** within testcase() and assert() macros. -*/ -#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) -# define TESTONLY(X) X -#else -# define TESTONLY(X) -#endif - -/* -** Sometimes we need a small amount of code such as a variable initialization -** to setup for a later assert() statement. We do not want this code to -** appear when assert() is disabled. The following macro is therefore -** used to contain that setup code. The "VVA" acronym stands for -** "Verification, Validation, and Accreditation". In other words, the -** code within VVA_ONLY() will only run during verification processes. -*/ -#ifndef NDEBUG -# define VVA_ONLY(X) X -#else -# define VVA_ONLY(X) -#endif - -/* -** The ALWAYS and NEVER macros surround boolean expressions which -** are intended to always be true or false, respectively. Such -** expressions could be omitted from the code completely. But they -** are included in a few cases in order to enhance the resilience -** of SQLite to unexpected behavior - to make the code "self-healing" -** or "ductile" rather than being "brittle" and crashing at the first -** hint of unplanned behavior. -** -** In other words, ALWAYS and NEVER are added for defensive code. -** -** When doing coverage testing ALWAYS and NEVER are hard-coded to -** be true and false so that the unreachable code then specify will -** not be counted as untested code. -*/ -#if defined(SQLITE_COVERAGE_TEST) -# define ALWAYS(X) (1) -# define NEVER(X) (0) -#elif !defined(NDEBUG) -# define ALWAYS(X) ((X)?1:(assert(0),0)) -# define NEVER(X) ((X)?(assert(0),1):0) -#else -# define ALWAYS(X) (X) -# define NEVER(X) (X) -#endif - -/* -** The macro unlikely() is a hint that surrounds a boolean -** expression that is usually false. Macro likely() surrounds -** a boolean expression that is usually true. GCC is able to -** use these hints to generate better code, sometimes. -*/ -#if defined(__GNUC__) && 0 -# define likely(X) __builtin_expect((X),1) -# define unlikely(X) __builtin_expect((X),0) -#else -# define likely(X) !!(X) -# define unlikely(X) !!(X) -#endif - -/************** Include sqlite3.h in the middle of sqliteInt.h ***************/ /************** Begin file sqlite3.h *****************************************/ /* ** 2001 September 15 @@ -534,8 +46,8 @@ SQLITE_PRIVATE void sqlite3Coverage(int); ** Some of the definitions that are in this file are marked as ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes -** to experimental interfaces but reserve to make minor changes if -** experience from use "in the wild" suggest such changes are prudent. +** to experimental interfaces but reserve the right to make minor changes +** if experience from use "in the wild" suggest such changes are prudent. ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source @@ -545,8 +57,6 @@ SQLITE_PRIVATE void sqlite3Coverage(int); ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. -** -** @(#) $Id: sqlite.h.in,v 1.458 2009/06/19 22:50:31 drh Exp $ */ #ifndef _SQLITE3_H_ #define _SQLITE3_H_ @@ -567,10 +77,15 @@ extern "C" { # define SQLITE_EXTERN extern #endif +#ifndef SQLITE_API +# define SQLITE_API +#endif + + /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications -** should not use deprecated intrfaces - they are support for backwards +** should not use deprecated interfaces - they are support for backwards ** compatibility only. Application writers should be aware that ** experimental interfaces are subject to change in point releases. ** @@ -594,57 +109,107 @@ extern "C" { #endif /* -** CAPI3REF: Compile-Time Library Version Numbers {H10010} +** CAPI3REF: Compile-Time Library Version Numbers ** -** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in -** the sqlite3.h file specify the version of SQLite with which -** that header file is associated. +** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header +** evaluates to a string literal that is the SQLite version in the +** format "X.Y.Z" where X is the major version number (always 3 for +** SQLite3) and Y is the minor version number and Z is the release number.)^ +** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same +** numbers used in [SQLITE_VERSION].)^ +** The SQLITE_VERSION_NUMBER for any given release of SQLite will also +** be larger than the release from which it is derived. Either Y will +** be held constant and Z will be incremented or else Y will be incremented +** and Z will be reset to zero. ** -** The "version" of SQLite is a string of the form "X.Y.Z". -** The phrase "alpha" or "beta" might be appended after the Z. -** The X value is major version number always 3 in SQLite3. -** The X value only changes when backwards compatibility is -** broken and we intend to never break backwards compatibility. -** The Y value is the minor version number and only changes when -** there are major feature enhancements that are forwards compatible -** but not backwards compatible. -** The Z value is the release number and is incremented with -** each release but resets back to 0 whenever Y is incremented. +** Since version 3.6.18, SQLite source code has been stored in the +** Fossil configuration management +** system. ^The SQLITE_SOURCE_ID macro evaluates to +** a string which identifies a particular check-in of SQLite +** within its configuration management system. ^The SQLITE_SOURCE_ID +** string contains the date and time of the check-in (UTC) and an SHA1 +** hash of the entire source tree. ** -** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. -** -** Requirements: [H10011] [H10014] +** See also: [sqlite3_libversion()], +** [sqlite3_libversion_number()], [sqlite3_sourceid()], +** [sqlite_version()] and [sqlite_source_id()]. */ -#define SQLITE_VERSION "3.6.16" -#define SQLITE_VERSION_NUMBER 3006016 +#define SQLITE_VERSION "3.8.3.1" +#define SQLITE_VERSION_NUMBER 3008003 +#define SQLITE_SOURCE_ID "2014-02-11 14:52:19 ea3317a4803d71d88183b29f1d3086f46d68a00e" /* -** CAPI3REF: Run-Time Library Version Numbers {H10020} -** KEYWORDS: sqlite3_version -** -** These features provide the same information as the [SQLITE_VERSION] -** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated -** with the library instead of the header file. Cautious programmers might -** include a check in their application to verify that -** sqlite3_libversion_number() always returns the value -** [SQLITE_VERSION_NUMBER]. +** CAPI3REF: Run-Time Library Version Numbers +** KEYWORDS: sqlite3_version, sqlite3_sourceid ** -** The sqlite3_libversion() function returns the same information as is -** in the sqlite3_version[] string constant. The function is provided -** for use in DLLs since DLL users usually do not have direct access to string -** constants within the DLL. +** These interfaces provide the same information as the [SQLITE_VERSION], +** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros +** but are associated with the library instead of the header file. ^(Cautious +** programmers might include assert() statements in their application to +** verify that values returned by these interfaces match the macros in +** the header, and thus insure that the application is +** compiled with matching library and header files. ** -** Requirements: [H10021] [H10022] [H10023] +**
+** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
+** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
+** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
+** 
)^ +** +** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION] +** macro. ^The sqlite3_libversion() function returns a pointer to the +** to the sqlite3_version[] string constant. The sqlite3_libversion() +** function is provided for use in DLLs since DLL users usually do not have +** direct access to string constants within the DLL. ^The +** sqlite3_libversion_number() function returns an integer equal to +** [SQLITE_VERSION_NUMBER]. ^The sqlite3_sourceid() function returns +** a pointer to a string constant whose value is the same as the +** [SQLITE_SOURCE_ID] C preprocessor macro. +** +** See also: [sqlite_version()] and [sqlite_source_id()]. */ SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; SQLITE_API const char *sqlite3_libversion(void); +SQLITE_API const char *sqlite3_sourceid(void); SQLITE_API int sqlite3_libversion_number(void); /* -** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} +** CAPI3REF: Run-Time Library Compilation Options Diagnostics +** +** ^The sqlite3_compileoption_used() function returns 0 or 1 +** indicating whether the specified option was defined at +** compile time. ^The SQLITE_ prefix may be omitted from the +** option name passed to sqlite3_compileoption_used(). +** +** ^The sqlite3_compileoption_get() function allows iterating +** over the list of options that were defined at compile time by +** returning the N-th compile time option string. ^If N is out of range, +** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_ +** prefix is omitted from any strings returned by +** sqlite3_compileoption_get(). +** +** ^Support for the diagnostic functions sqlite3_compileoption_used() +** and sqlite3_compileoption_get() may be omitted by specifying the +** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time. +** +** See also: SQL functions [sqlite_compileoption_used()] and +** [sqlite_compileoption_get()] and the [compile_options pragma]. +*/ +#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS +SQLITE_API int sqlite3_compileoption_used(const char *zOptName); +SQLITE_API const char *sqlite3_compileoption_get(int N); +#endif + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe +** +** ^The sqlite3_threadsafe() function returns zero if and only if +** SQLite was compiled with mutexing code omitted due to the +** [SQLITE_THREADSAFE] compile-time option being set to 0. ** ** SQLite can be compiled with or without mutexes. When -** the [SQLITE_THREADSAFE] C preprocessor macro 1 or 2, mutexes +** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes ** are enabled and SQLite is threadsafe. When the ** [SQLITE_THREADSAFE] macro is 0, ** the mutexes are omitted. Without the mutexes, it is not safe @@ -653,36 +218,37 @@ SQLITE_API int sqlite3_libversion_number(void); ** Enabling mutexes incurs a measurable performance penalty. ** So if speed is of utmost importance, it makes sense to disable ** the mutexes. But for maximum safety, mutexes should be enabled. -** The default behavior is for mutexes to be enabled. +** ^The default behavior is for mutexes to be enabled. ** -** This interface can be used by a program to make sure that the +** This interface can be used by an application to make sure that the ** version of SQLite that it is linking against was compiled with ** the desired setting of the [SQLITE_THREADSAFE] macro. ** ** This interface only reports on the compile-time mutex setting ** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with -** SQLITE_THREADSAFE=1 then mutexes are enabled by default but +** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but ** can be fully or partially disabled using a call to [sqlite3_config()] ** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD], -** or [SQLITE_CONFIG_MUTEX]. The return value of this function shows -** only the default compile-time setting, not any run-time changes -** to that setting. +** or [SQLITE_CONFIG_MUTEX]. ^(The return value of the +** sqlite3_threadsafe() function shows only the compile-time setting of +** thread safety, not any run-time changes to that setting made by +** sqlite3_config(). In other words, the return value from sqlite3_threadsafe() +** is unchanged by calls to sqlite3_config().)^ ** ** See the [threading mode] documentation for additional information. -** -** Requirements: [H10101] [H10102] */ SQLITE_API int sqlite3_threadsafe(void); /* -** CAPI3REF: Database Connection Handle {H12000} +** CAPI3REF: Database Connection Handle ** KEYWORDS: {database connection} {database connections} ** ** Each open SQLite database is represented by a pointer to an instance of ** the opaque structure named "sqlite3". It is useful to think of an sqlite3 ** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and ** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()] -** is its destructor. There are many other interfaces (such as +** and [sqlite3_close_v2()] are its destructors. There are many other +** interfaces (such as ** [sqlite3_prepare_v2()], [sqlite3_create_function()], and ** [sqlite3_busy_timeout()] to name but three) that are methods on an ** sqlite3 object. @@ -690,7 +256,7 @@ SQLITE_API int sqlite3_threadsafe(void); typedef struct sqlite3 sqlite3; /* -** CAPI3REF: 64-Bit Integer Types {H10200} +** CAPI3REF: 64-Bit Integer Types ** KEYWORDS: sqlite_int64 sqlite_uint64 ** ** Because there is no cross-platform way to specify 64-bit integer types @@ -700,7 +266,10 @@ typedef struct sqlite3 sqlite3; ** The sqlite_int64 and sqlite_uint64 types are supported for backwards ** compatibility only. ** -** Requirements: [H10201] [H10202] +** ^The sqlite3_int64 and sqlite_int64 types can store integer values +** between -9223372036854775808 and +9223372036854775807 inclusive. ^The +** sqlite3_uint64 and sqlite_uint64 types can store integer values +** between 0 and +18446744073709551615 inclusive. */ #ifdef SQLITE_INT64_TYPE typedef SQLITE_INT64_TYPE sqlite_int64; @@ -724,36 +293,48 @@ typedef sqlite_uint64 sqlite3_uint64; #endif /* -** CAPI3REF: Closing A Database Connection {H12010} -** -** This routine is the destructor for the [sqlite3] object. -** -** Applications should [sqlite3_finalize | finalize] all [prepared statements] -** and [sqlite3_blob_close | close] all [BLOB handles] associated with -** the [sqlite3] object prior to attempting to close the object. -** The [sqlite3_next_stmt()] interface can be used to locate all -** [prepared statements] associated with a [database connection] if desired. -** Typical code might look like this: -** -**
-** sqlite3_stmt *pStmt;
-** while( (pStmt = sqlite3_next_stmt(db, 0))!=0 ){
-**     sqlite3_finalize(pStmt);
-** }
-** 
-** -** If [sqlite3_close()] is invoked while a transaction is open, +** CAPI3REF: Closing A Database Connection +** +** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors +** for the [sqlite3] object. +** ^Calls to sqlite3_close() and sqlite3_close_v2() return SQLITE_OK if +** the [sqlite3] object is successfully destroyed and all associated +** resources are deallocated. +** +** ^If the database connection is associated with unfinalized prepared +** statements or unfinished sqlite3_backup objects then sqlite3_close() +** will leave the database connection open and return [SQLITE_BUSY]. +** ^If sqlite3_close_v2() is called with unfinalized prepared statements +** and unfinished sqlite3_backups, then the database connection becomes +** an unusable "zombie" which will automatically be deallocated when the +** last prepared statement is finalized or the last sqlite3_backup is +** finished. The sqlite3_close_v2() interface is intended for use with +** host languages that are garbage collected, and where the order in which +** destructors are called is arbitrary. +** +** Applications should [sqlite3_finalize | finalize] all [prepared statements], +** [sqlite3_blob_close | close] all [BLOB handles], and +** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated +** with the [sqlite3] object prior to attempting to close the object. ^If +** sqlite3_close_v2() is called on a [database connection] that still has +** outstanding [prepared statements], [BLOB handles], and/or +** [sqlite3_backup] objects then it returns SQLITE_OK but the deallocation +** of resources is deferred until all [prepared statements], [BLOB handles], +** and [sqlite3_backup] objects are also destroyed. +** +** ^If an [sqlite3] object is destroyed while a transaction is open, ** the transaction is automatically rolled back. ** -** The C parameter to [sqlite3_close(C)] must be either a NULL +** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)] +** must be either a NULL ** pointer or an [sqlite3] object pointer obtained ** from [sqlite3_open()], [sqlite3_open16()], or ** [sqlite3_open_v2()], and not previously closed. -** -** Requirements: -** [H12011] [H12012] [H12013] [H12014] [H12015] [H12019] +** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer +** argument is a harmless no-op. */ -SQLITE_API int sqlite3_close(sqlite3 *); +SQLITE_API int sqlite3_close(sqlite3*); +SQLITE_API int sqlite3_close_v2(sqlite3*); /* ** The type for a callback function. @@ -763,48 +344,65 @@ SQLITE_API int sqlite3_close(sqlite3 *); typedef int (*sqlite3_callback)(void*,int,char**, char**); /* -** CAPI3REF: One-Step Query Execution Interface {H12100} -** -** The sqlite3_exec() interface is a convenient way of running one or more -** SQL statements without having to write a lot of C code. The UTF-8 encoded -** SQL statements are passed in as the second parameter to sqlite3_exec(). -** The statements are evaluated one by one until either an error or -** an interrupt is encountered, or until they are all done. The 3rd parameter -** is an optional callback that is invoked once for each row of any query -** results produced by the SQL statements. The 5th parameter tells where -** to write any error messages. -** -** The error message passed back through the 5th parameter is held -** in memory obtained from [sqlite3_malloc()]. To avoid a memory leak, -** the calling application should call [sqlite3_free()] on any error -** message returned through the 5th parameter when it has finished using -** the error message. -** -** If the SQL statement in the 2nd parameter is NULL or an empty string -** or a string containing only whitespace and comments, then no SQL -** statements are evaluated and the database is not changed. -** -** The sqlite3_exec() interface is implemented in terms of -** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()]. -** The sqlite3_exec() routine does nothing to the database that cannot be done -** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()]. +** CAPI3REF: One-Step Query Execution Interface +** +** The sqlite3_exec() interface is a convenience wrapper around +** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()], +** that allows an application to run multiple statements of SQL +** without having to use a lot of C code. +** +** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded, +** semicolon-separate SQL statements passed into its 2nd argument, +** in the context of the [database connection] passed in as its 1st +** argument. ^If the callback function of the 3rd argument to +** sqlite3_exec() is not NULL, then it is invoked for each result row +** coming out of the evaluated SQL statements. ^The 4th argument to +** sqlite3_exec() is relayed through to the 1st argument of each +** callback invocation. ^If the callback pointer to sqlite3_exec() +** is NULL, then no callback is ever invoked and result rows are +** ignored. +** +** ^If an error occurs while evaluating the SQL statements passed into +** sqlite3_exec(), then execution of the current statement stops and +** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec() +** is not NULL then any error message is written into memory obtained +** from [sqlite3_malloc()] and passed back through the 5th parameter. +** To avoid memory leaks, the application should invoke [sqlite3_free()] +** on error message strings returned through the 5th parameter of +** of sqlite3_exec() after the error message string is no longer needed. +** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors +** occur, then sqlite3_exec() sets the pointer in its 5th parameter to +** NULL before returning. +** +** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec() +** routine returns SQLITE_ABORT without invoking the callback again and +** without running any subsequent SQL statements. +** +** ^The 2nd argument to the sqlite3_exec() callback function is the +** number of columns in the result. ^The 3rd argument to the sqlite3_exec() +** callback is an array of pointers to strings obtained as if from +** [sqlite3_column_text()], one for each column. ^If an element of a +** result row is NULL then the corresponding string pointer for the +** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the +** sqlite3_exec() callback is an array of pointers to strings where each +** entry represents the name of corresponding result column as obtained +** from [sqlite3_column_name()]. +** +** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer +** to an empty string, or a pointer that contains only whitespace and/or +** SQL comments, then no SQL statements are evaluated and the database +** is not changed. +** +** Restrictions: ** -** The first parameter to [sqlite3_exec()] must be an valid and open -** [database connection]. -** -** The database connection must not be closed while -** [sqlite3_exec()] is running. -** -** The calling function should use [sqlite3_free()] to free -** the memory that *errmsg is left pointing at once the error -** message is no longer needed. -** -** The SQL statement text in the 2nd parameter to [sqlite3_exec()] -** must remain unchanged while [sqlite3_exec()] is running. -** -** Requirements: -** [H12101] [H12102] [H12104] [H12105] [H12107] [H12110] [H12113] [H12116] -** [H12119] [H12122] [H12125] [H12131] [H12134] [H12137] [H12138] +**
    +**
  • The application must insure that the 1st parameter to sqlite3_exec() +** is a valid and open [database connection]. +**
  • The application must not close the [database connection] specified by +** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running. +**
  • The application must not modify the SQL statement text passed into +** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running. +**
*/ SQLITE_API int sqlite3_exec( sqlite3*, /* An open database */ @@ -815,16 +413,17 @@ SQLITE_API int sqlite3_exec( ); /* -** CAPI3REF: Result Codes {H10210} +** CAPI3REF: Result Codes ** KEYWORDS: SQLITE_OK {error code} {error codes} ** KEYWORDS: {result code} {result codes} ** ** Many SQLite functions return an integer result code from the set shown -** here in order to indicates success or failure. +** here in order to indicate success or failure. ** ** New error codes may be added in future versions of SQLite. ** -** See also: [SQLITE_IOERR_READ | extended result codes] +** See also: [SQLITE_IOERR_READ | extended result codes], +** [sqlite3_vtab_on_conflict()] [SQLITE_ROLLBACK | result codes]. */ #define SQLITE_OK 0 /* Successful result */ /* beginning-of-error-codes */ @@ -839,10 +438,10 @@ SQLITE_API int sqlite3_exec( #define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ #define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ #define SQLITE_CORRUPT 11 /* The database disk image is malformed */ -#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */ #define SQLITE_FULL 13 /* Insertion failed because database is full */ #define SQLITE_CANTOPEN 14 /* Unable to open the database file */ -#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_PROTOCOL 15 /* Database lock protocol error */ #define SQLITE_EMPTY 16 /* Database is empty */ #define SQLITE_SCHEMA 17 /* The database schema changed */ #define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ @@ -854,12 +453,14 @@ SQLITE_API int sqlite3_exec( #define SQLITE_FORMAT 24 /* Auxiliary database format error */ #define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ #define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */ +#define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */ #define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ #define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ /* end-of-error-codes */ /* -** CAPI3REF: Extended Result Codes {H10220} +** CAPI3REF: Extended Result Codes ** KEYWORDS: {extended error code} {extended error codes} ** KEYWORDS: {extended result code} {extended result codes} ** @@ -874,7 +475,7 @@ SQLITE_API int sqlite3_exec( ** [sqlite3_extended_result_codes()] API. ** ** Some of the available extended result codes are listed here. -** One may expect the number of extended result codes will be expand +** One may expect the number of extended result codes will increase ** over time. Software that uses extended result codes should expect ** to see new result codes in future releases of SQLite. ** @@ -898,21 +499,57 @@ SQLITE_API int sqlite3_exec( #define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8)) #define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8)) #define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8)) -#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8) ) - -/* -** CAPI3REF: Flags For File Open Operations {H10230} +#define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) +#define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) +#define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) +#define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) +#define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) +#define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8)) +#define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8)) +#define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8)) +#define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8)) +#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) +#define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) +#define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) +#define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) +#define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) +#define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) +#define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8)) +#define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) +#define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) +#define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) +#define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) +#define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8)) +#define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) +#define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8)) +#define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8)) +#define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8)) +#define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8)) +#define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8)) +#define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8)) +#define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8)) +#define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8)) +#define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) +#define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8)) +#define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8)) +#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8)) +#define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8)) + +/* +** CAPI3REF: Flags For File Open Operations ** ** These bit values are intended for use in the ** 3rd parameter to the [sqlite3_open_v2()] interface and -** in the 4th parameter to the xOpen method of the -** [sqlite3_vfs] object. +** in the 4th parameter to the [sqlite3_vfs.xOpen] method. */ #define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */ #define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */ +#define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */ +#define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */ #define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */ #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ @@ -922,12 +559,17 @@ SQLITE_API int sqlite3_exec( #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ + +/* Reserved: 0x00F00000 */ /* -** CAPI3REF: Device Characteristics {H10240} +** CAPI3REF: Device Characteristics ** -** The xDeviceCapabilities method of the [sqlite3_io_methods] -** object returns an integer which is a vector of the these +** The xDeviceCharacteristics method of the [sqlite3_io_methods] +** object returns an integer which is a vector of these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] ** refers to. @@ -941,22 +583,29 @@ SQLITE_API int sqlite3_exec( ** first then the size of the file is extended, never the other ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that ** information is written to disk in the same order as calls -** to xWrite(). -*/ -#define SQLITE_IOCAP_ATOMIC 0x00000001 -#define SQLITE_IOCAP_ATOMIC512 0x00000002 -#define SQLITE_IOCAP_ATOMIC1K 0x00000004 -#define SQLITE_IOCAP_ATOMIC2K 0x00000008 -#define SQLITE_IOCAP_ATOMIC4K 0x00000010 -#define SQLITE_IOCAP_ATOMIC8K 0x00000020 -#define SQLITE_IOCAP_ATOMIC16K 0x00000040 -#define SQLITE_IOCAP_ATOMIC32K 0x00000080 -#define SQLITE_IOCAP_ATOMIC64K 0x00000100 -#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 -#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 - -/* -** CAPI3REF: File Locking Levels {H10250} +** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that +** after reboot following a crash or power loss, the only bytes in a +** file that were written at the application level might have changed +** and that adjacent bytes, even bytes within the same sector are +** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN +** flag indicate that a file cannot be deleted when open. +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 +#define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800 +#define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000 + +/* +** CAPI3REF: File Locking Levels ** ** SQLite uses one of these integer values as the second ** argument to calls it makes to the xLock() and xUnlock() methods @@ -969,7 +618,7 @@ SQLITE_API int sqlite3_exec( #define SQLITE_LOCK_EXCLUSIVE 4 /* -** CAPI3REF: Synchronization Type Flags {H10260} +** CAPI3REF: Synchronization Type Flags ** ** When SQLite invokes the xSync() method of an ** [sqlite3_io_methods] object it uses a combination of @@ -981,16 +630,29 @@ SQLITE_API int sqlite3_exec( ** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics. ** If the lower four bits equal SQLITE_SYNC_FULL, that means ** to use Mac OS X style fullsync instead of fsync(). +** +** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags +** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL +** settings. The [synchronous pragma] determines when calls to the +** xSync VFS method occur and applies uniformly across all platforms. +** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how +** energetic or rigorous or forceful the sync operations are and +** only make a difference on Mac OSX for the default SQLite code. +** (Third-party VFS implementations might also make the distinction +** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the +** operating systems natively supported by SQLite, only Mac OSX +** cares about the difference.) */ #define SQLITE_SYNC_NORMAL 0x00002 #define SQLITE_SYNC_FULL 0x00003 #define SQLITE_SYNC_DATAONLY 0x00010 /* -** CAPI3REF: OS Interface Open File Handle {H11110} +** CAPI3REF: OS Interface Open File Handle ** -** An [sqlite3_file] object represents an open file in the OS -** interface layer. Individual OS interface implementations will +** An [sqlite3_file] object represents an open file in the +** [sqlite3_vfs | OS interface layer]. Individual OS interface +** implementations will ** want to subclass this object by appending additional fields ** for their own use. The pMethods entry is a pointer to an ** [sqlite3_io_methods] object that defines methods for performing @@ -1002,19 +664,20 @@ struct sqlite3_file { }; /* -** CAPI3REF: OS Interface File Virtual Methods Object {H11120} +** CAPI3REF: OS Interface File Virtual Methods Object ** -** Every file opened by the [sqlite3_vfs] xOpen method populates an +** Every file opened by the [sqlite3_vfs.xOpen] method populates an ** [sqlite3_file] object (or, more commonly, a subclass of the ** [sqlite3_file] object) with a pointer to an instance of this object. ** This object defines the methods used to perform various operations ** against the open file represented by the [sqlite3_file] object. ** -** If the xOpen method sets the sqlite3_file.pMethods element +** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element ** to a non-NULL pointer, then the sqlite3_io_methods.xClose method -** may be invoked even if the xOpen reported that it failed. The -** only way to prevent a call to xClose following a failed xOpen -** is for the xOpen to set the sqlite3_file.pMethods element to NULL. +** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The +** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen] +** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element +** to NULL. ** ** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or ** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). @@ -1048,7 +711,9 @@ struct sqlite3_file { ** core reserves all opcodes less than 100 for its own use. ** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. ** Applications that define a custom xFileControl method should use opcodes -** greater than 100 to avoid conflicts. +** greater than 100 to avoid conflicts. VFS implementations should +** return [SQLITE_NOTFOUND] for file control opcodes that they do not +** recognize. ** ** The xSectorSize() method returns the sector size of the ** device that underlies the file. The sector size is the @@ -1103,11 +768,20 @@ struct sqlite3_io_methods { int (*xFileControl)(sqlite3_file*, int op, void *pArg); int (*xSectorSize)(sqlite3_file*); int (*xDeviceCharacteristics)(sqlite3_file*); + /* Methods above are valid for version 1 */ + int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**); + int (*xShmLock)(sqlite3_file*, int offset, int n, int flags); + void (*xShmBarrier)(sqlite3_file*); + int (*xShmUnmap)(sqlite3_file*, int deleteFlag); + /* Methods above are valid for version 2 */ + int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp); + int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p); + /* Methods above are valid for version 3 */ /* Additional methods may be added in future releases */ }; /* -** CAPI3REF: Standard File Control Opcodes {H11310} +** CAPI3REF: Standard File Control Opcodes ** ** These integer constants are opcodes for the xFileControl method ** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] @@ -1120,14 +794,209 @@ struct sqlite3_io_methods { ** into an integer that the pArg argument points to. This capability ** is used during testing and only needs to be supported when SQLITE_TEST ** is defined. +**
    +**
  • [[SQLITE_FCNTL_SIZE_HINT]] +** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS +** layer a hint of how large the database file will grow to be during the +** current transaction. This hint is not guaranteed to be accurate but it +** is often close. The underlying VFS might choose to preallocate database +** file space based on this hint in order to help writes to the database +** file run faster. +** +**
  • [[SQLITE_FCNTL_CHUNK_SIZE]] +** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS +** extends and truncates the database file in chunks of a size specified +** by the user. The fourth argument to [sqlite3_file_control()] should +** point to an integer (type int) containing the new chunk-size to use +** for the nominated database. Allocating database file space in large +** chunks (say 1MB at a time), may reduce file-system fragmentation and +** improve performance on some systems. +** +**
  • [[SQLITE_FCNTL_FILE_POINTER]] +** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer +** to the [sqlite3_file] object associated with a particular database +** connection. See the [sqlite3_file_control()] documentation for +** additional information. +** +**
  • [[SQLITE_FCNTL_SYNC_OMITTED]] +** No longer in use. +** +**
  • [[SQLITE_FCNTL_SYNC]] +** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and +** sent to the VFS immediately before the xSync method is invoked on a +** database file descriptor. Or, if the xSync method is not invoked +** because the user has configured SQLite with +** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place +** of the xSync method. In most cases, the pointer argument passed with +** this file-control is NULL. However, if the database file is being synced +** as part of a multi-database commit, the argument points to a nul-terminated +** string containing the transactions master-journal file name. VFSes that +** do not need this signal should silently ignore this opcode. Applications +** should not call [sqlite3_file_control()] with this opcode as doing so may +** disrupt the operation of the specialized VFSes that do require it. +** +**
  • [[SQLITE_FCNTL_COMMIT_PHASETWO]] +** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite +** and sent to the VFS after a transaction has been committed immediately +** but before the database is unlocked. VFSes that do not need this signal +** should silently ignore this opcode. Applications should not call +** [sqlite3_file_control()] with this opcode as doing so may disrupt the +** operation of the specialized VFSes that do require it. +** +**
  • [[SQLITE_FCNTL_WIN32_AV_RETRY]] +** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic +** retry counts and intervals for certain disk I/O operations for the +** windows [VFS] in order to provide robustness in the presence of +** anti-virus programs. By default, the windows VFS will retry file read, +** file write, and file delete operations up to 10 times, with a delay +** of 25 milliseconds before the first retry and with the delay increasing +** by an additional 25 milliseconds with each subsequent retry. This +** opcode allows these two values (10 retries and 25 milliseconds of delay) +** to be adjusted. The values are changed for all database connections +** within the same process. The argument is a pointer to an array of two +** integers where the first integer i the new retry count and the second +** integer is the delay. If either integer is negative, then the setting +** is not changed but instead the prior value of that setting is written +** into the array entry, allowing the current retry settings to be +** interrogated. The zDbName parameter is ignored. +** +**
  • [[SQLITE_FCNTL_PERSIST_WAL]] +** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the +** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary +** write ahead log and shared memory files used for transaction control +** are automatically deleted when the latest connection to the database +** closes. Setting persistent WAL mode causes those files to persist after +** close. Persisting the files is useful when other processes that do not +** have write permission on the directory containing the database file want +** to read the database file, as the WAL and shared memory files must exist +** in order for the database to be readable. The fourth parameter to +** [sqlite3_file_control()] for this opcode should be a pointer to an integer. +** That integer is 0 to disable persistent WAL mode or 1 to enable persistent +** WAL mode. If the integer is -1, then it is overwritten with the current +** WAL persistence setting. +** +**
  • [[SQLITE_FCNTL_POWERSAFE_OVERWRITE]] +** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the +** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting +** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the +** xDeviceCharacteristics methods. The fourth parameter to +** [sqlite3_file_control()] for this opcode should be a pointer to an integer. +** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage +** mode. If the integer is -1, then it is overwritten with the current +** zero-damage mode setting. +** +**
  • [[SQLITE_FCNTL_OVERWRITE]] +** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening +** a write transaction to indicate that, unless it is rolled back for some +** reason, the entire database file will be overwritten by the current +** transaction. This is used by VACUUM operations. +** +**
  • [[SQLITE_FCNTL_VFSNAME]] +** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of +** all [VFSes] in the VFS stack. The names are of all VFS shims and the +** final bottom-level VFS are written into memory obtained from +** [sqlite3_malloc()] and the result is stored in the char* variable +** that the fourth parameter of [sqlite3_file_control()] points to. +** The caller is responsible for freeing the memory when done. As with +** all file-control actions, there is no guarantee that this will actually +** do anything. Callers should initialize the char* variable to a NULL +** pointer in case this file-control is not implemented. This file-control +** is intended for diagnostic use only. +** +**
  • [[SQLITE_FCNTL_PRAGMA]] +** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] +** file control is sent to the open [sqlite3_file] object corresponding +** to the database file to which the pragma statement refers. ^The argument +** to the [SQLITE_FCNTL_PRAGMA] file control is an array of +** pointers to strings (char**) in which the second element of the array +** is the name of the pragma and the third element is the argument to the +** pragma or NULL if the pragma has no argument. ^The handler for an +** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element +** of the char** argument point to a string obtained from [sqlite3_mprintf()] +** or the equivalent and that string will become the result of the pragma or +** the error message if the pragma fails. ^If the +** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal +** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA] +** file control returns [SQLITE_OK], then the parser assumes that the +** VFS has handled the PRAGMA itself and the parser generates a no-op +** prepared statement. ^If the [SQLITE_FCNTL_PRAGMA] file control returns +** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means +** that the VFS encountered an error while handling the [PRAGMA] and the +** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA] +** file control occurs at the beginning of pragma statement analysis and so +** it is able to override built-in [PRAGMA] statements. +** +**
  • [[SQLITE_FCNTL_BUSYHANDLER]] +** ^The [SQLITE_FCNTL_BUSYHANDLER] +** file-control may be invoked by SQLite on the database file handle +** shortly after it is opened in order to provide a custom VFS with access +** to the connections busy-handler callback. The argument is of type (void **) +** - an array of two (void *) values. The first (void *) actually points +** to a function of type (int (*)(void *)). In order to invoke the connections +** busy-handler, this function should be invoked with the second (void *) in +** the array as the only argument. If it returns non-zero, then the operation +** should be retried. If it returns zero, the custom VFS should abandon the +** current operation. +** +**
  • [[SQLITE_FCNTL_TEMPFILENAME]] +** ^Application can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control +** to have SQLite generate a +** temporary filename using the same algorithm that is followed to generate +** temporary filenames for TEMP tables and other internal uses. The +** argument should be a char** which will be filled with the filename +** written into memory obtained from [sqlite3_malloc()]. The caller should +** invoke [sqlite3_free()] on the result to avoid a memory leak. +** +**
  • [[SQLITE_FCNTL_MMAP_SIZE]] +** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the +** maximum number of bytes that will be used for memory-mapped I/O. +** The argument is a pointer to a value of type sqlite3_int64 that +** is an advisory maximum number of bytes in the file to memory map. The +** pointer is overwritten with the old value. The limit is not changed if +** the value originally pointed to is negative, and so the current limit +** can be queried by passing in a pointer to a negative number. This +** file-control is used internally to implement [PRAGMA mmap_size]. +** +**
  • [[SQLITE_FCNTL_TRACE]] +** The [SQLITE_FCNTL_TRACE] file control provides advisory information +** to the VFS about what the higher layers of the SQLite stack are doing. +** This file control is used by some VFS activity tracing [shims]. +** The argument is a zero-terminated string. Higher layers in the +** SQLite stack may generate instances of this file control if +** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled. +** +**
  • [[SQLITE_FCNTL_HAS_MOVED]] +** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a +** pointer to an integer and it writes a boolean into that integer depending +** on whether or not the file has been renamed, moved, or deleted since it +** was first opened. +** +**
*/ -#define SQLITE_FCNTL_LOCKSTATE 1 -#define SQLITE_GET_LOCKPROXYFILE 2 -#define SQLITE_SET_LOCKPROXYFILE 3 -#define SQLITE_LAST_ERRNO 4 - -/* -** CAPI3REF: Mutex Handle {H17110} +#define SQLITE_FCNTL_LOCKSTATE 1 +#define SQLITE_GET_LOCKPROXYFILE 2 +#define SQLITE_SET_LOCKPROXYFILE 3 +#define SQLITE_LAST_ERRNO 4 +#define SQLITE_FCNTL_SIZE_HINT 5 +#define SQLITE_FCNTL_CHUNK_SIZE 6 +#define SQLITE_FCNTL_FILE_POINTER 7 +#define SQLITE_FCNTL_SYNC_OMITTED 8 +#define SQLITE_FCNTL_WIN32_AV_RETRY 9 +#define SQLITE_FCNTL_PERSIST_WAL 10 +#define SQLITE_FCNTL_OVERWRITE 11 +#define SQLITE_FCNTL_VFSNAME 12 +#define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13 +#define SQLITE_FCNTL_PRAGMA 14 +#define SQLITE_FCNTL_BUSYHANDLER 15 +#define SQLITE_FCNTL_TEMPFILENAME 16 +#define SQLITE_FCNTL_MMAP_SIZE 18 +#define SQLITE_FCNTL_TRACE 19 +#define SQLITE_FCNTL_HAS_MOVED 20 +#define SQLITE_FCNTL_SYNC 21 +#define SQLITE_FCNTL_COMMIT_PHASETWO 22 + +/* +** CAPI3REF: Mutex Handle ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an ** abstract type for a mutex object. The SQLite core never looks @@ -1139,11 +1008,12 @@ struct sqlite3_io_methods { typedef struct sqlite3_mutex sqlite3_mutex; /* -** CAPI3REF: OS Interface Object {H11140} +** CAPI3REF: OS Interface Object ** ** An instance of the sqlite3_vfs object defines the interface between ** the SQLite core and the underlying operating system. The "vfs" -** in the name of the object stands for "virtual file system". +** in the name of the object stands for "virtual file system". See +** the [VFS | VFS documentation] for further information. ** ** The value of the iVersion field is initially 1 but may be larger in ** future versions of SQLite. Additional fields may be appended to this @@ -1172,15 +1042,20 @@ typedef struct sqlite3_mutex sqlite3_mutex; ** The zName field holds the name of the VFS module. The name must ** be unique across all VFS modules. ** -** SQLite will guarantee that the zFilename parameter to xOpen +** [[sqlite3_vfs.xOpen]] +** ^SQLite guarantees that the zFilename parameter to xOpen ** is either a NULL pointer or string obtained -** from xFullPathname(). SQLite further guarantees that +** from xFullPathname() with an optional suffix added. +** ^If a suffix is added to the zFilename parameter, it will +** consist of a single "-" character followed by no more than +** 11 alphanumeric and/or "-" characters. +** ^SQLite further guarantees that ** the string will be valid and unchanged until xClose() is ** called. Because of the previous sentence, ** the [sqlite3_file] can safely store a pointer to the ** filename if it needs to remember the filename for some reason. -** If the zFilename parameter is xOpen is a NULL pointer then xOpen -** must invent its own temporary name for the file. Whenever the +** If the zFilename parameter to xOpen is a NULL pointer then xOpen +** must invent its own temporary name for the file. ^Whenever the ** xFilename parameter is NULL it will also be the case that the ** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE]. ** @@ -1191,7 +1066,7 @@ typedef struct sqlite3_mutex sqlite3_mutex; ** If xOpen() opens a file read-only then it sets *pOutFlags to ** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set. ** -** SQLite will also add one of the following flags to the xOpen() +** ^(SQLite will also add one of the following flags to the xOpen() ** call, depending on the object being opened: ** **
    @@ -1202,7 +1077,8 @@ typedef struct sqlite3_mutex sqlite3_mutex; **
  • [SQLITE_OPEN_TRANSIENT_DB] **
  • [SQLITE_OPEN_SUBJOURNAL] **
  • [SQLITE_OPEN_MASTER_JOURNAL] -**
+**
  • [SQLITE_OPEN_WAL] +** )^ ** ** The file I/O implementation can use the object type flags to ** change the way it deals with files. For example, an application @@ -1221,10 +1097,11 @@ typedef struct sqlite3_mutex sqlite3_mutex; ** ** ** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be -** deleted when it is closed. The [SQLITE_OPEN_DELETEONCLOSE] -** will be set for TEMP databases, journals and for subjournals. +** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases and their journals, transient +** databases, and subjournals. ** -** The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction +** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction ** with the [SQLITE_OPEN_CREATE] flag, which are both directly ** analogous to the O_EXCL and O_CREAT flags of the POSIX open() ** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the @@ -1233,7 +1110,7 @@ typedef struct sqlite3_mutex sqlite3_mutex; ** It is not used to indicate the file should be opened ** for exclusive access. ** -** At least szOsFile bytes of memory are allocated by SQLite +** ^At least szOsFile bytes of memory are allocated by SQLite ** to hold the [sqlite3_file] structure passed as the third ** argument to xOpen. The xOpen method does not have to ** allocate the structure; it should just fill it in. Note that @@ -1243,33 +1120,54 @@ typedef struct sqlite3_mutex sqlite3_mutex; ** element will be valid after xOpen returns regardless of the success ** or failure of the xOpen call. ** -** The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** [[sqlite3_vfs.xAccess]] +** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] ** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to ** test whether a file is readable and writable, or [SQLITE_ACCESS_READ] ** to test whether a file is at least readable. The file can be a ** directory. ** -** SQLite will always allocate at least mxPathname+1 bytes for the +** ^SQLite will always allocate at least mxPathname+1 bytes for the ** output buffer xFullPathname. The exact size of the output buffer ** is also passed as a parameter to both methods. If the output buffer ** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is ** handled as a fatal error by SQLite, vfs implementations should endeavor ** to prevent this by setting mxPathname to a sufficiently large value. ** -** The xRandomness(), xSleep(), and xCurrentTime() interfaces -** are not strictly a part of the filesystem, but they are +** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64() +** interfaces are not strictly a part of the filesystem, but they are ** included in the VFS structure for completeness. ** The xRandomness() function attempts to return nBytes bytes ** of good-quality randomness into zOut. The return value is ** the actual number of bytes of randomness obtained. ** The xSleep() method causes the calling thread to sleep for at -** least the number of microseconds given. The xCurrentTime() -** method returns a Julian Day Number for the current date and time. -** +** least the number of microseconds given. ^The xCurrentTime() +** method returns a Julian Day Number for the current date and time as +** a floating point value. +** ^The xCurrentTimeInt64() method returns, as an integer, the Julian +** Day Number multiplied by 86400000 (the number of milliseconds in +** a 24-hour day). +** ^SQLite will use the xCurrentTimeInt64() method to get the current +** date and time if that method is available (if iVersion is 2 or +** greater and the function pointer is not NULL) and will fall back +** to xCurrentTime() if xCurrentTimeInt64() is unavailable. +** +** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces +** are not used by the SQLite core. These optional interfaces are provided +** by some VFSes to facilitate testing of the VFS code. By overriding +** system calls with functions under its control, a test program can +** simulate faults and error conditions that would otherwise be difficult +** or impossible to induce. The set of system calls that can be overridden +** varies from one VFS to another, and from one version of the same VFS to the +** next. Applications that use these interfaces must be prepared for any +** or all of these interfaces to be NULL or for their behavior to change +** from one release to the next. Applications must not attempt to access +** any of these methods if the iVersion of the VFS is less than 3. */ typedef struct sqlite3_vfs sqlite3_vfs; +typedef void (*sqlite3_syscall_ptr)(void); struct sqlite3_vfs { - int iVersion; /* Structure version number */ + int iVersion; /* Structure version number (currently 3) */ int szOsFile; /* Size of subclassed sqlite3_file */ int mxPathname; /* Maximum file pathname length */ sqlite3_vfs *pNext; /* Next registered VFS */ @@ -1288,61 +1186,130 @@ struct sqlite3_vfs { int (*xSleep)(sqlite3_vfs*, int microseconds); int (*xCurrentTime)(sqlite3_vfs*, double*); int (*xGetLastError)(sqlite3_vfs*, int, char *); - /* New fields may be appended in figure versions. The iVersion - ** value will increment whenever this happens. */ + /* + ** The methods above are in version 1 of the sqlite_vfs object + ** definition. Those that follow are added in version 2 or later + */ + int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*); + /* + ** The methods above are in versions 1 and 2 of the sqlite_vfs object. + ** Those below are for version 3 and greater. + */ + int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr); + sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName); + const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName); + /* + ** The methods above are in versions 1 through 3 of the sqlite_vfs object. + ** New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. + */ }; /* -** CAPI3REF: Flags for the xAccess VFS method {H11190} +** CAPI3REF: Flags for the xAccess VFS method ** ** These integer constants can be used as the third parameter to -** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** the xAccess method of an [sqlite3_vfs] object. They determine ** what kind of permissions the xAccess method is looking for. ** With SQLITE_ACCESS_EXISTS, the xAccess method ** simply checks whether the file exists. ** With SQLITE_ACCESS_READWRITE, the xAccess method -** checks whether the file is both readable and writable. +** checks whether the named directory is both readable and writable +** (in other words, if files can be added, removed, and renamed within +** the directory). +** The SQLITE_ACCESS_READWRITE constant is currently used only by the +** [temp_store_directory pragma], though this could change in a future +** release of SQLite. ** With SQLITE_ACCESS_READ, the xAccess method -** checks whether the file is readable. +** checks whether the file is readable. The SQLITE_ACCESS_READ constant is +** currently unused, though it might be used in a future release of +** SQLite. */ #define SQLITE_ACCESS_EXISTS 0 -#define SQLITE_ACCESS_READWRITE 1 -#define SQLITE_ACCESS_READ 2 +#define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */ +#define SQLITE_ACCESS_READ 2 /* Unused */ /* -** CAPI3REF: Initialize The SQLite Library {H10130} +** CAPI3REF: Flags for the xShmLock VFS method +** +** These integer constants define the various locking operations +** allowed by the xShmLock method of [sqlite3_io_methods]. The +** following are the only legal combinations of flags to the +** xShmLock method: ** -** The sqlite3_initialize() routine initializes the -** SQLite library. The sqlite3_shutdown() routine +**
      +**
    • SQLITE_SHM_LOCK | SQLITE_SHM_SHARED +**
    • SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE +**
    • SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED +**
    • SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE +**
    +** +** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as +** was given no the corresponding lock. +** +** The xShmLock method can transition between unlocked and SHARED or +** between unlocked and EXCLUSIVE. It cannot transition between SHARED +** and EXCLUSIVE. +*/ +#define SQLITE_SHM_UNLOCK 1 +#define SQLITE_SHM_LOCK 2 +#define SQLITE_SHM_SHARED 4 +#define SQLITE_SHM_EXCLUSIVE 8 + +/* +** CAPI3REF: Maximum xShmLock index +** +** The xShmLock method on [sqlite3_io_methods] may use values +** between 0 and this upper bound as its "offset" argument. +** The SQLite core will never attempt to acquire or release a +** lock outside of this range +*/ +#define SQLITE_SHM_NLOCK 8 + + +/* +** CAPI3REF: Initialize The SQLite Library +** +** ^The sqlite3_initialize() routine initializes the +** SQLite library. ^The sqlite3_shutdown() routine ** deallocates any resources that were allocated by sqlite3_initialize(). +** These routines are designed to aid in process initialization and +** shutdown on embedded systems. Workstation applications using +** SQLite normally do not need to invoke either of these routines. ** ** A call to sqlite3_initialize() is an "effective" call if it is ** the first time sqlite3_initialize() is invoked during the lifetime of ** the process, or if it is the first time sqlite3_initialize() is invoked -** following a call to sqlite3_shutdown(). Only an effective call +** following a call to sqlite3_shutdown(). ^(Only an effective call ** of sqlite3_initialize() does any initialization. All other calls -** are harmless no-ops. +** are harmless no-ops.)^ ** ** A call to sqlite3_shutdown() is an "effective" call if it is the first -** call to sqlite3_shutdown() since the last sqlite3_initialize(). Only +** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only ** an effective call to sqlite3_shutdown() does any deinitialization. -** All other calls to sqlite3_shutdown() are harmless no-ops. +** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^ +** +** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown() +** is not. The sqlite3_shutdown() interface must only be called from a +** single thread. All open [database connections] must be closed and all +** other SQLite resources must be deallocated prior to invoking +** sqlite3_shutdown(). ** -** Among other things, sqlite3_initialize() shall invoke -** sqlite3_os_init(). Similarly, sqlite3_shutdown() -** shall invoke sqlite3_os_end(). +** Among other things, ^sqlite3_initialize() will invoke +** sqlite3_os_init(). Similarly, ^sqlite3_shutdown() +** will invoke sqlite3_os_end(). ** -** The sqlite3_initialize() routine returns [SQLITE_OK] on success. -** If for some reason, sqlite3_initialize() is unable to initialize +** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success. +** ^If for some reason, sqlite3_initialize() is unable to initialize ** the library (perhaps it is unable to allocate a needed resource such ** as a mutex) it returns an [error code] other than [SQLITE_OK]. ** -** The sqlite3_initialize() routine is called internally by many other +** ^The sqlite3_initialize() routine is called internally by many other ** SQLite interfaces so that an application usually does not need to ** invoke sqlite3_initialize() directly. For example, [sqlite3_open()] ** calls sqlite3_initialize() so the SQLite library will be automatically ** initialized when [sqlite3_open()] is called if it has not be initialized -** already. However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT] +** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT] ** compile-time option, then the automatic calls to sqlite3_initialize() ** are omitted and the application must call sqlite3_initialize() directly ** prior to using any other SQLite interface. For maximum portability, @@ -1366,8 +1333,9 @@ struct sqlite3_vfs { ** interface is called automatically by sqlite3_initialize() and ** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate ** implementations for sqlite3_os_init() and sqlite3_os_end() -** are built into SQLite when it is compiled for unix, windows, or os/2. -** When built for other platforms (using the [SQLITE_OS_OTHER=1] compile-time +** are built into SQLite when it is compiled for Unix, Windows, or OS/2. +** When [custom builds | built for other platforms] +** (using the [SQLITE_OS_OTHER=1] compile-time ** option) the application must supply a suitable implementation for ** sqlite3_os_init() and sqlite3_os_end(). An application-supplied ** implementation of sqlite3_os_init() or sqlite3_os_end() @@ -1380,8 +1348,7 @@ SQLITE_API int sqlite3_os_init(void); SQLITE_API int sqlite3_os_end(void); /* -** CAPI3REF: Configuring The SQLite Library {H14100} -** EXPERIMENTAL +** CAPI3REF: Configuring The SQLite Library ** ** The sqlite3_config() interface is used to make global configuration ** changes to SQLite in order to tune SQLite to the specific needs of @@ -1394,53 +1361,43 @@ SQLITE_API int sqlite3_os_end(void); ** threads while sqlite3_config() is running. Furthermore, sqlite3_config() ** may only be invoked prior to library initialization using ** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()]. -** Note, however, that sqlite3_config() can be called as part of the +** ^If sqlite3_config() is called after [sqlite3_initialize()] and before +** [sqlite3_shutdown()] then it will return SQLITE_MISUSE. +** Note, however, that ^sqlite3_config() can be called as part of the ** implementation of an application-defined [sqlite3_os_init()]. ** ** The first argument to sqlite3_config() is an integer -** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines +** [configuration option] that determines ** what property of SQLite is to be configured. Subsequent arguments -** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option] +** vary depending on the [configuration option] ** in the first argument. ** -** When a configuration option is set, sqlite3_config() returns [SQLITE_OK]. -** If the option is unknown or SQLite is unable to set the option +** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK]. +** ^If the option is unknown or SQLite is unable to set the option ** then this routine returns a non-zero [error code]. -** -** Requirements: -** [H14103] [H14106] [H14120] [H14123] [H14126] [H14129] [H14132] [H14135] -** [H14138] [H14141] [H14144] [H14147] [H14150] [H14153] [H14156] [H14159] -** [H14162] [H14165] [H14168] */ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_config(int, ...); +SQLITE_API int sqlite3_config(int, ...); /* -** CAPI3REF: Configure database connections {H14200} -** EXPERIMENTAL +** CAPI3REF: Configure database connections ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to ** [sqlite3_config()] except that the changes apply to a single -** [database connection] (specified in the first argument). The -** sqlite3_db_config() interface can only be used immediately after -** the database connection is created using [sqlite3_open()], -** [sqlite3_open16()], or [sqlite3_open_v2()]. +** [database connection] (specified in the first argument). ** ** The second argument to sqlite3_db_config(D,V,...) is the -** configuration verb - an integer code that indicates what -** aspect of the [database connection] is being configured. -** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE]. -** New verbs are likely to be added in future releases of SQLite. -** Additional arguments depend on the verb. +** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code +** that indicates what aspect of the [database connection] is being configured. +** Subsequent arguments vary depending on the configuration verb. ** -** Requirements: -** [H14203] [H14206] [H14209] [H14212] [H14215] +** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if +** the call is considered successful. */ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...); +SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...); /* -** CAPI3REF: Memory Allocation Routines {H10155} -** EXPERIMENTAL +** CAPI3REF: Memory Allocation Routines ** ** An instance of this object defines the interface between SQLite ** and low-level memory allocation routines. @@ -1448,13 +1405,15 @@ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...); ** This object is used in only one place in the SQLite interface. ** A pointer to an instance of this object is the argument to ** [sqlite3_config()] when the configuration option is -** [SQLITE_CONFIG_MALLOC]. By creating an instance of this object -** and passing it to [sqlite3_config()] during configuration, an -** application can specify an alternative memory allocation subsystem -** for SQLite to use for all of its dynamic memory needs. -** -** Note that SQLite comes with a built-in memory allocator that is -** perfectly adequate for the overwhelming majority of applications +** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC]. +** By creating an instance of this object +** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC]) +** during configuration, an application can specify an alternative +** memory allocation subsystem for SQLite to use for all of its +** dynamic memory needs. +** +** Note that SQLite comes with several [built-in memory allocators] +** that are perfectly adequate for the overwhelming majority of applications ** and that this object is only useful to a tiny minority of applications ** with specialized memory allocation requirements. This object is ** also used during testing of SQLite in order to specify an alternative @@ -1462,8 +1421,10 @@ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...); ** order to verify that SQLite recovers gracefully from such ** conditions. ** -** The xMalloc, xFree, and xRealloc methods must work like the -** malloc(), free(), and realloc() functions from the standard library. +** The xMalloc, xRealloc, and xFree methods must work like the +** malloc(), realloc() and free() functions from the standard C library. +** ^SQLite guarantees that the second argument to +** xRealloc is always a value returned by a prior call to xRoundup. ** ** xSize should return the allocated size of a memory allocation ** previously obtained from xMalloc or xRealloc. The allocated size @@ -1473,13 +1434,30 @@ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...); ** a memory allocation given a particular requested size. Most memory ** allocators round up memory allocations at least to the next multiple ** of 8. Some allocators round up to a larger multiple or to a power of 2. +** Every memory allocation request coming in through [sqlite3_malloc()] +** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, +** that causes the corresponding memory allocation to fail. ** -** The xInit method initializes the memory allocator. (For example, +** The xInit method initializes the memory allocator. For example, ** it might allocate any require mutexes or initialize internal data ** structures. The xShutdown method is invoked (indirectly) by ** [sqlite3_shutdown()] and should deallocate any resources acquired ** by xInit. The pAppData pointer is used as the only parameter to ** xInit and xShutdown. +** +** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes +** the xInit method, so the xInit method need not be threadsafe. The +** xShutdown method is only called from [sqlite3_shutdown()] so it does +** not need to be threadsafe either. For all other methods, SQLite +** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the +** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which +** it is by default) and so the methods are automatically serialized. +** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other +** methods must be threadsafe or else make their own arrangements for +** serialization. +** +** SQLite will never invoke xInit() more than once without an intervening +** call to xShutdown(). */ typedef struct sqlite3_mem_methods sqlite3_mem_methods; struct sqlite3_mem_methods { @@ -1494,8 +1472,8 @@ struct sqlite3_mem_methods { }; /* -** CAPI3REF: Configuration Options {H10160} -** EXPERIMENTAL +** CAPI3REF: Configuration Options +** KEYWORDS: {configuration option} ** ** These constants are the available integer configuration options that ** can be passed as the first argument to the [sqlite3_config()] interface. @@ -1508,23 +1486,34 @@ struct sqlite3_mem_methods { ** is invoked. ** **
    -**
    SQLITE_CONFIG_SINGLETHREAD
    -**
    There are no arguments to this option. This option disables +** [[SQLITE_CONFIG_SINGLETHREAD]]
    SQLITE_CONFIG_SINGLETHREAD
    +**
    There are no arguments to this option. ^This option sets the +** [threading mode] to Single-thread. In other words, it disables ** all mutexing and puts SQLite into a mode where it can only be used -** by a single thread.
    -** -**
    SQLITE_CONFIG_MULTITHREAD
    -**
    There are no arguments to this option. This option disables +** by a single thread. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** it is not possible to change the [threading mode] from its default +** value of Single-thread and so [sqlite3_config()] will return +** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD +** configuration option.
    +** +** [[SQLITE_CONFIG_MULTITHREAD]]
    SQLITE_CONFIG_MULTITHREAD
    +**
    There are no arguments to this option. ^This option sets the +** [threading mode] to Multi-thread. In other words, it disables ** mutexing on [database connection] and [prepared statement] objects. ** The application is responsible for serializing access to ** [database connections] and [prepared statements]. But other mutexes ** are enabled so that SQLite will be safe to use in a multi-threaded ** environment as long as no two threads attempt to use the same -** [database connection] at the same time. See the [threading mode] -** documentation for additional information.
    -** -**
    SQLITE_CONFIG_SERIALIZED
    -**
    There are no arguments to this option. This option enables +** [database connection] at the same time. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** it is not possible to set the Multi-thread [threading mode] and +** [sqlite3_config()] will return [SQLITE_ERROR] if called with the +** SQLITE_CONFIG_MULTITHREAD configuration option.
    +** +** [[SQLITE_CONFIG_SERIALIZED]]
    SQLITE_CONFIG_SERIALIZED
    +**
    There are no arguments to this option. ^This option sets the +** [threading mode] to Serialized. In other words, this option enables ** all mutexes including the recursive ** mutexes on [database connection] and [prepared statement] objects. ** In this mode (which is the default when SQLite is compiled with @@ -1532,122 +1521,232 @@ struct sqlite3_mem_methods { ** to [database connections] and [prepared statements] so that the ** application is free to use the same [database connection] or the ** same [prepared statement] in different threads at the same time. -** See the [threading mode] documentation for additional information.
    -** -**
    SQLITE_CONFIG_MALLOC
    -**
    This option takes a single argument which is a pointer to an +** ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** it is not possible to set the Serialized [threading mode] and +** [sqlite3_config()] will return [SQLITE_ERROR] if called with the +** SQLITE_CONFIG_SERIALIZED configuration option.
    +** +** [[SQLITE_CONFIG_MALLOC]]
    SQLITE_CONFIG_MALLOC
    +**
    ^(This option takes a single argument which is a pointer to an ** instance of the [sqlite3_mem_methods] structure. The argument specifies ** alternative low-level memory allocation routines to be used in place of -** the memory allocation routines built into SQLite.
    +** the memory allocation routines built into SQLite.)^ ^SQLite makes +** its own private copy of the content of the [sqlite3_mem_methods] structure +** before the [sqlite3_config()] call returns. ** -**
    SQLITE_CONFIG_GETMALLOC
    -**
    This option takes a single argument which is a pointer to an +** [[SQLITE_CONFIG_GETMALLOC]]
    SQLITE_CONFIG_GETMALLOC
    +**
    ^(This option takes a single argument which is a pointer to an ** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods] -** structure is filled with the currently defined memory allocation routines. +** structure is filled with the currently defined memory allocation routines.)^ ** This option can be used to overload the default memory allocation ** routines with a wrapper that simulations memory allocation failure or -** tracks memory usage, for example.
    +** tracks memory usage, for example. ** -**
    SQLITE_CONFIG_MEMSTATUS
    -**
    This option takes single argument of type int, interpreted as a +** [[SQLITE_CONFIG_MEMSTATUS]]
    SQLITE_CONFIG_MEMSTATUS
    +**
    ^This option takes single argument of type int, interpreted as a ** boolean, which enables or disables the collection of memory allocation -** statistics. When disabled, the following SQLite interfaces become -** non-operational: +** statistics. ^(When memory allocation statistics are disabled, the +** following SQLite interfaces become non-operational: **
      **
    • [sqlite3_memory_used()] **
    • [sqlite3_memory_highwater()] -**
    • [sqlite3_soft_heap_limit()] +**
    • [sqlite3_soft_heap_limit64()] **
    • [sqlite3_status()] -**
    +** )^ +** ^Memory allocation statistics are enabled by default unless SQLite is +** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory +** allocation statistics are disabled by default. **
    ** -**
    SQLITE_CONFIG_SCRATCH
    -**
    This option specifies a static memory buffer that SQLite can use for +** [[SQLITE_CONFIG_SCRATCH]]
    SQLITE_CONFIG_SCRATCH
    +**
    ^This option specifies a static memory buffer that SQLite can use for ** scratch memory. There are three arguments: A pointer an 8-byte -** aligned memory buffer from which the scrach allocations will be +** aligned memory buffer from which the scratch allocations will be ** drawn, the size of each scratch allocation (sz), ** and the maximum number of scratch allocations (N). The sz -** argument must be a multiple of 16. The sz parameter should be a few bytes -** larger than the actual scratch space required due to internal overhead. -** The first argument should pointer to an 8-byte aligned buffer +** argument must be a multiple of 16. +** The first argument must be a pointer to an 8-byte aligned buffer ** of at least sz*N bytes of memory. -** SQLite will use no more than one scratch buffer at once per thread, so -** N should be set to the expected maximum number of threads. The sz -** parameter should be 6 times the size of the largest database page size. -** Scratch buffers are used as part of the btree balance operation. If -** The btree balancer needs additional memory beyond what is provided by -** scratch buffers or if no scratch buffer space is specified, then SQLite -** goes to [sqlite3_malloc()] to obtain the memory it needs.
    -** -**
    SQLITE_CONFIG_PAGECACHE
    -**
    This option specifies a static memory buffer that SQLite can use for -** the database page cache with the default page cache implemenation. +** ^SQLite will use no more than two scratch buffers per thread. So +** N should be set to twice the expected maximum number of threads. +** ^SQLite will never require a scratch buffer that is more than 6 +** times the database page size. ^If SQLite needs needs additional +** scratch memory beyond what is provided by this configuration option, then +** [sqlite3_malloc()] will be used to obtain the memory needed.
    +** +** [[SQLITE_CONFIG_PAGECACHE]]
    SQLITE_CONFIG_PAGECACHE
    +**
    ^This option specifies a static memory buffer that SQLite can use for +** the database page cache with the default page cache implementation. ** This configuration should not be used if an application-define page -** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option. +** cache implementation is loaded using the SQLITE_CONFIG_PCACHE2 option. ** There are three arguments to this option: A pointer to 8-byte aligned ** memory, the size of each page buffer (sz), and the number of pages (N). ** The sz argument should be the size of the largest database page ** (a power of two between 512 and 32768) plus a little extra for each -** page header. The page header size is 20 to 40 bytes depending on -** the host architecture. It is harmless, apart from the wasted memory, +** page header. ^The page header size is 20 to 40 bytes depending on +** the host architecture. ^It is harmless, apart from the wasted memory, ** to make sz a little too large. The first ** argument should point to an allocation of at least sz*N bytes of memory. -** SQLite will use the memory provided by the first argument to satisfy its -** memory needs for the first N pages that it adds to cache. If additional +** ^SQLite will use the memory provided by the first argument to satisfy its +** memory needs for the first N pages that it adds to cache. ^If additional ** page cache memory is needed beyond what is provided by this option, then ** SQLite goes to [sqlite3_malloc()] for the additional storage space. -** The implementation might use one or more of the N buffers to hold -** memory accounting information. The pointer in the first argument must +** The pointer in the first argument must ** be aligned to an 8-byte boundary or subsequent behavior of SQLite ** will be undefined.
    ** -**
    SQLITE_CONFIG_HEAP
    -**
    This option specifies a static memory buffer that SQLite will use +** [[SQLITE_CONFIG_HEAP]]
    SQLITE_CONFIG_HEAP
    +**
    ^This option specifies a static memory buffer that SQLite will use ** for all of its dynamic memory allocation needs beyond those provided ** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE]. ** There are three arguments: An 8-byte aligned pointer to the memory, ** the number of bytes in the memory buffer, and the minimum allocation size. -** If the first pointer (the memory pointer) is NULL, then SQLite reverts +** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts ** to using its default memory allocator (the system malloc() implementation), -** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. If the +** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the ** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or ** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory ** allocator is engaged to handle all of SQLites memory allocation needs. ** The first pointer (the memory pointer) must be aligned to an 8-byte -** boundary or subsequent behavior of SQLite will be undefined.
    +** boundary or subsequent behavior of SQLite will be undefined. +** The minimum allocation size is capped at 2**12. Reasonable values +** for the minimum allocation size are 2**5 through 2**8. ** -**
    SQLITE_CONFIG_MUTEX
    -**
    This option takes a single argument which is a pointer to an +** [[SQLITE_CONFIG_MUTEX]]
    SQLITE_CONFIG_MUTEX
    +**
    ^(This option takes a single argument which is a pointer to an ** instance of the [sqlite3_mutex_methods] structure. The argument specifies ** alternative low-level mutex routines to be used in place -** the mutex routines built into SQLite.
    -** -**
    SQLITE_CONFIG_GETMUTEX
    -**
    This option takes a single argument which is a pointer to an +** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the +** content of the [sqlite3_mutex_methods] structure before the call to +** [sqlite3_config()] returns. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** the entire mutexing subsystem is omitted from the build and hence calls to +** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will +** return [SQLITE_ERROR].
    +** +** [[SQLITE_CONFIG_GETMUTEX]]
    SQLITE_CONFIG_GETMUTEX
    +**
    ^(This option takes a single argument which is a pointer to an ** instance of the [sqlite3_mutex_methods] structure. The ** [sqlite3_mutex_methods] -** structure is filled with the currently defined mutex routines. +** structure is filled with the currently defined mutex routines.)^ ** This option can be used to overload the default mutex allocation ** routines with a wrapper used to track mutex usage for performance -** profiling or testing, for example.
    -** -**
    SQLITE_CONFIG_LOOKASIDE
    -**
    This option takes two arguments that determine the default -** memory allcation lookaside optimization. The first argument is the +** profiling or testing, for example. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** the entire mutexing subsystem is omitted from the build and hence calls to +** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will +** return [SQLITE_ERROR].
    +** +** [[SQLITE_CONFIG_LOOKASIDE]]
    SQLITE_CONFIG_LOOKASIDE
    +**
    ^(This option takes two arguments that determine the default +** memory allocation for the lookaside memory allocator on each +** [database connection]. The first argument is the ** size of each lookaside buffer slot and the second is the number of -** slots allocated to each database connection.
    -** -**
    SQLITE_CONFIG_PCACHE
    -**
    This option takes a single argument which is a pointer to -** an [sqlite3_pcache_methods] object. This object specifies the interface -** to a custom page cache implementation. SQLite makes a copy of the +** slots allocated to each database connection.)^ ^(This option sets the +** default lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] +** verb to [sqlite3_db_config()] can be used to change the lookaside +** configuration on individual connections.)^
    +** +** [[SQLITE_CONFIG_PCACHE2]]
    SQLITE_CONFIG_PCACHE2
    +**
    ^(This option takes a single argument which is a pointer to +** an [sqlite3_pcache_methods2] object. This object specifies the interface +** to a custom page cache implementation.)^ ^SQLite makes a copy of the ** object and uses it for page cache memory allocations.
    ** -**
    SQLITE_CONFIG_GETPCACHE
    -**
    This option takes a single argument which is a pointer to an -** [sqlite3_pcache_methods] object. SQLite copies of the current -** page cache implementation into that object.
    +** [[SQLITE_CONFIG_GETPCACHE2]]
    SQLITE_CONFIG_GETPCACHE2
    +**
    ^(This option takes a single argument which is a pointer to an +** [sqlite3_pcache_methods2] object. SQLite copies of the current +** page cache implementation into that object.)^
    +** +** [[SQLITE_CONFIG_LOG]]
    SQLITE_CONFIG_LOG
    +**
    The SQLITE_CONFIG_LOG option is used to configure the SQLite +** global [error log]. +** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a +** function with a call signature of void(*)(void*,int,const char*), +** and a pointer to void. ^If the function pointer is not NULL, it is +** invoked by [sqlite3_log()] to process each logging event. ^If the +** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op. +** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is +** passed through as the first parameter to the application-defined logger +** function whenever that function is invoked. ^The second parameter to +** the logger function is a copy of the first parameter to the corresponding +** [sqlite3_log()] call and is intended to be a [result code] or an +** [extended result code]. ^The third parameter passed to the logger is +** log message after formatting via [sqlite3_snprintf()]. +** The SQLite logging interface is not reentrant; the logger function +** supplied by the application must not invoke any SQLite interface. +** In a multi-threaded application, the application-defined logger +** function must be threadsafe.
    +** +** [[SQLITE_CONFIG_URI]]
    SQLITE_CONFIG_URI +**
    ^(This option takes a single argument of type int. If non-zero, then +** URI handling is globally enabled. If the parameter is zero, then URI handling +** is globally disabled.)^ ^If URI handling is globally enabled, all filenames +** passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or +** specified as part of [ATTACH] commands are interpreted as URIs, regardless +** of whether or not the [SQLITE_OPEN_URI] flag is set when the database +** connection is opened. ^If it is globally disabled, filenames are +** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the +** database connection is opened. ^(By default, URI handling is globally +** disabled. The default value may be changed by compiling with the +** [SQLITE_USE_URI] symbol defined.)^ +** +** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]]
    SQLITE_CONFIG_COVERING_INDEX_SCAN +**
    ^This option takes a single integer argument which is interpreted as +** a boolean in order to enable or disable the use of covering indices for +** full table scans in the query optimizer. ^The default setting is determined +** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on" +** if that compile-time option is omitted. +** The ability to disable the use of covering indices for full table scans +** is because some incorrectly coded legacy applications might malfunction +** when the optimization is enabled. Providing the ability to +** disable the optimization allows the older, buggy application code to work +** without change even with newer versions of SQLite. +** +** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]] +**
    SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE +**
    These options are obsolete and should not be used by new code. +** They are retained for backwards compatibility but are now no-ops. +**
    ** +** [[SQLITE_CONFIG_SQLLOG]] +**
    SQLITE_CONFIG_SQLLOG +**
    This option is only available if sqlite is compiled with the +** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should +** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int). +** The second should be of type (void*). The callback is invoked by the library +** in three separate circumstances, identified by the value passed as the +** fourth parameter. If the fourth parameter is 0, then the database connection +** passed as the second argument has just been opened. The third argument +** points to a buffer containing the name of the main database file. If the +** fourth parameter is 1, then the SQL statement that the third parameter +** points to has just been executed. Or, if the fourth parameter is 2, then +** the connection being passed as the second parameter is being closed. The +** third parameter is passed NULL In this case. An example of using this +** configuration option can be seen in the "test_sqllog.c" source file in +** the canonical SQLite source tree.
    +** +** [[SQLITE_CONFIG_MMAP_SIZE]] +**
    SQLITE_CONFIG_MMAP_SIZE +**
    ^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values +** that are the default mmap size limit (the default setting for +** [PRAGMA mmap_size]) and the maximum allowed mmap size limit. +** ^The default setting can be overridden by each database connection using +** either the [PRAGMA mmap_size] command, or by using the +** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size +** cannot be changed at run-time. Nor may the maximum allowed mmap size +** exceed the compile-time maximum mmap size set by the +** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^ +** ^If either argument to this option is negative, then that argument is +** changed to its compile-time default. +** +** [[SQLITE_CONFIG_WIN32_HEAPSIZE]] +**
    SQLITE_CONFIG_WIN32_HEAPSIZE +**
    ^This option is only available if SQLite is compiled for Windows +** with the [SQLITE_WIN32_MALLOC] pre-processor macro defined. +** SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value +** that specifies the maximum size of the created heap. **
    */ #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ @@ -1663,12 +1762,19 @@ struct sqlite3_mem_methods { #define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */ /* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */ #define SQLITE_CONFIG_LOOKASIDE 13 /* int int */ -#define SQLITE_CONFIG_PCACHE 14 /* sqlite3_pcache_methods* */ -#define SQLITE_CONFIG_GETPCACHE 15 /* sqlite3_pcache_methods* */ +#define SQLITE_CONFIG_PCACHE 14 /* no-op */ +#define SQLITE_CONFIG_GETPCACHE 15 /* no-op */ +#define SQLITE_CONFIG_LOG 16 /* xFunc, void* */ +#define SQLITE_CONFIG_URI 17 /* int */ +#define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */ +#define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */ +#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */ +#define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ +#define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ +#define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */ /* -** CAPI3REF: Configuration Options {H10170} -** EXPERIMENTAL +** CAPI3REF: Database Connection Configuration Options ** ** These constants are the available integer configuration options that ** can be passed as the second argument to the [sqlite3_db_config()] interface. @@ -1676,74 +1782,110 @@ struct sqlite3_mem_methods { ** New configuration options may be added in future releases of SQLite. ** Existing configuration options might be discontinued. Applications ** should check the return code from [sqlite3_db_config()] to make sure that -** the call worked. The [sqlite3_db_config()] interface will return a +** the call worked. ^The [sqlite3_db_config()] interface will return a ** non-zero [error code] if a discontinued or unsupported configuration option ** is invoked. ** **
    **
    SQLITE_DBCONFIG_LOOKASIDE
    -**
    This option takes three additional arguments that determine the +**
    ^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. -** The first argument (the third parameter to [sqlite3_db_config()] is a -** pointer to an 8-byte aligned memory buffer to use for lookaside memory. -** The first argument may be NULL in which case SQLite will allocate the -** lookaside buffer itself using [sqlite3_malloc()]. The second argument is the -** size of each lookaside buffer slot and the third argument is the number of +** ^The first argument (the third parameter to [sqlite3_db_config()] is a +** pointer to a memory buffer to use for lookaside memory. +** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb +** may be NULL in which case SQLite will allocate the +** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the +** size of each lookaside buffer slot. ^The third argument is the number of ** slots. The size of the buffer in the first argument must be greater than -** or equal to the product of the second and third arguments.
    +** or equal to the product of the second and third arguments. The buffer +** must be aligned to an 8-byte boundary. ^If the second argument to +** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally +** rounded down to the next smaller multiple of 8. ^(The lookaside memory +** configuration for a database connection can only be changed when that +** connection is not currently using lookaside memory, or in other words +** when the "current value" returned by +** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero. +** Any attempt to change the lookaside memory configuration when lookaside +** memory is in use leaves the configuration unchanged and returns +** [SQLITE_BUSY].)^ +** +**
    SQLITE_DBCONFIG_ENABLE_FKEY
    +**
    ^This option is used to enable or disable the enforcement of +** [foreign key constraints]. There should be two additional arguments. +** The first argument is an integer which is 0 to disable FK enforcement, +** positive to enable FK enforcement or negative to leave FK enforcement +** unchanged. The second parameter is a pointer to an integer into which +** is written 0 or 1 to indicate whether FK enforcement is off or on +** following this call. The second parameter may be a NULL pointer, in +** which case the FK enforcement setting is not reported back.
    +** +**
    SQLITE_DBCONFIG_ENABLE_TRIGGER
    +**
    ^This option is used to enable or disable [CREATE TRIGGER | triggers]. +** There should be two additional arguments. +** The first argument is an integer which is 0 to disable triggers, +** positive to enable triggers or negative to leave the setting unchanged. +** The second parameter is a pointer to an integer into which +** is written 0 or 1 to indicate whether triggers are disabled or enabled +** following this call. The second parameter may be a NULL pointer, in +** which case the trigger setting is not reported back.
    ** **
    */ -#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ +#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ +#define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ +#define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ /* -** CAPI3REF: Enable Or Disable Extended Result Codes {H12200} -** -** The sqlite3_extended_result_codes() routine enables or disables the -** [extended result codes] feature of SQLite. The extended result -** codes are disabled by default for historical compatibility considerations. +** CAPI3REF: Enable Or Disable Extended Result Codes ** -** Requirements: -** [H12201] [H12202] +** ^The sqlite3_extended_result_codes() routine enables or disables the +** [extended result codes] feature of SQLite. ^The extended result +** codes are disabled by default for historical compatibility. */ SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff); /* -** CAPI3REF: Last Insert Rowid {H12220} +** CAPI3REF: Last Insert Rowid ** -** Each entry in an SQLite table has a unique 64-bit signed -** integer key called the [ROWID | "rowid"]. The rowid is always available +** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables) +** has a unique 64-bit signed +** integer key called the [ROWID | "rowid"]. ^The rowid is always available ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those -** names are not also used by explicitly declared columns. If +** names are not also used by explicitly declared columns. ^If ** the table has a column of type [INTEGER PRIMARY KEY] then that column ** is another alias for the rowid. ** -** This routine returns the [rowid] of the most recent -** successful [INSERT] into the database from the [database connection] -** in the first argument. If no successful [INSERT]s -** have ever occurred on that database connection, zero is returned. -** -** If an [INSERT] occurs within a trigger, then the [rowid] of the inserted -** row is returned by this routine as long as the trigger is running. -** But once the trigger terminates, the value returned by this routine -** reverts to the last value inserted before the trigger fired. -** -** An [INSERT] that fails due to a constraint violation is not a +** ^The sqlite3_last_insert_rowid(D) interface returns the [rowid] of the +** most recent successful [INSERT] into a rowid table or [virtual table] +** on database connection D. +** ^Inserts into [WITHOUT ROWID] tables are not recorded. +** ^If no successful [INSERT]s into rowid tables +** have ever occurred on the database connection D, +** then sqlite3_last_insert_rowid(D) returns zero. +** +** ^(If an [INSERT] occurs within a trigger or within a [virtual table] +** method, then this routine will return the [rowid] of the inserted +** row as long as the trigger or virtual table method is running. +** But once the trigger or virtual table method ends, the value returned +** by this routine reverts to what it was before the trigger or virtual +** table method began.)^ +** +** ^An [INSERT] that fails due to a constraint violation is not a ** successful [INSERT] and does not change the value returned by this -** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, ** and INSERT OR ABORT make no changes to the return value of this -** routine when their insertion fails. When INSERT OR REPLACE +** routine when their insertion fails. ^(When INSERT OR REPLACE ** encounters a constraint violation, it does not fail. The ** INSERT continues to completion after deleting rows that caused ** the constraint problem so INSERT OR REPLACE will always change -** the return value of this interface. +** the return value of this interface.)^ ** -** For the purposes of this routine, an [INSERT] is considered to +** ^For the purposes of this routine, an [INSERT] is considered to ** be successful even if it is subsequently rolled back. ** -** Requirements: -** [H12221] [H12223] +** This function is accessible to SQL statements via the +** [last_insert_rowid() SQL function]. ** ** If a separate thread performs a new [INSERT] on the same ** database connection while the [sqlite3_last_insert_rowid()] @@ -1755,24 +1897,25 @@ SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff); SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); /* -** CAPI3REF: Count The Number Of Rows Modified {H12240} +** CAPI3REF: Count The Number Of Rows Modified ** -** This function returns the number of database rows that were changed +** ^This function returns the number of database rows that were changed ** or inserted or deleted by the most recently completed SQL statement ** on the [database connection] specified by the first parameter. -** Only changes that are directly specified by the [INSERT], [UPDATE], +** ^(Only changes that are directly specified by the [INSERT], [UPDATE], ** or [DELETE] statement are counted. Auxiliary changes caused by -** triggers are not counted. Use the [sqlite3_total_changes()] function -** to find the total number of changes including changes caused by triggers. +** triggers or [foreign key actions] are not counted.)^ Use the +** [sqlite3_total_changes()] function to find the total number of changes +** including changes caused by triggers and foreign key actions. ** -** Changes to a view that are simulated by an [INSTEAD OF trigger] +** ^Changes to a view that are simulated by an [INSTEAD OF trigger] ** are not counted. Only real table changes are counted. ** -** A "row change" is a change to a single row of a single table +** ^(A "row change" is a change to a single row of a single table ** caused by an INSERT, DELETE, or UPDATE statement. Rows that ** are changed as side effects of [REPLACE] constraint resolution, ** rollback, ABORT processing, [DROP TABLE], or by any other -** mechanisms do not count as direct row changes. +** mechanisms do not count as direct row changes.)^ ** ** A "trigger context" is a scope of execution that begins and ** ends with the script of a [CREATE TRIGGER | trigger]. @@ -1782,27 +1925,24 @@ SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); ** new trigger context is entered for the duration of that one ** trigger. Subtriggers create subcontexts for their duration. ** -** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does +** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does ** not create a new trigger context. ** -** This function returns the number of direct row changes in the +** ^This function returns the number of direct row changes in the ** most recent INSERT, UPDATE, or DELETE statement within the same ** trigger context. ** -** Thus, when called from the top level, this function returns the +** ^Thus, when called from the top level, this function returns the ** number of changes in the most recent INSERT, UPDATE, or DELETE -** that also occurred at the top level. Within the body of a trigger, +** that also occurred at the top level. ^(Within the body of a trigger, ** the sqlite3_changes() interface can be called to find the number of ** changes in the most recently completed INSERT, UPDATE, or DELETE ** statement within the body of the same trigger. ** However, the number returned does not include changes -** caused by subtriggers since those have their own context. +** caused by subtriggers since those have their own context.)^ ** -** See also the [sqlite3_total_changes()] interface and the -** [count_changes pragma]. -** -** Requirements: -** [H12241] [H12243] +** See also the [sqlite3_total_changes()] interface, the +** [count_changes pragma], and the [changes() SQL function]. ** ** If a separate thread makes changes on the same database connection ** while [sqlite3_changes()] is running then the value returned @@ -1811,26 +1951,24 @@ SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); SQLITE_API int sqlite3_changes(sqlite3*); /* -** CAPI3REF: Total Number Of Rows Modified {H12260} +** CAPI3REF: Total Number Of Rows Modified ** -** This function returns the number of row changes caused by [INSERT], +** ^This function returns the number of row changes caused by [INSERT], ** [UPDATE] or [DELETE] statements since the [database connection] was opened. -** The count includes all changes from all -** [CREATE TRIGGER | trigger] contexts. However, +** ^(The count returned by sqlite3_total_changes() includes all changes +** from all [CREATE TRIGGER | trigger] contexts and changes made by +** [foreign key actions]. However, ** the count does not include changes used to implement [REPLACE] constraints, ** do rollbacks or ABORT processing, or [DROP TABLE] processing. The ** count does not include rows of views that fire an [INSTEAD OF trigger], ** though if the INSTEAD OF trigger makes changes of its own, those changes -** are counted. -** The changes are counted as soon as the statement that makes them is -** completed (when the statement handle is passed to [sqlite3_reset()] or -** [sqlite3_finalize()]). -** -** See also the [sqlite3_changes()] interface and the -** [count_changes pragma]. +** are counted.)^ +** ^The sqlite3_total_changes() function counts the changes as soon as +** the statement that makes them is completed (when the statement handle +** is passed to [sqlite3_reset()] or [sqlite3_finalize()]). ** -** Requirements: -** [H12261] [H12263] +** See also the [sqlite3_changes()] interface, the +** [count_changes pragma], and the [total_changes() SQL function]. ** ** If a separate thread makes changes on the same database connection ** while [sqlite3_total_changes()] is running then the value @@ -1839,75 +1977,70 @@ SQLITE_API int sqlite3_changes(sqlite3*); SQLITE_API int sqlite3_total_changes(sqlite3*); /* -** CAPI3REF: Interrupt A Long-Running Query {H12270} +** CAPI3REF: Interrupt A Long-Running Query ** -** This function causes any pending database operation to abort and +** ^This function causes any pending database operation to abort and ** return at its earliest opportunity. This routine is typically ** called in response to a user action such as pressing "Cancel" ** or Ctrl-C where the user wants a long query operation to halt ** immediately. ** -** It is safe to call this routine from a thread different from the +** ^It is safe to call this routine from a thread different from the ** thread that is currently running the database operation. But it ** is not safe to call this routine with a [database connection] that ** is closed or might close before sqlite3_interrupt() returns. ** -** If an SQL operation is very nearly finished at the time when +** ^If an SQL operation is very nearly finished at the time when ** sqlite3_interrupt() is called, then it might not have an opportunity ** to be interrupted and might continue to completion. ** -** An SQL operation that is interrupted will return [SQLITE_INTERRUPT]. -** If the interrupted SQL operation is an INSERT, UPDATE, or DELETE +** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT]. +** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE ** that is inside an explicit transaction, then the entire transaction ** will be rolled back automatically. ** -** The sqlite3_interrupt(D) call is in effect until all currently running -** SQL statements on [database connection] D complete. Any new SQL statements +** ^The sqlite3_interrupt(D) call is in effect until all currently running +** SQL statements on [database connection] D complete. ^Any new SQL statements ** that are started after the sqlite3_interrupt() call and before the ** running statements reaches zero are interrupted as if they had been -** running prior to the sqlite3_interrupt() call. New SQL statements +** running prior to the sqlite3_interrupt() call. ^New SQL statements ** that are started after the running statement count reaches zero are ** not effected by the sqlite3_interrupt(). -** A call to sqlite3_interrupt(D) that occurs when there are no running +** ^A call to sqlite3_interrupt(D) that occurs when there are no running ** SQL statements is a no-op and has no effect on SQL statements ** that are started after the sqlite3_interrupt() call returns. ** -** Requirements: -** [H12271] [H12272] -** ** If the database connection closes while [sqlite3_interrupt()] ** is running then bad things will likely happen. */ SQLITE_API void sqlite3_interrupt(sqlite3*); /* -** CAPI3REF: Determine If An SQL Statement Is Complete {H10510} +** CAPI3REF: Determine If An SQL Statement Is Complete ** ** These routines are useful during command-line input to determine if the ** currently entered text seems to form a complete SQL statement or ** if additional input is needed before sending the text into -** SQLite for parsing. These routines return 1 if the input string -** appears to be a complete SQL statement. A statement is judged to be +** SQLite for parsing. ^These routines return 1 if the input string +** appears to be a complete SQL statement. ^A statement is judged to be ** complete if it ends with a semicolon token and is not a prefix of a -** well-formed CREATE TRIGGER statement. Semicolons that are embedded within +** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within ** string literals or quoted identifier names or comments are not ** independent tokens (they are part of the token in which they are -** embedded) and thus do not count as a statement terminator. Whitespace +** embedded) and thus do not count as a statement terminator. ^Whitespace ** and comments that follow the final semicolon are ignored. ** -** These routines return 0 if the statement is incomplete. If a +** ^These routines return 0 if the statement is incomplete. ^If a ** memory allocation fails, then SQLITE_NOMEM is returned. ** -** These routines do not parse the SQL statements thus +** ^These routines do not parse the SQL statements thus ** will not detect syntactically incorrect SQL. ** -** If SQLite has not been initialized using [sqlite3_initialize()] prior +** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior ** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked ** automatically by sqlite3_complete16(). If that initialization fails, ** then the return value from sqlite3_complete16() will be non-zero -** regardless of whether or not the input SQL is complete. -** -** Requirements: [H10511] [H10512] +** regardless of whether or not the input SQL is complete.)^ ** ** The input to [sqlite3_complete()] must be a zero-terminated ** UTF-8 string. @@ -1919,27 +2052,27 @@ SQLITE_API int sqlite3_complete(const char *sql); SQLITE_API int sqlite3_complete16(const void *sql); /* -** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {H12310} +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors ** -** This routine sets a callback function that might be invoked whenever +** ^This routine sets a callback function that might be invoked whenever ** an attempt is made to open a database table that another thread ** or process has locked. ** -** If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] -** is returned immediately upon encountering the lock. If the busy callback -** is not NULL, then the callback will be invoked with two arguments. +** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. ^If the busy callback +** is not NULL, then the callback might be invoked with two arguments. ** -** The first argument to the handler is a copy of the void* pointer which -** is the third argument to sqlite3_busy_handler(). The second argument to -** the handler callback is the number of times that the busy handler has -** been invoked for this locking event. If the +** ^The first argument to the busy handler is a copy of the void* pointer which +** is the third argument to sqlite3_busy_handler(). ^The second argument to +** the busy handler callback is the number of times that the busy handler has +** been invoked for this locking event. ^If the ** busy callback returns 0, then no additional attempts are made to ** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. -** If the callback returns non-zero, then another attempt +** ^If the callback returns non-zero, then another attempt ** is made to open the database for reading and the cycle repeats. ** ** The presence of a busy handler does not guarantee that it will be invoked -** when there is lock contention. If SQLite determines that invoking the busy +** when there is lock contention. ^If SQLite determines that invoking the busy ** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY] ** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler. ** Consider a scenario where one process is holding a read lock that @@ -1953,65 +2086,62 @@ SQLITE_API int sqlite3_complete16(const void *sql); ** will induce the first process to release its read lock and allow ** the second process to proceed. ** -** The default busy callback is NULL. +** ^The default busy callback is NULL. ** -** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] ** when SQLite is in the middle of a large transaction where all the ** changes will not fit into the in-memory cache. SQLite will ** already hold a RESERVED lock on the database file, but it needs ** to promote this lock to EXCLUSIVE so that it can spill cache ** pages into the database file without harm to concurrent -** readers. If it is unable to promote the lock, then the in-memory +** readers. ^If it is unable to promote the lock, then the in-memory ** cache will be left in an inconsistent state and so the error ** code is promoted from the relatively benign [SQLITE_BUSY] to -** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion +** the more severe [SQLITE_IOERR_BLOCKED]. ^This error code promotion ** forces an automatic rollback of the changes. See the ** ** CorruptionFollowingBusyError wiki page for a discussion of why ** this is important. ** -** There can only be a single busy handler defined for each +** ^(There can only be a single busy handler defined for each ** [database connection]. Setting a new busy handler clears any -** previously set handler. Note that calling [sqlite3_busy_timeout()] +** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()] ** will also set or clear the busy handler. ** ** The busy callback should not take any actions which modify the ** database connection that invoked the busy handler. Any such actions ** result in undefined behavior. ** -** Requirements: -** [H12311] [H12312] [H12314] [H12316] [H12318] -** ** A busy handler must not close the database connection ** or [prepared statement] that invoked the busy handler. */ SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); /* -** CAPI3REF: Set A Busy Timeout {H12340} +** CAPI3REF: Set A Busy Timeout ** -** This routine sets a [sqlite3_busy_handler | busy handler] that sleeps -** for a specified amount of time when a table is locked. The handler +** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps +** for a specified amount of time when a table is locked. ^The handler ** will sleep multiple times until at least "ms" milliseconds of sleeping -** have accumulated. {H12343} After "ms" milliseconds of sleeping, +** have accumulated. ^After at least "ms" milliseconds of sleeping, ** the handler returns 0 which causes [sqlite3_step()] to return ** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. ** -** Calling this routine with an argument less than or equal to zero +** ^Calling this routine with an argument less than or equal to zero ** turns off all busy handlers. ** -** There can only be a single busy handler for a particular +** ^(There can only be a single busy handler for a particular ** [database connection] any any given moment. If another busy handler ** was defined (using [sqlite3_busy_handler()]) prior to calling -** this routine, that other busy handler is cleared. -** -** Requirements: -** [H12341] [H12343] [H12344] +** this routine, that other busy handler is cleared.)^ */ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms); /* -** CAPI3REF: Convenience Routines For Running Queries {H12370} +** CAPI3REF: Convenience Routines For Running Queries +** +** This is a legacy interface that is preserved for backwards compatibility. +** Use of this interface is not recommended. ** ** Definition: A result table is memory data structure created by the ** [sqlite3_get_table()] interface. A result table records the @@ -2033,7 +2163,7 @@ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms); ** It is not safe to pass a result table directly to [sqlite3_free()]. ** A result table should be deallocated using [sqlite3_free_table()]. ** -** As an example of the result table format, suppose a query result +** ^(As an example of the result table format, suppose a query result ** is as follows: ** **
    @@ -2057,15 +2187,15 @@ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
     **        azResult[5] = "28";
     **        azResult[6] = "Cindy";
     **        azResult[7] = "21";
    -** 
    +** )^ ** -** The sqlite3_get_table() function evaluates one or more +** ^The sqlite3_get_table() function evaluates one or more ** semicolon-separated SQL statements in the zero-terminated UTF-8 -** string of its 2nd parameter. It returns a result table to the +** string of its 2nd parameter and returns a result table to the ** pointer given in its 3rd parameter. ** -** After the calling function has finished using the result, it should -** pass the pointer to the result table to sqlite3_free_table() in order to +** After the application has finished with the result from sqlite3_get_table(), +** it must pass the result table pointer to sqlite3_free_table() in order to ** release the memory that was malloced. Because of the way the ** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling ** function must not try to call [sqlite3_free()] directly. Only @@ -2076,10 +2206,8 @@ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms); ** to any internal data structures of SQLite. It uses only the public ** interface defined here. As a consequence, errors that occur in the ** wrapper layer outside of the internal [sqlite3_exec()] call are not -** reflected in subsequent calls to [sqlite3_errcode()] or [sqlite3_errmsg()]. -** -** Requirements: -** [H12371] [H12373] [H12374] [H12376] [H12379] [H12382] +** reflected in subsequent calls to [sqlite3_errcode()] or +** [sqlite3_errmsg()]. */ SQLITE_API int sqlite3_get_table( sqlite3 *db, /* An open database */ @@ -2092,45 +2220,47 @@ SQLITE_API int sqlite3_get_table( SQLITE_API void sqlite3_free_table(char **result); /* -** CAPI3REF: Formatted String Printing Functions {H17400} +** CAPI3REF: Formatted String Printing Functions ** -** These routines are workalikes of the "printf()" family of functions +** These routines are work-alikes of the "printf()" family of functions ** from the standard C library. ** -** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their ** results into memory obtained from [sqlite3_malloc()]. ** The strings returned by these two routines should be -** released by [sqlite3_free()]. Both routines return a +** released by [sqlite3_free()]. ^Both routines return a ** NULL pointer if [sqlite3_malloc()] is unable to allocate enough ** memory to hold the resulting string. ** -** In sqlite3_snprintf() routine is similar to "snprintf()" from +** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from ** the standard C library. The result is written into the ** buffer supplied as the second parameter whose size is given by ** the first parameter. Note that the order of the -** first two parameters is reversed from snprintf(). This is an +** first two parameters is reversed from snprintf().)^ This is an ** historical accident that cannot be fixed without breaking -** backwards compatibility. Note also that sqlite3_snprintf() +** backwards compatibility. ^(Note also that sqlite3_snprintf() ** returns a pointer to its buffer instead of the number of -** characters actually written into the buffer. We admit that +** characters actually written into the buffer.)^ We admit that ** the number of characters written would be a more useful return ** value but we cannot change the implementation of sqlite3_snprintf() ** now without breaking compatibility. ** -** As long as the buffer size is greater than zero, sqlite3_snprintf() -** guarantees that the buffer is always zero-terminated. The first +** ^As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. ^The first ** parameter "n" is the total size of the buffer, including space for ** the zero terminator. So the longest string that can be completely ** written will be n-1 characters. ** +** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf(). +** ** These routines all implement some additional formatting ** options that are useful for constructing SQL statements. ** All of the usual printf() formatting options apply. In addition, there ** is are "%q", "%Q", and "%z" options. ** -** The %q option works like %s in that it substitutes a null-terminated +** ^(The %q option works like %s in that it substitutes a nul-terminated ** string from the argument list. But %q also doubles every '\'' character. -** %q is designed for use inside a string literal. By doubling each '\'' +** %q is designed for use inside a string literal.)^ By doubling each '\'' ** character it escapes that character and allows it to be inserted into ** the string. ** @@ -2165,10 +2295,10 @@ SQLITE_API void sqlite3_free_table(char **result); ** This second example is an SQL syntax error. As a general rule you should ** always use %q instead of %s when inserting text into a string literal. ** -** The %Q option works like %q except it also adds single quotes around +** ^(The %Q option works like %q except it also adds single quotes around ** the outside of the total string. Additionally, if the parameter in the ** argument list is a NULL pointer, %Q substitutes the text "NULL" (without -** single quotes) in place of the %Q option. So, for example, one could say: +** single quotes).)^ So, for example, one could say: ** **
     **  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
    @@ -2179,35 +2309,33 @@ SQLITE_API void sqlite3_free_table(char **result);
     ** The code above will render a correct SQL statement in the zSQL
     ** variable even if the zText variable is a NULL pointer.
     **
    -** The "%z" formatting option works exactly like "%s" with the
    +** ^(The "%z" formatting option works like "%s" but with the
     ** addition that after the string has been read and copied into
    -** the result, [sqlite3_free()] is called on the input string. {END}
    -**
    -** Requirements:
    -** [H17403] [H17406] [H17407]
    +** the result, [sqlite3_free()] is called on the input string.)^
     */
     SQLITE_API char *sqlite3_mprintf(const char*,...);
     SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
     SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
    +SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);
     
     /*
    -** CAPI3REF: Memory Allocation Subsystem {H17300} 
    +** CAPI3REF: Memory Allocation Subsystem
     **
    -** The SQLite core  uses these three routines for all of its own
    +** The SQLite core uses these three routines for all of its own
     ** internal memory allocation needs. "Core" in the previous sentence
     ** does not include operating-system specific VFS implementation.  The
     ** Windows VFS uses native malloc() and free() for some operations.
     **
    -** The sqlite3_malloc() routine returns a pointer to a block
    +** ^The sqlite3_malloc() routine returns a pointer to a block
     ** of memory at least N bytes in length, where N is the parameter.
    -** If sqlite3_malloc() is unable to obtain sufficient free
    -** memory, it returns a NULL pointer.  If the parameter N to
    +** ^If sqlite3_malloc() is unable to obtain sufficient free
    +** memory, it returns a NULL pointer.  ^If the parameter N to
     ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
     ** a NULL pointer.
     **
    -** Calling sqlite3_free() with a pointer previously returned
    +** ^Calling sqlite3_free() with a pointer previously returned
     ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
    -** that it might be reused.  The sqlite3_free() routine is
    +** that it might be reused.  ^The sqlite3_free() routine is
     ** a no-op if is called with a NULL pointer.  Passing a NULL pointer
     ** to sqlite3_free() is harmless.  After being freed, memory
     ** should neither be read nor written.  Even reading previously freed
    @@ -2216,52 +2344,41 @@ SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
     ** might result if sqlite3_free() is called with a non-NULL pointer that
     ** was not obtained from sqlite3_malloc() or sqlite3_realloc().
     **
    -** The sqlite3_realloc() interface attempts to resize a
    +** ^(The sqlite3_realloc() interface attempts to resize a
     ** prior memory allocation to be at least N bytes, where N is the
     ** second parameter.  The memory allocation to be resized is the first
    -** parameter.  If the first parameter to sqlite3_realloc()
    +** parameter.)^ ^ If the first parameter to sqlite3_realloc()
     ** is a NULL pointer then its behavior is identical to calling
     ** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
    -** If the second parameter to sqlite3_realloc() is zero or
    +** ^If the second parameter to sqlite3_realloc() is zero or
     ** negative then the behavior is exactly the same as calling
     ** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
    -** sqlite3_realloc() returns a pointer to a memory allocation
    +** ^sqlite3_realloc() returns a pointer to a memory allocation
     ** of at least N bytes in size or NULL if sufficient memory is unavailable.
    -** If M is the size of the prior allocation, then min(N,M) bytes
    +** ^If M is the size of the prior allocation, then min(N,M) bytes
     ** of the prior allocation are copied into the beginning of buffer returned
     ** by sqlite3_realloc() and the prior allocation is freed.
    -** If sqlite3_realloc() returns NULL, then the prior allocation
    +** ^If sqlite3_realloc() returns NULL, then the prior allocation
     ** is not freed.
     **
    -** The memory returned by sqlite3_malloc() and sqlite3_realloc()
    -** is always aligned to at least an 8 byte boundary. {END}
    -**
    -** The default implementation of the memory allocation subsystem uses
    -** the malloc(), realloc() and free() provided by the standard C library.
    -** {H17382} However, if SQLite is compiled with the
    -** SQLITE_MEMORY_SIZE=NNN C preprocessor macro (where NNN
    -** is an integer), then SQLite create a static array of at least
    -** NNN bytes in size and uses that array for all of its dynamic
    -** memory allocation needs. {END}  Additional memory allocator options
    -** may be added in future releases.
    +** ^The memory returned by sqlite3_malloc() and sqlite3_realloc()
    +** is always aligned to at least an 8 byte boundary, or to a
    +** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
    +** option is used.
     **
     ** In SQLite version 3.5.0 and 3.5.1, it was possible to define
     ** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
     ** implementation of these routines to be omitted.  That capability
     ** is no longer provided.  Only built-in memory allocators can be used.
     **
    -** The Windows OS interface layer calls
    +** Prior to SQLite version 3.7.10, the Windows OS interface layer called
     ** the system malloc() and free() directly when converting
     ** filenames between the UTF-8 encoding used by SQLite
     ** and whatever filename encoding is used by the particular Windows
    -** installation.  Memory allocation errors are detected, but
    -** they are reported back as [SQLITE_CANTOPEN] or
    +** installation.  Memory allocation errors were detected, but
    +** they were reported back as [SQLITE_CANTOPEN] or
     ** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
     **
    -** Requirements:
    -** [H17303] [H17304] [H17305] [H17306] [H17310] [H17312] [H17315] [H17318]
    -** [H17321] [H17322] [H17323]
    -**
     ** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
     ** must be either NULL or else pointers obtained from a prior
     ** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
    @@ -2276,20 +2393,33 @@ SQLITE_API void *sqlite3_realloc(void*, int);
     SQLITE_API void sqlite3_free(void*);
     
     /*
    -** CAPI3REF: Memory Allocator Statistics {H17370} 
    +** CAPI3REF: Memory Allocator Statistics
     **
     ** SQLite provides these two interfaces for reporting on the status
     ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
     ** routines, which form the built-in memory allocation subsystem.
     **
    -** Requirements:
    -** [H17371] [H17373] [H17374] [H17375]
    +** ^The [sqlite3_memory_used()] routine returns the number of bytes
    +** of memory currently outstanding (malloced but not freed).
    +** ^The [sqlite3_memory_highwater()] routine returns the maximum
    +** value of [sqlite3_memory_used()] since the high-water mark
    +** was last reset.  ^The values returned by [sqlite3_memory_used()] and
    +** [sqlite3_memory_highwater()] include any overhead
    +** added by SQLite in its implementation of [sqlite3_malloc()],
    +** but not overhead added by the any underlying system library
    +** routines that [sqlite3_malloc()] may call.
    +**
    +** ^The memory high-water mark is reset to the current value of
    +** [sqlite3_memory_used()] if and only if the parameter to
    +** [sqlite3_memory_highwater()] is true.  ^The value returned
    +** by [sqlite3_memory_highwater(1)] is the high-water mark
    +** prior to the reset.
     */
     SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
     SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
     
     /*
    -** CAPI3REF: Pseudo-Random Number Generator {H17390} 
    +** CAPI3REF: Pseudo-Random Number Generator
     **
     ** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
     ** select random [ROWID | ROWIDs] when inserting new records into a table that
    @@ -2297,60 +2427,59 @@ SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
     ** the build-in random() and randomblob() SQL functions.  This interface allows
     ** applications to access the same PRNG for other purposes.
     **
    -** A call to this routine stores N bytes of randomness into buffer P.
    +** ^A call to this routine stores N bytes of randomness into buffer P.
    +** ^If N is less than one, then P can be a NULL pointer.
     **
    -** The first time this routine is invoked (either internally or by
    -** the application) the PRNG is seeded using randomness obtained
    -** from the xRandomness method of the default [sqlite3_vfs] object.
    -** On all subsequent invocations, the pseudo-randomness is generated
    +** ^If this routine has not been previously called or if the previous
    +** call had N less than one, then the PRNG is seeded using randomness
    +** obtained from the xRandomness method of the default [sqlite3_vfs] object.
    +** ^If the previous call to this routine had an N of 1 or more then
    +** the pseudo-randomness is generated
     ** internally and without recourse to the [sqlite3_vfs] xRandomness
     ** method.
    -**
    -** Requirements:
    -** [H17392]
     */
     SQLITE_API void sqlite3_randomness(int N, void *P);
     
     /*
    -** CAPI3REF: Compile-Time Authorization Callbacks {H12500} 
    +** CAPI3REF: Compile-Time Authorization Callbacks
     **
    -** This routine registers a authorizer callback with a particular
    +** ^This routine registers an authorizer callback with a particular
     ** [database connection], supplied in the first argument.
    -** The authorizer callback is invoked as SQL statements are being compiled
    +** ^The authorizer callback is invoked as SQL statements are being compiled
     ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
    -** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  At various
    +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  ^At various
     ** points during the compilation process, as logic is being created
     ** to perform various actions, the authorizer callback is invoked to
    -** see if those actions are allowed.  The authorizer callback should
    +** see if those actions are allowed.  ^The authorizer callback should
     ** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
     ** specific action but allow the SQL statement to continue to be
     ** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
    -** rejected with an error.  If the authorizer callback returns
    +** rejected with an error.  ^If the authorizer callback returns
     ** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
     ** then the [sqlite3_prepare_v2()] or equivalent call that triggered
     ** the authorizer will fail with an error message.
     **
     ** When the callback returns [SQLITE_OK], that means the operation
    -** requested is ok.  When the callback returns [SQLITE_DENY], the
    +** requested is ok.  ^When the callback returns [SQLITE_DENY], the
     ** [sqlite3_prepare_v2()] or equivalent call that triggered the
     ** authorizer will fail with an error message explaining that
     ** access is denied. 
     **
    -** The first parameter to the authorizer callback is a copy of the third
    -** parameter to the sqlite3_set_authorizer() interface. The second parameter
    +** ^The first parameter to the authorizer callback is a copy of the third
    +** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
     ** to the callback is an integer [SQLITE_COPY | action code] that specifies
    -** the particular action to be authorized. The third through sixth parameters
    +** the particular action to be authorized. ^The third through sixth parameters
     ** to the callback are zero-terminated strings that contain additional
     ** details about the action to be authorized.
     **
    -** If the action code is [SQLITE_READ]
    +** ^If the action code is [SQLITE_READ]
     ** and the callback returns [SQLITE_IGNORE] then the
     ** [prepared statement] statement is constructed to substitute
     ** a NULL value in place of the table column that would have
     ** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
     ** return can be used to deny an untrusted user access to individual
     ** columns of a table.
    -** If the action code is [SQLITE_DELETE] and the callback returns
    +** ^If the action code is [SQLITE_DELETE] and the callback returns
     ** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
     ** [truncate optimization] is disabled and all rows are deleted individually.
     **
    @@ -2370,9 +2499,9 @@ SQLITE_API void sqlite3_randomness(int N, void *P);
     ** and limiting database size using the [max_page_count] [PRAGMA]
     ** in addition to using an authorizer.
     **
    -** Only a single authorizer can be in place on a database connection
    +** ^(Only a single authorizer can be in place on a database connection
     ** at a time.  Each call to sqlite3_set_authorizer overrides the
    -** previous call.  Disable the authorizer by installing a NULL callback.
    +** previous call.)^  ^Disable the authorizer by installing a NULL callback.
     ** The authorizer is disabled by default.
     **
     ** The authorizer callback must not do anything that will modify
    @@ -2380,20 +2509,16 @@ SQLITE_API void sqlite3_randomness(int N, void *P);
     ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
     ** database connections for the meaning of "modify" in this paragraph.
     **
    -** When [sqlite3_prepare_v2()] is used to prepare a statement, the
    -** statement might be reprepared during [sqlite3_step()] due to a 
    +** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
    +** statement might be re-prepared during [sqlite3_step()] due to a 
     ** schema change.  Hence, the application should ensure that the
     ** correct authorizer callback remains in place during the [sqlite3_step()].
     **
    -** Note that the authorizer callback is invoked only during
    +** ^Note that the authorizer callback is invoked only during
     ** [sqlite3_prepare()] or its variants.  Authorization is not
     ** performed during statement evaluation in [sqlite3_step()], unless
     ** as stated in the previous paragraph, sqlite3_step() invokes
     ** sqlite3_prepare_v2() to reprepare a statement after a schema change.
    -**
    -** Requirements:
    -** [H12501] [H12502] [H12503] [H12504] [H12505] [H12506] [H12507] [H12510]
    -** [H12511] [H12512] [H12520] [H12521] [H12522]
     */
     SQLITE_API int sqlite3_set_authorizer(
       sqlite3*,
    @@ -2402,19 +2527,22 @@ SQLITE_API int sqlite3_set_authorizer(
     );
     
     /*
    -** CAPI3REF: Authorizer Return Codes {H12590} 
    +** CAPI3REF: Authorizer Return Codes
     **
     ** The [sqlite3_set_authorizer | authorizer callback function] must
     ** return either [SQLITE_OK] or one of these two constants in order
     ** to signal SQLite whether or not the action is permitted.  See the
     ** [sqlite3_set_authorizer | authorizer documentation] for additional
     ** information.
    +**
    +** Note that SQLITE_IGNORE is also used as a [SQLITE_ROLLBACK | return code]
    +** from the [sqlite3_vtab_on_conflict()] interface.
     */
     #define SQLITE_DENY   1   /* Abort the SQL statement with an error */
     #define SQLITE_IGNORE 2   /* Don't allow access, but don't generate an error */
     
     /*
    -** CAPI3REF: Authorizer Action Codes {H12550} 
    +** CAPI3REF: Authorizer Action Codes
     **
     ** The [sqlite3_set_authorizer()] interface registers a callback function
     ** that is invoked to authorize certain SQL statement actions.  The
    @@ -2425,15 +2553,12 @@ SQLITE_API int sqlite3_set_authorizer(
     ** These action code values signify what kind of operation is to be
     ** authorized.  The 3rd and 4th parameters to the authorization
     ** callback function will be parameters or NULL depending on which of these
    -** codes is used as the second parameter.  The 5th parameter to the
    +** codes is used as the second parameter.  ^(The 5th parameter to the
     ** authorizer callback is the name of the database ("main", "temp",
    -** etc.) if applicable.  The 6th parameter to the authorizer callback
    +** etc.) if applicable.)^  ^The 6th parameter to the authorizer callback
     ** is the name of the inner-most trigger or view that is responsible for
     ** the access attempt or NULL if this access attempt is directly from
     ** top-level SQL code.
    -**
    -** Requirements:
    -** [H12551] [H12552] [H12553] [H12554]
     */
     /******************************************* 3rd ************ 4th ***********/
     #define SQLITE_CREATE_INDEX          1   /* Index Name      Table Name      */
    @@ -2469,74 +2594,90 @@ SQLITE_API int sqlite3_set_authorizer(
     #define SQLITE_FUNCTION             31   /* NULL            Function Name   */
     #define SQLITE_SAVEPOINT            32   /* Operation       Savepoint Name  */
     #define SQLITE_COPY                  0   /* No longer used */
    +#define SQLITE_RECURSIVE            33   /* NULL            NULL            */
     
     /*
    -** CAPI3REF: Tracing And Profiling Functions {H12280} 
    -** EXPERIMENTAL
    +** CAPI3REF: Tracing And Profiling Functions
     **
     ** These routines register callback functions that can be used for
     ** tracing and profiling the execution of SQL statements.
     **
    -** The callback function registered by sqlite3_trace() is invoked at
    +** ^The callback function registered by sqlite3_trace() is invoked at
     ** various times when an SQL statement is being run by [sqlite3_step()].
    -** The callback returns a UTF-8 rendering of the SQL statement text
    -** as the statement first begins executing.  Additional callbacks occur
    +** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
    +** SQL statement text as the statement first begins executing.
    +** ^(Additional sqlite3_trace() callbacks might occur
     ** as each triggered subprogram is entered.  The callbacks for triggers
    -** contain a UTF-8 SQL comment that identifies the trigger.
    +** contain a UTF-8 SQL comment that identifies the trigger.)^
     **
    -** The callback function registered by sqlite3_profile() is invoked
    -** as each SQL statement finishes.  The profile callback contains
    -** the original statement text and an estimate of wall-clock time
    -** of how long that statement took to run.
    +** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
    +** the length of [bound parameter] expansion in the output of sqlite3_trace().
     **
    -** Requirements:
    -** [H12281] [H12282] [H12283] [H12284] [H12285] [H12287] [H12288] [H12289]
    -** [H12290]
    -*/
    -SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
    +** ^The callback function registered by sqlite3_profile() is invoked
    +** as each SQL statement finishes.  ^The profile callback contains
    +** the original statement text and an estimate of wall-clock time
    +** of how long that statement took to run.  ^The profile callback
    +** time is in units of nanoseconds, however the current implementation
    +** is only capable of millisecond resolution so the six least significant
    +** digits in the time are meaningless.  Future versions of SQLite
    +** might provide greater resolution on the profiler callback.  The
    +** sqlite3_profile() function is considered experimental and is
    +** subject to change in future versions of SQLite.
    +*/
    +SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
     SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
        void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
     
     /*
    -** CAPI3REF: Query Progress Callbacks {H12910} 
    +** CAPI3REF: Query Progress Callbacks
     **
    -** This routine configures a callback function - the
    -** progress callback - that is invoked periodically during long
    -** running calls to [sqlite3_exec()], [sqlite3_step()] and
    -** [sqlite3_get_table()].  An example use for this
    +** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
    +** function X to be invoked periodically during long running calls to
    +** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
    +** database connection D.  An example use for this
     ** interface is to keep a GUI updated during a large query.
     **
    -** If the progress callback returns non-zero, the operation is
    +** ^The parameter P is passed through as the only parameter to the 
    +** callback function X.  ^The parameter N is the approximate number of 
    +** [virtual machine instructions] that are evaluated between successive
    +** invocations of the callback X.  ^If N is less than one then the progress
    +** handler is disabled.
    +**
    +** ^Only a single progress handler may be defined at one time per
    +** [database connection]; setting a new progress handler cancels the
    +** old one.  ^Setting parameter X to NULL disables the progress handler.
    +** ^The progress handler is also disabled by setting N to a value less
    +** than 1.
    +**
    +** ^If the progress callback returns non-zero, the operation is
     ** interrupted.  This feature can be used to implement a
     ** "Cancel" button on a GUI progress dialog box.
     **
    -** The progress handler must not do anything that will modify
    +** The progress handler callback must not do anything that will modify
     ** the database connection that invoked the progress handler.
     ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
     ** database connections for the meaning of "modify" in this paragraph.
     **
    -** Requirements:
    -** [H12911] [H12912] [H12913] [H12914] [H12915] [H12916] [H12917] [H12918]
    -**
     */
     SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
     
     /*
    -** CAPI3REF: Opening A New Database Connection {H12700} 
    +** CAPI3REF: Opening A New Database Connection
     **
    -** These routines open an SQLite database file whose name is given by the
    -** filename argument. The filename argument is interpreted as UTF-8 for
    +** ^These routines open an SQLite database file as specified by the 
    +** filename argument. ^The filename argument is interpreted as UTF-8 for
     ** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
    -** order for sqlite3_open16(). A [database connection] handle is usually
    +** order for sqlite3_open16(). ^(A [database connection] handle is usually
     ** returned in *ppDb, even if an error occurs.  The only exception is that
     ** if SQLite is unable to allocate memory to hold the [sqlite3] object,
     ** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
    -** object. If the database is opened (and/or created) successfully, then
    -** [SQLITE_OK] is returned.  Otherwise an [error code] is returned.  The
    +** object.)^ ^(If the database is opened (and/or created) successfully, then
    +** [SQLITE_OK] is returned.  Otherwise an [error code] is returned.)^ ^The
     ** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
    -** an English language description of the error.
    +** an English language description of the error following a failure of any
    +** of the sqlite3_open() routines.
     **
    -** The default encoding for the database will be UTF-8 if
    +** ^The default encoding for the database will be UTF-8 if
     ** sqlite3_open() or sqlite3_open_v2() is called and
     ** UTF-16 in the native byte order if sqlite3_open16() is used.
     **
    @@ -2546,54 +2687,169 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
     **
     ** The sqlite3_open_v2() interface works like sqlite3_open()
     ** except that it accepts two additional parameters for additional control
    -** over the new database connection.  The flags parameter can take one of
    +** over the new database connection.  ^(The flags parameter to
    +** sqlite3_open_v2() can take one of
     ** the following three values, optionally combined with the 
    -** [SQLITE_OPEN_NOMUTEX] or [SQLITE_OPEN_FULLMUTEX] flags:
    +** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
    +** [SQLITE_OPEN_PRIVATECACHE], and/or [SQLITE_OPEN_URI] flags:)^
     **
     ** 
    -**
    [SQLITE_OPEN_READONLY]
    +** ^(
    [SQLITE_OPEN_READONLY]
    **
    The database is opened in read-only mode. If the database does not -** already exist, an error is returned.
    +** already exist, an error is returned.)^ ** -**
    [SQLITE_OPEN_READWRITE]
    +** ^(
    [SQLITE_OPEN_READWRITE]
    **
    The database is opened for reading and writing if possible, or reading ** only if the file is write protected by the operating system. In either -** case the database must already exist, otherwise an error is returned.
    +** case the database must already exist, otherwise an error is returned.)^ ** -**
    [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
    -**
    The database is opened for reading and writing, and is creates it if +** ^(
    [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
    +**
    The database is opened for reading and writing, and is created if ** it does not already exist. This is the behavior that is always used for -** sqlite3_open() and sqlite3_open16().
    +** sqlite3_open() and sqlite3_open16().)^ **
    ** ** If the 3rd parameter to sqlite3_open_v2() is not one of the -** combinations shown above or one of the combinations shown above combined -** with the [SQLITE_OPEN_NOMUTEX] or [SQLITE_OPEN_FULLMUTEX] flags, +** combinations shown above optionally combined with other +** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits] ** then the behavior is undefined. ** -** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection +** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection ** opens in the multi-thread [threading mode] as long as the single-thread -** mode has not been set at compile-time or start-time. If the +** mode has not been set at compile-time or start-time. ^If the ** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens ** in the serialized [threading mode] unless single-thread was ** previously selected at compile-time or start-time. +** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be +** eligible to use [shared cache mode], regardless of whether or not shared +** cache is enabled using [sqlite3_enable_shared_cache()]. ^The +** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not +** participate in [shared cache mode] even if it is enabled. +** +** ^The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system interface that +** the new database connection should use. ^If the fourth parameter is +** a NULL pointer then the default [sqlite3_vfs] object is used. ** -** If the filename is ":memory:", then a private, temporary in-memory database -** is created for the connection. This in-memory database will vanish when +** ^If the filename is ":memory:", then a private, temporary in-memory database +** is created for the connection. ^This in-memory database will vanish when ** the database connection is closed. Future versions of SQLite might ** make use of additional special filenames that begin with the ":" character. ** It is recommended that when a database filename actually does begin with ** a ":" character you should prefix the filename with a pathname such as ** "./" to avoid ambiguity. ** -** If the filename is an empty string, then a private, temporary -** on-disk database will be created. This private database will be +** ^If the filename is an empty string, then a private, temporary +** on-disk database will be created. ^This private database will be ** automatically deleted as soon as the database connection is closed. ** -** The fourth parameter to sqlite3_open_v2() is the name of the -** [sqlite3_vfs] object that defines the operating system interface that -** the new database connection should use. If the fourth parameter is -** a NULL pointer then the default [sqlite3_vfs] object is used. +** [[URI filenames in sqlite3_open()]]

    URI Filenames

    +** +** ^If [URI filename] interpretation is enabled, and the filename argument +** begins with "file:", then the filename is interpreted as a URI. ^URI +** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is +** set in the fourth argument to sqlite3_open_v2(), or if it has +** been enabled globally using the [SQLITE_CONFIG_URI] option with the +** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option. +** As of SQLite version 3.7.7, URI filename interpretation is turned off +** by default, but future releases of SQLite might enable URI filename +** interpretation by default. See "[URI filenames]" for additional +** information. +** +** URI filenames are parsed according to RFC 3986. ^If the URI contains an +** authority, then it must be either an empty string or the string +** "localhost". ^If the authority is not an empty string or "localhost", an +** error is returned to the caller. ^The fragment component of a URI, if +** present, is ignored. +** +** ^SQLite uses the path component of the URI as the name of the disk file +** which contains the database. ^If the path begins with a '/' character, +** then it is interpreted as an absolute path. ^If the path does not begin +** with a '/' (meaning that the authority section is omitted from the URI) +** then the path is interpreted as a relative path. +** ^On windows, the first component of an absolute path +** is a drive specification (e.g. "C:"). +** +** [[core URI query parameters]] +** The query component of a URI may contain parameters that are interpreted +** either by SQLite itself, or by a [VFS | custom VFS implementation]. +** SQLite interprets the following three query parameters: +** +**
      +**
    • vfs: ^The "vfs" parameter may be used to specify the name of +** a VFS object that provides the operating system interface that should +** be used to access the database file on disk. ^If this option is set to +** an empty string the default VFS object is used. ^Specifying an unknown +** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is +** present, then the VFS specified by the option takes precedence over +** the value passed as the fourth parameter to sqlite3_open_v2(). +** +**
    • mode: ^(The mode parameter may be set to either "ro", "rw", +** "rwc", or "memory". Attempting to set it to any other value is +** an error)^. +** ^If "ro" is specified, then the database is opened for read-only +** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the +** third argument to sqlite3_open_v2(). ^If the mode option is set to +** "rw", then the database is opened for read-write (but not create) +** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had +** been set. ^Value "rwc" is equivalent to setting both +** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is +** set to "memory" then a pure [in-memory database] that never reads +** or writes from disk is used. ^It is an error to specify a value for +** the mode parameter that is less restrictive than that specified by +** the flags passed in the third parameter to sqlite3_open_v2(). +** +**
    • cache: ^The cache parameter may be set to either "shared" or +** "private". ^Setting it to "shared" is equivalent to setting the +** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to +** sqlite3_open_v2(). ^Setting the cache parameter to "private" is +** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit. +** ^If sqlite3_open_v2() is used and the "cache" parameter is present in +** a URI filename, its value overrides any behavior requested by setting +** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag. +**
    +** +** ^Specifying an unknown parameter in the query component of a URI is not an +** error. Future versions of SQLite might understand additional query +** parameters. See "[query parameters with special meaning to SQLite]" for +** additional information. +** +** [[URI filename examples]]

    URI filename examples

    +** +** +**
    URI filenames Results +**
    file:data.db +** Open the file "data.db" in the current directory. +**
    file:/home/fred/data.db
    +** file:///home/fred/data.db
    +** file://localhost/home/fred/data.db
    +** Open the database file "/home/fred/data.db". +**
    file://darkstar/home/fred/data.db +** An error. "darkstar" is not a recognized authority. +**
    +** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db +** Windows only: Open the file "data.db" on fred's desktop on drive +** C:. Note that the %20 escaping in this example is not strictly +** necessary - space characters can be used literally +** in URI filenames. +**
    file:data.db?mode=ro&cache=private +** Open file "data.db" in the current directory for read-only access. +** Regardless of whether or not shared-cache mode is enabled by +** default, use a private cache. +**
    file:/home/fred/data.db?vfs=unix-nolock +** Open file "/home/fred/data.db". Use the special VFS "unix-nolock". +**
    file:data.db?mode=readonly +** An error. "readonly" is not a valid option for the "mode" parameter. +**
    +** +** ^URI hexadecimal escape sequences (%HH) are supported within the path and +** query components of a URI. A hexadecimal escape sequence consists of a +** percent sign - "%" - followed by exactly two hexadecimal digits +** specifying an octet value. ^Before the path or query components of a +** URI filename are interpreted, they are encoded using UTF-8 and all +** hexadecimal escape sequences replaced by a single byte containing the +** corresponding octet. If this process generates an invalid UTF-8 encoding, +** the results are undefined. ** ** Note to Windows users: The encoding used for the filename argument ** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever @@ -2601,9 +2857,11 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); ** characters must be converted to UTF-8 prior to passing them into ** sqlite3_open() or sqlite3_open_v2(). ** -** Requirements: -** [H12701] [H12702] [H12703] [H12704] [H12706] [H12707] [H12709] [H12711] -** [H12712] [H12713] [H12714] [H12717] [H12719] [H12721] [H12723] +** Note to Windows Runtime users: The temporary directory must be set +** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various +** features that require the use of temporary files may fail. +** +** See also: [sqlite3_temp_directory] */ SQLITE_API int sqlite3_open( const char *filename, /* Database filename (UTF-8) */ @@ -2621,23 +2879,72 @@ SQLITE_API int sqlite3_open_v2( ); /* -** CAPI3REF: Error Codes And Messages {H12800} +** CAPI3REF: Obtain Values For URI Parameters +** +** These are utility routines, useful to VFS implementations, that check +** to see if a database file was a URI that contained a specific query +** parameter, and if so obtains the value of that query parameter. +** +** If F is the database filename pointer passed into the xOpen() method of +** a VFS implementation when the flags parameter to xOpen() has one or +** more of the [SQLITE_OPEN_URI] or [SQLITE_OPEN_MAIN_DB] bits set and +** P is the name of the query parameter, then +** sqlite3_uri_parameter(F,P) returns the value of the P +** parameter if it exists or a NULL pointer if P does not appear as a +** query parameter on F. If P is a query parameter of F +** has no explicit value, then sqlite3_uri_parameter(F,P) returns +** a pointer to an empty string. +** +** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean +** parameter and returns true (1) or false (0) according to the value +** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the +** value of query parameter P is one of "yes", "true", or "on" in any +** case or if the value begins with a non-zero number. The +** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of +** query parameter P is one of "no", "false", or "off" in any case or +** if the value begins with a numeric zero. If P is not a query +** parameter on F or if the value of P is does not match any of the +** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0). +** +** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a +** 64-bit signed integer and returns that integer, or D if P does not +** exist. If the value of P is something other than an integer, then +** zero is returned. +** +** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and +** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and +** is not a database file pathname pointer that SQLite passed into the xOpen +** VFS method, then the behavior of this routine is undefined and probably +** undesirable. +*/ +SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam); +SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault); +SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64); + + +/* +** CAPI3REF: Error Codes And Messages ** -** The sqlite3_errcode() interface returns the numeric [result code] or +** ^The sqlite3_errcode() interface returns the numeric [result code] or ** [extended result code] for the most recent failed sqlite3_* API call ** associated with a [database connection]. If a prior API call failed ** but the most recent API call succeeded, the return value from -** sqlite3_errcode() is undefined. The sqlite3_extended_errcode() +** sqlite3_errcode() is undefined. ^The sqlite3_extended_errcode() ** interface is the same except that it always returns the ** [extended result code] even when extended result codes are ** disabled. ** -** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language ** text that describes the error, as either UTF-8 or UTF-16 respectively. -** Memory to hold the error message string is managed internally. +** ^(Memory to hold the error message string is managed internally. ** The application does not need to worry about freeing the result. ** However, the error string might be overwritten or deallocated by -** subsequent calls to other SQLite interface functions. +** subsequent calls to other SQLite interface functions.)^ +** +** ^The sqlite3_errstr() interface returns the English-language text +** that describes the [result code], as UTF-8. +** ^(Memory to hold the error message string is managed internally +** and must not be freed by the application)^. ** ** When the serialized [threading mode] is in use, it might be the ** case that a second error occurs on a separate thread in between @@ -2652,17 +2959,15 @@ SQLITE_API int sqlite3_open_v2( ** If an interface fails with SQLITE_MISUSE, that means the interface ** was invoked incorrectly by the application. In that case, the ** error code and message may or may not be set. -** -** Requirements: -** [H12801] [H12802] [H12803] [H12807] [H12808] [H12809] */ SQLITE_API int sqlite3_errcode(sqlite3 *db); SQLITE_API int sqlite3_extended_errcode(sqlite3 *db); SQLITE_API const char *sqlite3_errmsg(sqlite3*); SQLITE_API const void *sqlite3_errmsg16(sqlite3*); +SQLITE_API const char *sqlite3_errstr(int); /* -** CAPI3REF: SQL Statement Object {H13000} +** CAPI3REF: SQL Statement Object ** KEYWORDS: {prepared statement} {prepared statements} ** ** An instance of this object represents a single SQL statement. @@ -2688,25 +2993,30 @@ SQLITE_API const void *sqlite3_errmsg16(sqlite3*); typedef struct sqlite3_stmt sqlite3_stmt; /* -** CAPI3REF: Run-time Limits {H12760} +** CAPI3REF: Run-time Limits ** -** This interface allows the size of various constructs to be limited +** ^(This interface allows the size of various constructs to be limited ** on a connection by connection basis. The first parameter is the ** [database connection] whose limit is to be set or queried. The ** second parameter is one of the [limit categories] that define a ** class of constructs to be size limited. The third parameter is the -** new limit for that construct. The function returns the old limit. +** new limit for that construct.)^ ** -** If the new limit is a negative number, the limit is unchanged. -** For the limit category of SQLITE_LIMIT_XYZ there is a +** ^If the new limit is a negative number, the limit is unchanged. +** ^(For each limit category SQLITE_LIMIT_NAME there is a ** [limits | hard upper bound] -** set by a compile-time C preprocessor macro named -** [limits | SQLITE_MAX_XYZ]. -** (The "_LIMIT_" in the name is changed to "_MAX_".) -** Attempts to increase a limit above its hard upper bound are -** silently truncated to the hard upper limit. -** -** Run time limits are intended for use in applications that manage +** set at compile-time by a C preprocessor macro called +** [limits | SQLITE_MAX_NAME]. +** (The "_LIMIT_" in the name is changed to "_MAX_".))^ +** ^Attempts to increase a limit above its hard upper bound are +** silently truncated to the hard upper bound. +** +** ^Regardless of whether or not the limit was changed, the +** [sqlite3_limit()] interface returns the prior value of the limit. +** ^Hence, to find the current value of a limit without changing it, +** simply invoke this interface with the third parameter set to -1. +** +** Run-time limits are intended for use in applications that manage ** both their own internal database and also databases that are controlled ** by untrusted external sources. An example application might be a ** web browser that has its own databases for storing history and @@ -2720,15 +3030,12 @@ typedef struct sqlite3_stmt sqlite3_stmt; ** [max_page_count] [PRAGMA]. ** ** New run-time limit categories may be added in future releases. -** -** Requirements: -** [H12762] [H12766] [H12769] */ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal); /* -** CAPI3REF: Run-Time Limit Categories {H12790} -** KEYWORDS: {limit category} {limit categories} +** CAPI3REF: Run-Time Limit Categories +** KEYWORDS: {limit category} {*limit categories} ** ** These constants define various performance limits ** that can be lowered at run-time using [sqlite3_limit()]. @@ -2736,40 +3043,46 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal); ** Additional information is available at [limits | Limits in SQLite]. ** **
    -**
    SQLITE_LIMIT_LENGTH
    -**
    The maximum size of any string or BLOB or table row.
    +** [[SQLITE_LIMIT_LENGTH]] ^(
    SQLITE_LIMIT_LENGTH
    +**
    The maximum size of any string or BLOB or table row, in bytes.
    )^ ** -**
    SQLITE_LIMIT_SQL_LENGTH
    -**
    The maximum length of an SQL statement.
    +** [[SQLITE_LIMIT_SQL_LENGTH]] ^(
    SQLITE_LIMIT_SQL_LENGTH
    +**
    The maximum length of an SQL statement, in bytes.
    )^ ** -**
    SQLITE_LIMIT_COLUMN
    +** [[SQLITE_LIMIT_COLUMN]] ^(
    SQLITE_LIMIT_COLUMN
    **
    The maximum number of columns in a table definition or in the ** result set of a [SELECT] or the maximum number of columns in an index -** or in an ORDER BY or GROUP BY clause.
    +** or in an ORDER BY or GROUP BY clause.)^ ** -**
    SQLITE_LIMIT_EXPR_DEPTH
    -**
    The maximum depth of the parse tree on any expression.
    +** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(
    SQLITE_LIMIT_EXPR_DEPTH
    +**
    The maximum depth of the parse tree on any expression.
    )^ ** -**
    SQLITE_LIMIT_COMPOUND_SELECT
    -**
    The maximum number of terms in a compound SELECT statement.
    +** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(
    SQLITE_LIMIT_COMPOUND_SELECT
    +**
    The maximum number of terms in a compound SELECT statement.
    )^ ** -**
    SQLITE_LIMIT_VDBE_OP
    +** [[SQLITE_LIMIT_VDBE_OP]] ^(
    SQLITE_LIMIT_VDBE_OP
    **
    The maximum number of instructions in a virtual machine program -** used to implement an SQL statement.
    +** used to implement an SQL statement. This limit is not currently +** enforced, though that might be added in some future release of +** SQLite.)^ ** -**
    SQLITE_LIMIT_FUNCTION_ARG
    -**
    The maximum number of arguments on a function.
    +** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(
    SQLITE_LIMIT_FUNCTION_ARG
    +**
    The maximum number of arguments on a function.
    )^ ** -**
    SQLITE_LIMIT_ATTACHED
    -**
    The maximum number of [ATTACH | attached databases].
    +** [[SQLITE_LIMIT_ATTACHED]] ^(
    SQLITE_LIMIT_ATTACHED
    +**
    The maximum number of [ATTACH | attached databases].)^
    ** -**
    SQLITE_LIMIT_LIKE_PATTERN_LENGTH
    +** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]] +** ^(
    SQLITE_LIMIT_LIKE_PATTERN_LENGTH
    **
    The maximum length of the pattern argument to the [LIKE] or -** [GLOB] operators.
    +** [GLOB] operators.)^ +** +** [[SQLITE_LIMIT_VARIABLE_NUMBER]] +** ^(
    SQLITE_LIMIT_VARIABLE_NUMBER
    +**
    The maximum index number of any [parameter] in an SQL statement.)^ ** -**
    SQLITE_LIMIT_VARIABLE_NUMBER
    -**
    The maximum number of variables in an SQL statement that can -** be bound.
    +** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(
    SQLITE_LIMIT_TRIGGER_DEPTH
    +**
    The maximum depth of recursion for triggers.
    )^ **
    */ #define SQLITE_LIMIT_LENGTH 0 @@ -2782,9 +3095,10 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal); #define SQLITE_LIMIT_ATTACHED 7 #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 #define SQLITE_LIMIT_VARIABLE_NUMBER 9 +#define SQLITE_LIMIT_TRIGGER_DEPTH 10 /* -** CAPI3REF: Compiling An SQL Statement {H13010} +** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} ** ** To execute an SQL query, it must first be compiled into a byte-code @@ -2799,64 +3113,70 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal); ** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2() ** use UTF-16. ** -** If the nByte argument is less than zero, then zSql is read up to the -** first zero terminator. If nByte is non-negative, then it is the maximum -** number of bytes read from zSql. When nByte is non-negative, the +** ^If the nByte argument is less than zero, then zSql is read up to the +** first zero terminator. ^If nByte is non-negative, then it is the maximum +** number of bytes read from zSql. ^When nByte is non-negative, the ** zSql string ends at either the first '\000' or '\u0000' character or ** the nByte-th byte, whichever comes first. If the caller knows ** that the supplied string is nul-terminated, then there is a small ** performance advantage to be gained by passing an nByte parameter that ** is equal to the number of bytes in the input string including -** the nul-terminator bytes. +** the nul-terminator bytes as this saves SQLite from having to +** make a copy of the input string. ** -** If pzTail is not NULL then *pzTail is made to point to the first byte +** ^If pzTail is not NULL then *pzTail is made to point to the first byte ** past the end of the first SQL statement in zSql. These routines only ** compile the first statement in zSql, so *pzTail is left pointing to ** what remains uncompiled. ** -** *ppStmt is left pointing to a compiled [prepared statement] that can be -** executed using [sqlite3_step()]. If there is an error, *ppStmt is set -** to NULL. If the input text contains no SQL (if the input is an empty +** ^*ppStmt is left pointing to a compiled [prepared statement] that can be +** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set +** to NULL. ^If the input text contains no SQL (if the input is an empty ** string or a comment) then *ppStmt is set to NULL. ** The calling procedure is responsible for deleting the compiled ** SQL statement using [sqlite3_finalize()] after it has finished with it. ** ppStmt may not be NULL. ** -** On success, [SQLITE_OK] is returned, otherwise an [error code] is returned. +** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK]; +** otherwise an [error code] is returned. ** ** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are ** recommended for all new programs. The two older interfaces are retained ** for backwards compatibility, but their use is discouraged. -** In the "v2" interfaces, the prepared statement +** ^In the "v2" interfaces, the prepared statement ** that is returned (the [sqlite3_stmt] object) contains a copy of the ** original SQL text. This causes the [sqlite3_step()] interface to -** behave a differently in two ways: +** behave differently in three ways: ** **
      **
    1. -** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it ** always used to do, [sqlite3_step()] will automatically recompile the SQL -** statement and try to run it again. If the schema has changed in -** a way that makes the statement no longer valid, [sqlite3_step()] will still -** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is -** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the -** error go away. Note: use [sqlite3_errmsg()] to find the text -** of the parsing error that results in an [SQLITE_SCHEMA] return. +** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY] +** retries will occur before sqlite3_step() gives up and returns an error. **
    2. ** **
    3. -** When an error occurs, [sqlite3_step()] will return one of the detailed -** [error codes] or [extended error codes]. The legacy behavior was that +** ^When an error occurs, [sqlite3_step()] will return one of the detailed +** [error codes] or [extended error codes]. ^The legacy behavior was that ** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code -** and you would have to make a second call to [sqlite3_reset()] in order -** to find the underlying cause of the problem. With the "v2" prepare +** and the application would have to make a second call to [sqlite3_reset()] +** in order to find the underlying cause of the problem. With the "v2" prepare ** interfaces, the underlying reason for the error is returned immediately. **
    4. -**
    -** -** Requirements: -** [H13011] [H13012] [H13013] [H13014] [H13015] [H13016] [H13019] [H13021] ** +**
  • +** ^If the specific value bound to [parameter | host parameter] in the +** WHERE clause might influence the choice of query plan for a statement, +** then the statement will be automatically recompiled, as if there had been +** a schema change, on the first [sqlite3_step()] call following any change +** to the [sqlite3_bind_text | bindings] of that [parameter]. +** ^The specific value of WHERE-clause [parameter] might influence the +** choice of query plan if the parameter is the left-hand side of a [LIKE] +** or [GLOB] operator or if the parameter is compared to an indexed column +** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled. +**
  • +** */ SQLITE_API int sqlite3_prepare( sqlite3 *db, /* Database handle */ @@ -2888,24 +3208,71 @@ SQLITE_API int sqlite3_prepare16_v2( ); /* -** CAPI3REF: Retrieving Statement SQL {H13100} +** CAPI3REF: Retrieving Statement SQL ** -** This interface can be used to retrieve a saved copy of the original +** ^This interface can be used to retrieve a saved copy of the original ** SQL text used to create a [prepared statement] if that statement was ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. -** -** Requirements: -** [H13101] [H13102] [H13103] */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); /* -** CAPI3REF: Dynamically Typed Value Object {H15000} +** CAPI3REF: Determine If An SQL Statement Writes The Database +** +** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if +** and only if the [prepared statement] X makes no direct changes to +** the content of the database file. +** +** Note that [application-defined SQL functions] or +** [virtual tables] might change the database indirectly as a side effect. +** ^(For example, if an application defines a function "eval()" that +** calls [sqlite3_exec()], then the following SQL statement would +** change the database file through side-effects: +** +**
    +**    SELECT eval('DELETE FROM t1') FROM t2;
    +** 
    +** +** But because the [SELECT] statement does not change the database file +** directly, sqlite3_stmt_readonly() would still return true.)^ +** +** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK], +** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true, +** since the statements themselves do not actually modify the database but +** rather they control the timing of when other statements modify the +** database. ^The [ATTACH] and [DETACH] statements also cause +** sqlite3_stmt_readonly() to return true since, while those statements +** change the configuration of a database connection, they do not make +** changes to the content of the database files on disk. +*/ +SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Determine If A Prepared Statement Has Been Reset +** +** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the +** [prepared statement] S has been stepped at least once using +** [sqlite3_step(S)] but has not run to completion and/or has not +** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S) +** interface returns false if S is a NULL pointer. If S is not a +** NULL pointer and is not a pointer to a valid [prepared statement] +** object, then the behavior is undefined and probably undesirable. +** +** This interface can be used in combination [sqlite3_next_stmt()] +** to locate all prepared statements associated with a database +** connection that are in need of being reset. This can be used, +** for example, in diagnostic routines to search for prepared +** statements that are holding a transaction open. +*/ +SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*); + +/* +** CAPI3REF: Dynamically Typed Value Object ** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value} ** ** SQLite uses the sqlite3_value object to represent all values ** that can be stored in a database table. SQLite uses dynamic typing -** for the values it stores. Values stored in sqlite3_value objects +** for the values it stores. ^Values stored in sqlite3_value objects ** can be integers, floating point values, strings, BLOBs, or NULL. ** ** An sqlite3_value object may be either "protected" or "unprotected". @@ -2915,7 +3282,7 @@ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); ** whether or not it requires a protected sqlite3_value. ** ** The terms "protected" and "unprotected" refer to whether or not -** a mutex is held. A internal mutex is held for a protected +** a mutex is held. An internal mutex is held for a protected ** sqlite3_value object but no mutex is held for an unprotected ** sqlite3_value object. If SQLite is compiled to be single-threaded ** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0) @@ -2924,12 +3291,12 @@ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); ** then there is no distinction between protected and unprotected ** sqlite3_value objects and they can be used interchangeably. However, ** for maximum code portability it is recommended that applications -** still make the distinction between between protected and unprotected +** still make the distinction between protected and unprotected ** sqlite3_value objects even when not strictly required. ** -** The sqlite3_value objects that are passed as parameters into the +** ^The sqlite3_value objects that are passed as parameters into the ** implementation of [application-defined SQL functions] are protected. -** The sqlite3_value object returned by +** ^The sqlite3_value object returned by ** [sqlite3_column_value()] is unprotected. ** Unprotected sqlite3_value objects may only be used with ** [sqlite3_result_value()] and [sqlite3_bind_value()]. @@ -2939,10 +3306,10 @@ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); typedef struct Mem sqlite3_value; /* -** CAPI3REF: SQL Function Context Object {H16001} +** CAPI3REF: SQL Function Context Object ** ** The context in which an SQL function executes is stored in an -** sqlite3_context object. A pointer to an sqlite3_context object +** sqlite3_context object. ^A pointer to an sqlite3_context object ** is always first parameter to [application-defined SQL functions]. ** The application-defined SQL function implementation will pass this ** pointer through into calls to [sqlite3_result_int | sqlite3_result()], @@ -2953,12 +3320,13 @@ typedef struct Mem sqlite3_value; typedef struct sqlite3_context sqlite3_context; /* -** CAPI3REF: Binding Values To Prepared Statements {H13500} +** CAPI3REF: Binding Values To Prepared Statements ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** -** In the SQL strings input to [sqlite3_prepare_v2()] and its variants, -** literals may be replaced by a [parameter] in one of these forms: +** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants, +** literals may be replaced by a [parameter] that matches one of following +** templates: ** **
      **
    • ? @@ -2968,73 +3336,83 @@ typedef struct sqlite3_context sqlite3_context; **
    • $VVV **
    ** -** In the parameter forms shown above NNN is an integer literal, -** and VVV is an alpha-numeric parameter name. The values of these +** In the templates above, NNN represents an integer literal, +** and VVV represents an alphanumeric identifier.)^ ^The values of these ** parameters (also called "host parameter names" or "SQL parameters") ** can be set using the sqlite3_bind_*() routines defined here. ** -** The first argument to the sqlite3_bind_*() routines is always +** ^The first argument to the sqlite3_bind_*() routines is always ** a pointer to the [sqlite3_stmt] object returned from ** [sqlite3_prepare_v2()] or its variants. ** -** The second argument is the index of the SQL parameter to be set. -** The leftmost SQL parameter has an index of 1. When the same named +** ^The second argument is the index of the SQL parameter to be set. +** ^The leftmost SQL parameter has an index of 1. ^When the same named ** SQL parameter is used more than once, second and subsequent ** occurrences have the same index as the first occurrence. -** The index for named parameters can be looked up using the -** [sqlite3_bind_parameter_index()] API if desired. The index +** ^The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_index()] API if desired. ^The index ** for "?NNN" parameters is the value of NNN. -** The NNN value must be between 1 and the [sqlite3_limit()] +** ^The NNN value must be between 1 and the [sqlite3_limit()] ** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999). ** -** The third argument is the value to bind to the parameter. +** ^The third argument is the value to bind to the parameter. +** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16() +** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter +** is ignored and the end result is the same as sqlite3_bind_null(). ** -** In those routines that have a fourth argument, its value is the +** ^(In those routines that have a fourth argument, its value is the ** number of bytes in the parameter. To be clear: the value is the -** number of bytes in the value, not the number of characters. -** If the fourth parameter is negative, the length of the string is +** number of bytes in the value, not the number of characters.)^ +** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16() +** is negative, then the length of the string is ** the number of bytes up to the first zero terminator. -** -** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** If the fourth parameter to sqlite3_bind_blob() is negative, then +** the behavior is undefined. +** If a non-negative fourth parameter is provided to sqlite3_bind_text() +** or sqlite3_bind_text16() then that parameter must be the byte offset +** where the NUL terminator would occur assuming the string were NUL +** terminated. If any NUL characters occur at byte offsets less than +** the value of the fourth parameter then the resulting string value will +** contain embedded NULs. The result of expressions involving strings +** with embedded NULs is undefined. +** +** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and ** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or -** string after SQLite has finished with it. If the fifth argument is +** string after SQLite has finished with it. ^The destructor is called +** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(), +** sqlite3_bind_text(), or sqlite3_bind_text16() fails. +** ^If the fifth argument is ** the special value [SQLITE_STATIC], then SQLite assumes that the ** information is in static, unmanaged space and does not need to be freed. -** If the fifth argument has the value [SQLITE_TRANSIENT], then +** ^If the fifth argument has the value [SQLITE_TRANSIENT], then ** SQLite makes its own private copy of the data immediately, before ** the sqlite3_bind_*() routine returns. ** -** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that -** is filled with zeroes. A zeroblob uses a fixed amount of memory +** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeroes. ^A zeroblob uses a fixed amount of memory ** (just an integer to hold its size) while it is being processed. ** Zeroblobs are intended to serve as placeholders for BLOBs whose ** content is later written using ** [sqlite3_blob_open | incremental BLOB I/O] routines. -** A negative value for the zeroblob results in a zero-length BLOB. -** -** The sqlite3_bind_*() routines must be called after -** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and -** before [sqlite3_step()]. -** Bindings are not cleared by the [sqlite3_reset()] routine. -** Unbound parameters are interpreted as NULL. -** -** These routines return [SQLITE_OK] on success or an error code if -** anything goes wrong. [SQLITE_RANGE] is returned if the parameter -** index is out of range. [SQLITE_NOMEM] is returned if malloc() fails. -** [SQLITE_MISUSE] might be returned if these routines are called on a -** virtual machine that is the wrong state or which has already been finalized. -** Detection of misuse is unreliable. Applications should not depend -** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a -** a logic error in the application. Future versions of SQLite might -** panic rather than return SQLITE_MISUSE. +** ^A negative value for the zeroblob results in a zero-length BLOB. ** -** See also: [sqlite3_bind_parameter_count()], -** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. +** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer +** for the [prepared statement] or with a prepared statement for which +** [sqlite3_step()] has been called more recently than [sqlite3_reset()], +** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_() +** routine is passed a [prepared statement] that has been finalized, the +** result is undefined and probably harmful. +** +** ^Bindings are not cleared by the [sqlite3_reset()] routine. +** ^Unbound parameters are interpreted as NULL. ** -** Requirements: -** [H13506] [H13509] [H13512] [H13515] [H13518] [H13521] [H13524] [H13527] -** [H13530] [H13533] [H13536] [H13539] [H13542] [H13545] [H13548] [H13551] +** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an +** [error code] if anything goes wrong. +** ^[SQLITE_RANGE] is returned if the parameter +** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails. ** +** See also: [sqlite3_bind_parameter_count()], +** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. */ SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double); @@ -3047,45 +3425,42 @@ SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); /* -** CAPI3REF: Number Of SQL Parameters {H13600} +** CAPI3REF: Number Of SQL Parameters ** -** This routine can be used to find the number of [SQL parameters] +** ^This routine can be used to find the number of [SQL parameters] ** in a [prepared statement]. SQL parameters are tokens of the ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as ** placeholders for values that are [sqlite3_bind_blob | bound] ** to the parameters at a later time. ** -** This routine actually returns the index of the largest (rightmost) +** ^(This routine actually returns the index of the largest (rightmost) ** parameter. For all forms except ?NNN, this will correspond to the -** number of unique parameters. If parameters of the ?NNN are used, -** there may be gaps in the list. +** number of unique parameters. If parameters of the ?NNN form are used, +** there may be gaps in the list.)^ ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_name()], and ** [sqlite3_bind_parameter_index()]. -** -** Requirements: -** [H13601] */ SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*); /* -** CAPI3REF: Name Of A Host Parameter {H13620} +** CAPI3REF: Name Of A Host Parameter ** -** This routine returns a pointer to the name of the n-th -** [SQL parameter] in a [prepared statement]. -** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" +** ^The sqlite3_bind_parameter_name(P,N) interface returns +** the name of the N-th [SQL parameter] in the [prepared statement] P. +** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" ** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" ** respectively. ** In other words, the initial ":" or "$" or "@" or "?" -** is included as part of the name. -** Parameters of the form "?" without a following integer have no name -** and are also referred to as "anonymous parameters". +** is included as part of the name.)^ +** ^Parameters of the form "?" without a following integer have no name +** and are referred to as "nameless" or "anonymous parameters". ** -** The first host parameter has an index of 1, not 0. +** ^The first host parameter has an index of 1, not 0. ** -** If the value n is out of range or if the n-th parameter is -** nameless, then NULL is returned. The returned string is +** ^If the value N is out of range or if the N-th parameter is +** nameless, then NULL is returned. ^The returned string is ** always in UTF-8 encoding even if the named parameter was ** originally specified as UTF-16 in [sqlite3_prepare16()] or ** [sqlite3_prepare16_v2()]. @@ -3093,125 +3468,114 @@ SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*); ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. -** -** Requirements: -** [H13621] */ SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); /* -** CAPI3REF: Index Of A Parameter With A Given Name {H13640} +** CAPI3REF: Index Of A Parameter With A Given Name ** -** Return the index of an SQL parameter given its name. The +** ^Return the index of an SQL parameter given its name. ^The ** index value returned is suitable for use as the second -** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero -** is returned if no matching parameter is found. The parameter +** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero +** is returned if no matching parameter is found. ^The parameter ** name must be given in UTF-8 even if the original statement ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()]. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. -** -** Requirements: -** [H13641] */ SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); /* -** CAPI3REF: Reset All Bindings On A Prepared Statement {H13660} +** CAPI3REF: Reset All Bindings On A Prepared Statement ** -** Contrary to the intuition of many, [sqlite3_reset()] does not reset +** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset ** the [sqlite3_bind_blob | bindings] on a [prepared statement]. -** Use this routine to reset all host parameters to NULL. -** -** Requirements: -** [H13661] +** ^Use this routine to reset all host parameters to NULL. */ SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*); /* -** CAPI3REF: Number Of Columns In A Result Set {H13710} +** CAPI3REF: Number Of Columns In A Result Set ** -** Return the number of columns in the result set returned by the -** [prepared statement]. This routine returns 0 if pStmt is an SQL +** ^Return the number of columns in the result set returned by the +** [prepared statement]. ^This routine returns 0 if pStmt is an SQL ** statement that does not return data (for example an [UPDATE]). ** -** Requirements: -** [H13711] +** See also: [sqlite3_data_count()] */ SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt); /* -** CAPI3REF: Column Names In A Result Set {H13720} +** CAPI3REF: Column Names In A Result Set ** -** These routines return the name assigned to a particular column -** in the result set of a [SELECT] statement. The sqlite3_column_name() +** ^These routines return the name assigned to a particular column +** in the result set of a [SELECT] statement. ^The sqlite3_column_name() ** interface returns a pointer to a zero-terminated UTF-8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated -** UTF-16 string. The first parameter is the [prepared statement] -** that implements the [SELECT] statement. The second parameter is the -** column number. The leftmost column is number 0. -** -** The returned string pointer is valid until either the [prepared statement] -** is destroyed by [sqlite3_finalize()] or until the next call to +** UTF-16 string. ^The first parameter is the [prepared statement] +** that implements the [SELECT] statement. ^The second parameter is the +** column number. ^The leftmost column is number 0. +** +** ^The returned string pointer is valid until either the [prepared statement] +** is destroyed by [sqlite3_finalize()] or until the statement is automatically +** reprepared by the first call to [sqlite3_step()] for a particular run +** or until the next call to ** sqlite3_column_name() or sqlite3_column_name16() on the same column. ** -** If sqlite3_malloc() fails during the processing of either routine +** ^If sqlite3_malloc() fails during the processing of either routine ** (for example during a conversion from UTF-8 to UTF-16) then a ** NULL pointer is returned. ** -** The name of a result column is the value of the "AS" clause for +** ^The name of a result column is the value of the "AS" clause for ** that column, if there is an AS clause. If there is no AS clause ** then the name of the column is unspecified and may change from ** one release of SQLite to the next. -** -** Requirements: -** [H13721] [H13723] [H13724] [H13725] [H13726] [H13727] */ SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N); SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N); /* -** CAPI3REF: Source Of Data In A Query Result {H13740} +** CAPI3REF: Source Of Data In A Query Result ** -** These routines provide a means to determine what column of what -** table in which database a result of a [SELECT] statement comes from. -** The name of the database or table or column can be returned as -** either a UTF-8 or UTF-16 string. The _database_ routines return +** ^These routines provide a means to determine the database, table, and +** table column that is the origin of a particular result column in +** [SELECT] statement. +** ^The name of the database or table or column can be returned as +** either a UTF-8 or UTF-16 string. ^The _database_ routines return ** the database name, the _table_ routines return the table name, and ** the origin_ routines return the column name. -** The returned string is valid until the [prepared statement] is destroyed -** using [sqlite3_finalize()] or until the same information is requested +** ^The returned string is valid until the [prepared statement] is destroyed +** using [sqlite3_finalize()] or until the statement is automatically +** reprepared by the first call to [sqlite3_step()] for a particular run +** or until the same information is requested ** again in a different encoding. ** -** The names returned are the original un-aliased names of the +** ^The names returned are the original un-aliased names of the ** database, table, and column. ** -** The first argument to the following calls is a [prepared statement]. -** These functions return information about the Nth column returned by +** ^The first argument to these interfaces is a [prepared statement]. +** ^These functions return information about the Nth result column returned by ** the statement, where N is the second function argument. +** ^The left-most column is column 0 for these routines. ** -** If the Nth column returned by the statement is an expression or +** ^If the Nth column returned by the statement is an expression or ** subquery and is not a column value, then all of these functions return -** NULL. These routine might also return NULL if a memory allocation error -** occurs. Otherwise, they return the name of the attached database, table -** and column that query result column was extracted from. +** NULL. ^These routine might also return NULL if a memory allocation error +** occurs. ^Otherwise, they return the name of the attached database, table, +** or column that query result column was extracted from. ** -** As with all other SQLite APIs, those postfixed with "16" return -** UTF-16 encoded strings, the other functions return UTF-8. {END} +** ^As with all other SQLite APIs, those whose names end with "16" return +** UTF-16 encoded strings and the other functions return UTF-8. ** -** These APIs are only available if the library was compiled with the -** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined. +** ^These APIs are only available if the library was compiled with the +** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol. ** -** {A13751} ** If two or more threads call one or more of these routines against the same ** prepared statement and column at the same time then the results are ** undefined. ** -** Requirements: -** [H13741] [H13742] [H13743] [H13744] [H13745] [H13746] [H13748] -** ** If two or more threads call one or more ** [sqlite3_column_database_name | column metadata interfaces] ** for the same [prepared statement] and result column @@ -3225,17 +3589,17 @@ SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); /* -** CAPI3REF: Declared Datatype Of A Query Result {H13760} +** CAPI3REF: Declared Datatype Of A Query Result ** -** The first parameter is a [prepared statement]. +** ^(The first parameter is a [prepared statement]. ** If this statement is a [SELECT] statement and the Nth column of the ** returned result set of that [SELECT] is a table column (not an ** expression or subquery) then the declared type of the table -** column is returned. If the Nth column of the result set is an +** column is returned.)^ ^If the Nth column of the result set is an ** expression or subquery, then a NULL pointer is returned. -** The returned string is always UTF-8 encoded. {END} +** ^The returned string is always UTF-8 encoded. ** -** For example, given the database schema: +** ^(For example, given the database schema: ** ** CREATE TABLE t1(c1 VARIANT); ** @@ -3244,23 +3608,20 @@ SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); ** SELECT c1 + 1, c1 FROM t1; ** ** this routine would return the string "VARIANT" for the second result -** column (i==1), and a NULL pointer for the first result column (i==0). +** column (i==1), and a NULL pointer for the first result column (i==0).)^ ** -** SQLite uses dynamic run-time typing. So just because a column +** ^SQLite uses dynamic run-time typing. ^So just because a column ** is declared to contain a particular type does not mean that the ** data stored in that column is of the declared type. SQLite is -** strongly typed, but the typing is dynamic not static. Type +** strongly typed, but the typing is dynamic not static. ^Type ** is associated with individual values, not with the containers ** used to hold those values. -** -** Requirements: -** [H13761] [H13762] [H13763] */ SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int); /* -** CAPI3REF: Evaluate An SQL Statement {H13200} +** CAPI3REF: Evaluate An SQL Statement ** ** After a [prepared statement] has been prepared using either ** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy @@ -3274,35 +3635,35 @@ SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int); ** new "v2" interface is recommended for new applications but the legacy ** interface will continue to be supported. ** -** In the legacy interface, the return value will be either [SQLITE_BUSY], +** ^In the legacy interface, the return value will be either [SQLITE_BUSY], ** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. -** With the "v2" interface, any of the other [result codes] or +** ^With the "v2" interface, any of the other [result codes] or ** [extended result codes] might be returned as well. ** -** [SQLITE_BUSY] means that the database engine was unable to acquire the -** database locks it needs to do its job. If the statement is a [COMMIT] +** ^[SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. ^If the statement is a [COMMIT] ** or occurs outside of an explicit transaction, then you can retry the -** statement. If the statement is not a [COMMIT] and occurs within a +** statement. If the statement is not a [COMMIT] and occurs within an ** explicit transaction then you should rollback the transaction before ** continuing. ** -** [SQLITE_DONE] means that the statement has finished executing +** ^[SQLITE_DONE] means that the statement has finished executing ** successfully. sqlite3_step() should not be called again on this virtual ** machine without first calling [sqlite3_reset()] to reset the virtual ** machine back to its initial state. ** -** If the SQL statement being executed returns any data, then [SQLITE_ROW] +** ^If the SQL statement being executed returns any data, then [SQLITE_ROW] ** is returned each time a new row of data is ready for processing by the ** caller. The values may be accessed using the [column access functions]. ** sqlite3_step() is called again to retrieve the next row of data. ** -** [SQLITE_ERROR] means that a run-time error (such as a constraint +** ^[SQLITE_ERROR] means that a run-time error (such as a constraint ** violation) has occurred. sqlite3_step() should not be called again on ** the VM. More information may be found by calling [sqlite3_errmsg()]. -** With the legacy interface, a more specific error code (for example, +** ^With the legacy interface, a more specific error code (for example, ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) ** can be obtained by calling [sqlite3_reset()] on the -** [prepared statement]. In the "v2" interface, +** [prepared statement]. ^In the "v2" interface, ** the more specific error code is returned directly by sqlite3_step(). ** ** [SQLITE_MISUSE] means that the this routine was called inappropriately. @@ -3312,6 +3673,18 @@ SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int); ** be the case that the same database connection is being used by two or ** more threads at the same moment in time. ** +** For all versions of SQLite up to and including 3.6.23.1, a call to +** [sqlite3_reset()] was required after sqlite3_step() returned anything +** other than [SQLITE_ROW] before any subsequent invocation of +** sqlite3_step(). Failure to reset the prepared statement using +** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from +** sqlite3_step(). But after version 3.6.23.1, sqlite3_step() began +** calling [sqlite3_reset()] automatically in this circumstance rather +** than returning [SQLITE_MISUSE]. This is not considered a compatibility +** break because any application that ever receives an SQLITE_MISUSE error +** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option +** can be used to restore the legacy behavior. +** ** Goofy Interface Alert: In the legacy interface, the sqlite3_step() ** API always returns a generic error code, [SQLITE_ERROR], following any ** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call @@ -3323,27 +3696,34 @@ SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int); ** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces, ** then the more specific [error codes] are returned directly ** by sqlite3_step(). The use of the "v2" interface is recommended. -** -** Requirements: -** [H13202] [H15304] [H15306] [H15308] [H15310] */ SQLITE_API int sqlite3_step(sqlite3_stmt*); /* -** CAPI3REF: Number of columns in a result set {H13770} +** CAPI3REF: Number of columns in a result set ** -** Returns the number of values in the current row of the result set. +** ^The sqlite3_data_count(P) interface returns the number of columns in the +** current row of the result set of [prepared statement] P. +** ^If prepared statement P does not have results ready to return +** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of +** interfaces) then sqlite3_data_count(P) returns 0. +** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer. +** ^The sqlite3_data_count(P) routine returns 0 if the previous call to +** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P) +** will return non-zero if previous call to [sqlite3_step](P) returned +** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum] +** where it always returns zero since each step of that multi-step +** pragma returns 0 columns of data. ** -** Requirements: -** [H13771] [H13772] +** See also: [sqlite3_column_count()] */ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); /* -** CAPI3REF: Fundamental Datatypes {H10265} +** CAPI3REF: Fundamental Datatypes ** KEYWORDS: SQLITE_TEXT ** -** {H10266} Every value in SQLite has one of five fundamental datatypes: +** ^(Every value in SQLite has one of five fundamental datatypes: ** **
      **
    • 64-bit signed integer @@ -3351,7 +3731,7 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); **
    • string **
    • BLOB **
    • NULL -**
    {END} +** )^ ** ** These constants are codes for each of those types. ** @@ -3372,17 +3752,19 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); #define SQLITE3_TEXT 3 /* -** CAPI3REF: Result Values From A Query {H13800} +** CAPI3REF: Result Values From A Query ** KEYWORDS: {column access functions} ** -** These routines form the "result set query" interface. +** These routines form the "result set" interface. ** -** These routines return information about a single column of the current -** result row of a query. In every case the first argument is a pointer +** ^These routines return information about a single column of the current +** result row of a query. ^In every case the first argument is a pointer ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] ** that was returned from [sqlite3_prepare_v2()] or one of its variants) ** and the second argument is the index of the column for which information -** should be returned. The leftmost column of the result set has the index 0. +** should be returned. ^The leftmost column of the result set has the index 0. +** ^The number of columns in the result can be determined using +** [sqlite3_column_count()]. ** ** If the SQL statement does not currently point to a valid row, or if the ** column index is out of range, the result is undefined. @@ -3396,9 +3778,9 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); ** are called from a different thread while any of these routines ** are pending, then the results are undefined. ** -** The sqlite3_column_type() routine returns the +** ^The sqlite3_column_type() routine returns the ** [SQLITE_INTEGER | datatype code] for the initial data type -** of the result column. The returned value is one of [SQLITE_INTEGER], +** of the result column. ^The returned value is one of [SQLITE_INTEGER], ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value ** returned by sqlite3_column_type() is only meaningful if no type ** conversions have occurred as described below. After a type conversion, @@ -3406,27 +3788,35 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); ** versions of SQLite may change the behavior of sqlite3_column_type() ** following a type conversion. ** -** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() ** routine returns the number of bytes in that BLOB or string. -** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts ** the string to UTF-8 and then returns the number of bytes. -** If the result is a numeric value then sqlite3_column_bytes() uses +** ^If the result is a numeric value then sqlite3_column_bytes() uses ** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns ** the number of bytes in that string. -** The value returned does not include the zero terminator at the end -** of the string. For clarity: the value returned is the number of -** bytes in the string, not the number of characters. +** ^If the result is NULL, then sqlite3_column_bytes() returns zero. ** -** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), -** even empty strings, are always zero terminated. The return -** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary -** pointer, possibly even a NULL pointer. +** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16() +** routine returns the number of bytes in that BLOB or string. +** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts +** the string to UTF-16 and then returns the number of bytes. +** ^If the result is a numeric value then sqlite3_column_bytes16() uses +** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns +** the number of bytes in that string. +** ^If the result is NULL, then sqlite3_column_bytes16() returns zero. +** +** ^The values returned by [sqlite3_column_bytes()] and +** [sqlite3_column_bytes16()] do not include the zero terminators at the end +** of the string. ^For clarity: the values returned by +** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of +** bytes in the string, not the number of characters. ** -** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() -** but leaves the result in UTF-16 in native byte order instead of UTF-8. -** The zero terminator is not included in this count. +** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even empty strings, are always zero-terminated. ^The return +** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer. ** -** The object returned by [sqlite3_column_value()] is an +** ^The object returned by [sqlite3_column_value()] is an ** [unprotected sqlite3_value] object. An unprotected sqlite3_value object ** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()]. ** If the [unprotected sqlite3_value] object returned by @@ -3434,10 +3824,10 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); ** to routines like [sqlite3_value_int()], [sqlite3_value_text()], ** or [sqlite3_value_bytes()], then the behavior is undefined. ** -** These routines attempt to convert the value where appropriate. For +** These routines attempt to convert the value where appropriate. ^For ** example, if the internal representation is FLOAT and a text result ** is requested, [sqlite3_snprintf()] is used internally to perform the -** conversion automatically. The following table details the conversions +** conversion automatically. ^(The following table details the conversions ** that are applied: ** **
    @@ -3446,22 +3836,22 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); ** ** NULL INTEGER Result is 0 ** NULL FLOAT Result is 0.0 -** NULL TEXT Result is NULL pointer -** NULL BLOB Result is NULL pointer +** NULL TEXT Result is a NULL pointer +** NULL BLOB Result is a NULL pointer ** INTEGER FLOAT Convert from integer to float ** INTEGER TEXT ASCII rendering of the integer ** INTEGER BLOB Same as INTEGER->TEXT -** FLOAT INTEGER Convert from float to integer +** FLOAT INTEGER [CAST] to INTEGER ** FLOAT TEXT ASCII rendering of the float -** FLOAT BLOB Same as FLOAT->TEXT -** TEXT INTEGER Use atoi() -** TEXT FLOAT Use atof() +** FLOAT BLOB [CAST] to BLOB +** TEXT INTEGER [CAST] to INTEGER +** TEXT FLOAT [CAST] to REAL ** TEXT BLOB No change -** BLOB INTEGER Convert to TEXT then use atoi() -** BLOB FLOAT Convert to TEXT then use atof() +** BLOB INTEGER [CAST] to INTEGER +** BLOB FLOAT [CAST] to REAL ** BLOB TEXT Add a zero terminator if needed ** -**
    +**
    )^ ** ** The table above makes reference to standard C library functions atoi() ** and atof(). SQLite does not really use these functions. It has its @@ -3487,9 +3877,9 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); ** to UTF-8.
  • ** ** -** Conversions between UTF-16be and UTF-16le are always done in place and do +** ^Conversions between UTF-16be and UTF-16le are always done in place and do ** not invalidate a prior pointer, though of course the content of the buffer -** that the prior pointer points to will have been modified. Other kinds +** that the prior pointer references will have been modified. Other kinds ** of conversion are done in place when it is possible, but sometimes they ** are not possible and in those cases prior pointers are invalidated. ** @@ -3510,22 +3900,18 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); ** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16() ** with calls to sqlite3_column_bytes(). ** -** The pointers returned are valid until a type conversion occurs as +** ^The pointers returned are valid until a type conversion occurs as ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or -** [sqlite3_finalize()] is called. The memory space used to hold strings +** [sqlite3_finalize()] is called. ^The memory space used to hold strings ** and BLOBs is freed automatically. Do not pass the pointers returned -** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into ** [sqlite3_free()]. ** -** If a memory allocation error occurs during the evaluation of any +** ^(If a memory allocation error occurs during the evaluation of any ** of these routines, a default value is returned. The default value ** is either the integer 0, the floating point number 0.0, or a NULL ** pointer. Subsequent calls to [sqlite3_errcode()] will return -** [SQLITE_NOMEM]. -** -** Requirements: -** [H13803] [H13806] [H13809] [H13812] [H13815] [H13818] [H13821] [H13824] -** [H13827] [H13830] +** [SQLITE_NOMEM].)^ */ SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol); @@ -3539,135 +3925,154 @@ SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol); SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); /* -** CAPI3REF: Destroy A Prepared Statement Object {H13300} +** CAPI3REF: Destroy A Prepared Statement Object +** +** ^The sqlite3_finalize() function is called to delete a [prepared statement]. +** ^If the most recent evaluation of the statement encountered no errors +** or if the statement is never been evaluated, then sqlite3_finalize() returns +** SQLITE_OK. ^If the most recent evaluation of statement S failed, then +** sqlite3_finalize(S) returns the appropriate [error code] or +** [extended error code]. ** -** The sqlite3_finalize() function is called to delete a [prepared statement]. -** If the statement was executed successfully or not executed at all, then -** SQLITE_OK is returned. If execution of the statement failed then an -** [error code] or [extended error code] is returned. +** ^The sqlite3_finalize(S) routine can be called at any point during +** the life cycle of [prepared statement] S: +** before statement S is ever evaluated, after +** one or more calls to [sqlite3_reset()], or after any call +** to [sqlite3_step()] regardless of whether or not the statement has +** completed execution. ** -** This routine can be called at any point during the execution of the -** [prepared statement]. If the virtual machine has not -** completed execution when this routine is called, that is like -** encountering an error or an [sqlite3_interrupt | interrupt]. -** Incomplete updates may be rolled back and transactions canceled, -** depending on the circumstances, and the -** [error code] returned will be [SQLITE_ABORT]. +** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op. ** -** Requirements: -** [H11302] [H11304] +** The application must finalize every [prepared statement] in order to avoid +** resource leaks. It is a grievous error for the application to try to use +** a prepared statement after it has been finalized. Any use of a prepared +** statement after it has been finalized can result in undefined and +** undesirable behavior such as segfaults and heap corruption. */ SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt); /* -** CAPI3REF: Reset A Prepared Statement Object {H13330} +** CAPI3REF: Reset A Prepared Statement Object ** ** The sqlite3_reset() function is called to reset a [prepared statement] ** object back to its initial state, ready to be re-executed. -** Any SQL statement variables that had values bound to them using +** ^Any SQL statement variables that had values bound to them using ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. ** Use [sqlite3_clear_bindings()] to reset the bindings. ** -** {H11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S -** back to the beginning of its program. +** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S +** back to the beginning of its program. ** -** {H11334} If the most recent call to [sqlite3_step(S)] for the -** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE], -** or if [sqlite3_step(S)] has never before been called on S, -** then [sqlite3_reset(S)] returns [SQLITE_OK]. +** ^If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE], +** or if [sqlite3_step(S)] has never before been called on S, +** then [sqlite3_reset(S)] returns [SQLITE_OK]. ** -** {H11336} If the most recent call to [sqlite3_step(S)] for the -** [prepared statement] S indicated an error, then -** [sqlite3_reset(S)] returns an appropriate [error code]. +** ^If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S indicated an error, then +** [sqlite3_reset(S)] returns an appropriate [error code]. ** -** {H11338} The [sqlite3_reset(S)] interface does not change the values -** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S. +** ^The [sqlite3_reset(S)] interface does not change the values +** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S. */ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt); /* -** CAPI3REF: Create Or Redefine SQL Functions {H16100} +** CAPI3REF: Create Or Redefine SQL Functions ** KEYWORDS: {function creation routines} ** KEYWORDS: {application-defined SQL function} ** KEYWORDS: {application-defined SQL functions} ** -** These two functions (collectively known as "function creation routines") +** ^These functions (collectively known as "function creation routines") ** are used to add SQL functions or aggregates or to redefine the behavior -** of existing SQL functions or aggregates. The only difference between the -** two is that the second parameter, the name of the (scalar) function or -** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16 -** for sqlite3_create_function16(). -** -** The first parameter is the [database connection] to which the SQL -** function is to be added. If a single program uses more than one database -** connection internally, then SQL functions must be added individually to -** each database connection. -** -** The second parameter is the name of the SQL function to be created or -** redefined. The length of the name is limited to 255 bytes, exclusive of -** the zero-terminator. Note that the name length limit is in bytes, not -** characters. Any attempt to create a function with a longer name -** will result in [SQLITE_ERROR] being returned. -** -** The third parameter (nArg) +** of existing SQL functions or aggregates. The only differences between +** these routines are the text encoding expected for +** the second parameter (the name of the function being created) +** and the presence or absence of a destructor callback for +** the application data pointer. +** +** ^The first parameter is the [database connection] to which the SQL +** function is to be added. ^If an application uses more than one database +** connection then application-defined SQL functions must be added +** to each database connection separately. +** +** ^The second parameter is the name of the SQL function to be created or +** redefined. ^The length of the name is limited to 255 bytes in a UTF-8 +** representation, exclusive of the zero-terminator. ^Note that the name +** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes. +** ^Any attempt to create a function with a longer name +** will result in [SQLITE_MISUSE] being returned. +** +** ^The third parameter (nArg) ** is the number of arguments that the SQL function or -** aggregate takes. If this parameter is -1, then the SQL function or +** aggregate takes. ^If this parameter is -1, then the SQL function or ** aggregate may take any number of arguments between 0 and the limit ** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third ** parameter is less than -1 or greater than 127 then the behavior is ** undefined. ** -** The fourth parameter, eTextRep, specifies what +** ^The fourth parameter, eTextRep, specifies what ** [SQLITE_UTF8 | text encoding] this SQL function prefers for -** its parameters. Any SQL function implementation should be able to work -** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be -** more efficient with one encoding than another. It is allowed to -** invoke sqlite3_create_function() or sqlite3_create_function16() multiple -** times with the same function but with different values of eTextRep. -** When multiple implementations of the same function are available, SQLite +** its parameters. The application should set this parameter to +** [SQLITE_UTF16LE] if the function implementation invokes +** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the +** implementation invokes [sqlite3_value_text16be()] on an input, or +** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8] +** otherwise. ^The same SQL function may be registered multiple times using +** different preferred text encodings, with different implementations for +** each encoding. +** ^When multiple implementations of the same function are available, SQLite ** will pick the one that involves the least amount of data conversion. -** If there is only a single implementation which does not care what text -** encoding is used, then the fourth argument should be [SQLITE_ANY]. ** -** The fifth parameter is an arbitrary pointer. The implementation of the -** function can gain access to this pointer using [sqlite3_user_data()]. +** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC] +** to signal that the function will always return the same result given +** the same inputs within a single SQL statement. Most SQL functions are +** deterministic. The built-in [random()] SQL function is an example of a +** function that is not deterministic. The SQLite query planner is able to +** perform additional optimizations on deterministic functions, so use +** of the [SQLITE_DETERMINISTIC] flag is recommended where possible. ** -** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** ^(The fifth parameter is an arbitrary pointer. The implementation of the +** function can gain access to this pointer using [sqlite3_user_data()].)^ +** +** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are ** pointers to C-language functions that implement the SQL function or -** aggregate. A scalar SQL function requires an implementation of the xFunc -** callback only, NULL pointers should be passed as the xStep and xFinal -** parameters. An aggregate SQL function requires an implementation of xStep -** and xFinal and NULL should be passed for xFunc. To delete an existing -** SQL function or aggregate, pass NULL for all three function callbacks. +** aggregate. ^A scalar SQL function requires an implementation of the xFunc +** callback only; NULL pointers must be passed as the xStep and xFinal +** parameters. ^An aggregate SQL function requires an implementation of xStep +** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing +** SQL function or aggregate, pass NULL pointers for all three function +** callbacks. ** -** It is permitted to register multiple implementations of the same +** ^(If the ninth parameter to sqlite3_create_function_v2() is not NULL, +** then it is destructor for the application data pointer. +** The destructor is invoked when the function is deleted, either by being +** overloaded or when the database connection closes.)^ +** ^The destructor is also invoked if the call to +** sqlite3_create_function_v2() fails. +** ^When the destructor callback of the tenth parameter is invoked, it +** is passed a single argument which is a copy of the application data +** pointer which was the fifth parameter to sqlite3_create_function_v2(). +** +** ^It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of -** arguments or differing preferred text encodings. SQLite will use -** the implementation most closely matches the way in which the -** SQL function is used. A function implementation with a non-negative +** arguments or differing preferred text encodings. ^SQLite will use +** the implementation that most closely matches the way in which the +** SQL function is used. ^A function implementation with a non-negative ** nArg parameter is a better match than a function implementation with -** a negative nArg. A function where the preferred text encoding +** a negative nArg. ^A function where the preferred text encoding ** matches the database encoding is a better ** match than a function where the encoding is different. -** A function where the encoding difference is between UTF16le and UTF16be +** ^A function where the encoding difference is between UTF16le and UTF16be ** is a closer match than a function where the encoding difference is ** between UTF8 and UTF16. ** -** Built-in functions may be overloaded by new application-defined functions. -** The first application-defined function with a given name overrides all -** built-in functions in the same [database connection] with the same name. -** Subsequent application-defined functions of the same name only override -** prior application-defined functions that are an exact match for the -** number of parameters and preferred encoding. +** ^Built-in functions may be overloaded by new application-defined functions. ** -** An application-defined function is permitted to call other +** ^An application-defined function is permitted to call other ** SQLite interfaces. However, such calls must not ** close the database connection nor finalize or reset the prepared ** statement in which the function is running. -** -** Requirements: -** [H16103] [H16106] [H16109] [H16112] [H16118] [H16121] [H16127] -** [H16130] [H16133] [H16136] [H16139] [H16142] */ SQLITE_API int sqlite3_create_function( sqlite3 *db, @@ -3689,9 +4094,20 @@ SQLITE_API int sqlite3_create_function16( void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ); +SQLITE_API int sqlite3_create_function_v2( + sqlite3 *db, + const char *zFunctionName, + int nArg, + int eTextRep, + void *pApp, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*), + void(*xDestroy)(void*) +); /* -** CAPI3REF: Text Encodings {H10267} +** CAPI3REF: Text Encodings ** ** These constant define integer codes that represent the various ** text encodings supported by SQLite. @@ -3700,9 +4116,19 @@ SQLITE_API int sqlite3_create_function16( #define SQLITE_UTF16LE 2 #define SQLITE_UTF16BE 3 #define SQLITE_UTF16 4 /* Use native byte order */ -#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_ANY 5 /* Deprecated */ #define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ +/* +** CAPI3REF: Function Flags +** +** These constants may be ORed together with the +** [SQLITE_UTF8 | preferred text encoding] as the fourth argument +** to [sqlite3_create_function()], [sqlite3_create_function16()], or +** [sqlite3_create_function_v2()]. +*/ +#define SQLITE_DETERMINISTIC 0x800 + /* ** CAPI3REF: Deprecated Functions ** DEPRECATED @@ -3719,11 +4145,12 @@ SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*); SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void); SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void); -SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); +SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int), + void*,sqlite3_int64); #endif /* -** CAPI3REF: Obtaining SQL Function Parameter Values {H15100} +** CAPI3REF: Obtaining SQL Function Parameter Values ** ** The C-language implementation of SQL functions and aggregates uses ** this set of interface routines to access the parameter values on @@ -3732,7 +4159,7 @@ SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int6 ** The xFunc (for scalar functions) or xStep (for aggregates) parameters ** to [sqlite3_create_function()] and [sqlite3_create_function16()] ** define callbacks that implement the SQL functions and aggregates. -** The 4th parameter to these callbacks is an array of pointers to +** The 3rd parameter to these callbacks is an array of pointers to ** [protected sqlite3_value] objects. There is one [sqlite3_value] object for ** each parameter to the SQL function. These routines are used to ** extract values from the [sqlite3_value] objects. @@ -3741,22 +4168,22 @@ SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int6 ** Any attempt to use these routines on an [unprotected sqlite3_value] ** object results in undefined behavior. ** -** These routines work just like the corresponding [column access functions] +** ^These routines work just like the corresponding [column access functions] ** except that these routines take a single [protected sqlite3_value] object ** pointer instead of a [sqlite3_stmt*] pointer and an integer column number. ** -** The sqlite3_value_text16() interface extracts a UTF-16 string -** in the native byte-order of the host machine. The +** ^The sqlite3_value_text16() interface extracts a UTF-16 string +** in the native byte-order of the host machine. ^The ** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces ** extract UTF-16 strings as big-endian and little-endian respectively. ** -** The sqlite3_value_numeric_type() interface attempts to apply +** ^(The sqlite3_value_numeric_type() interface attempts to apply ** numeric affinity to the value. This means that an attempt is ** made to convert the value to an integer or floating point. If ** such a conversion is possible without loss of information (in other ** words, if the value is a string that looks like a number) ** then the conversion is performed. Otherwise no conversion occurs. -** The [SQLITE_INTEGER | datatype] after conversion is returned. +** The [SQLITE_INTEGER | datatype] after conversion is returned.)^ ** ** Please pay particular attention to the fact that the pointer returned ** from [sqlite3_value_blob()], [sqlite3_value_text()], or @@ -3766,10 +4193,6 @@ SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int6 ** ** These routines must be called from the same thread as ** the SQL function that supplied the [sqlite3_value*] parameters. -** -** Requirements: -** [H15103] [H15106] [H15109] [H15112] [H15115] [H15118] [H15121] [H15124] -** [H15127] [H15130] [H15133] [H15136] */ SQLITE_API const void *sqlite3_value_blob(sqlite3_value*); SQLITE_API int sqlite3_value_bytes(sqlite3_value*); @@ -3785,133 +4208,148 @@ SQLITE_API int sqlite3_value_type(sqlite3_value*); SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*); /* -** CAPI3REF: Obtain Aggregate Function Context {H16210} -** -** The implementation of aggregate SQL functions use this routine to allocate -** a structure for storing their state. -** -** The first time the sqlite3_aggregate_context() routine is called for a -** particular aggregate, SQLite allocates nBytes of memory, zeroes out that -** memory, and returns a pointer to it. On second and subsequent calls to -** sqlite3_aggregate_context() for the same aggregate function index, -** the same buffer is returned. The implementation of the aggregate can use -** the returned buffer to accumulate data. -** -** SQLite automatically frees the allocated buffer when the aggregate -** query concludes. -** -** The first parameter should be a copy of the +** CAPI3REF: Obtain Aggregate Function Context +** +** Implementations of aggregate SQL functions use this +** routine to allocate memory for storing their state. +** +** ^The first time the sqlite3_aggregate_context(C,N) routine is called +** for a particular aggregate function, SQLite +** allocates N of memory, zeroes out that memory, and returns a pointer +** to the new memory. ^On second and subsequent calls to +** sqlite3_aggregate_context() for the same aggregate function instance, +** the same buffer is returned. Sqlite3_aggregate_context() is normally +** called once for each invocation of the xStep callback and then one +** last time when the xFinal callback is invoked. ^(When no rows match +** an aggregate query, the xStep() callback of the aggregate function +** implementation is never called and xFinal() is called exactly once. +** In those cases, sqlite3_aggregate_context() might be called for the +** first time from within xFinal().)^ +** +** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer +** when first called if N is less than or equal to zero or if a memory +** allocate error occurs. +** +** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is +** determined by the N parameter on first successful call. Changing the +** value of N in subsequent call to sqlite3_aggregate_context() within +** the same aggregate function instance will not resize the memory +** allocation.)^ Within the xFinal callback, it is customary to set +** N=0 in calls to sqlite3_aggregate_context(C,N) so that no +** pointless memory allocations occur. +** +** ^SQLite automatically frees the memory allocated by +** sqlite3_aggregate_context() when the aggregate query concludes. +** +** The first parameter must be a copy of the ** [sqlite3_context | SQL function context] that is the first parameter -** to the callback routine that implements the aggregate function. +** to the xStep or xFinal callback routine that implements the aggregate +** function. ** ** This routine must be called from the same thread in which ** the aggregate SQL function is running. -** -** Requirements: -** [H16211] [H16213] [H16215] [H16217] */ SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); /* -** CAPI3REF: User Data For Functions {H16240} +** CAPI3REF: User Data For Functions ** -** The sqlite3_user_data() interface returns a copy of +** ^The sqlite3_user_data() interface returns a copy of ** the pointer that was the pUserData parameter (the 5th parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally -** registered the application defined function. {END} +** registered the application defined function. ** ** This routine must be called from the same thread in which ** the application-defined function is running. -** -** Requirements: -** [H16243] */ SQLITE_API void *sqlite3_user_data(sqlite3_context*); /* -** CAPI3REF: Database Connection For Functions {H16250} +** CAPI3REF: Database Connection For Functions ** -** The sqlite3_context_db_handle() interface returns a copy of +** ^The sqlite3_context_db_handle() interface returns a copy of ** the pointer to the [database connection] (the 1st parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. -** -** Requirements: -** [H16253] */ SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); /* -** CAPI3REF: Function Auxiliary Data {H16270} +** CAPI3REF: Function Auxiliary Data ** -** The following two functions may be used by scalar SQL functions to +** These functions may be used by (non-aggregate) SQL functions to ** associate metadata with argument values. If the same value is passed to ** multiple invocations of the same SQL function during query execution, under -** some circumstances the associated metadata may be preserved. This may -** be used, for example, to add a regular-expression matching scalar -** function. The compiled version of the regular expression is stored as -** metadata associated with the SQL value passed as the regular expression -** pattern. The compiled regular expression can be reused on multiple -** invocations of the same function so that the original pattern string -** does not need to be recompiled on each invocation. -** -** The sqlite3_get_auxdata() interface returns a pointer to the metadata +** some circumstances the associated metadata may be preserved. An example +** of where this might be useful is in a regular-expression matching +** function. The compiled version of the regular expression can be stored as +** metadata associated with the pattern string. +** Then as long as the pattern string remains the same, +** the compiled regular expression can be reused on multiple +** invocations of the same function. +** +** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata ** associated by the sqlite3_set_auxdata() function with the Nth argument -** value to the application-defined function. If no metadata has been ever -** been set for the Nth argument of the function, or if the corresponding -** function parameter has changed since the meta-data was set, -** then sqlite3_get_auxdata() returns a NULL pointer. -** -** The sqlite3_set_auxdata() interface saves the metadata -** pointed to by its 3rd parameter as the metadata for the N-th -** argument of the application-defined function. Subsequent -** calls to sqlite3_get_auxdata() might return this data, if it has -** not been destroyed. -** If it is not NULL, SQLite will invoke the destructor -** function given by the 4th parameter to sqlite3_set_auxdata() on -** the metadata when the corresponding function parameter changes -** or when the SQL statement completes, whichever comes first. -** -** SQLite is free to call the destructor and drop metadata on any -** parameter of any function at any time. The only guarantee is that -** the destructor will be called before the metadata is dropped. -** -** In practice, metadata is preserved between function calls for -** expressions that are constant at compile time. This includes literal -** values and SQL variables. +** value to the application-defined function. ^If there is no metadata +** associated with the function argument, this sqlite3_get_auxdata() interface +** returns a NULL pointer. +** +** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th +** argument of the application-defined function. ^Subsequent +** calls to sqlite3_get_auxdata(C,N) return P from the most recent +** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or +** NULL if the metadata has been discarded. +** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL, +** SQLite will invoke the destructor function X with parameter P exactly +** once, when the metadata is discarded. +** SQLite is free to discard the metadata at any time, including:
      +**
    • when the corresponding function parameter changes, or +**
    • when [sqlite3_reset()] or [sqlite3_finalize()] is called for the +** SQL statement, or +**
    • when sqlite3_set_auxdata() is invoked again on the same parameter, or +**
    • during the original sqlite3_set_auxdata() call when a memory +** allocation error occurs.
    )^ +** +** Note the last bullet in particular. The destructor X in +** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the +** sqlite3_set_auxdata() interface even returns. Hence sqlite3_set_auxdata() +** should be called near the end of the function implementation and the +** function implementation should not make any use of P after +** sqlite3_set_auxdata() has been called. +** +** ^(In practice, metadata is preserved between function calls for +** function parameters that are compile-time constants, including literal +** values and [parameters] and expressions composed from the same.)^ ** ** These routines must be called from the same thread in which ** the SQL function is running. -** -** Requirements: -** [H16272] [H16274] [H16276] [H16277] [H16278] [H16279] */ SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N); SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); /* -** CAPI3REF: Constants Defining Special Destructor Behavior {H10280} +** CAPI3REF: Constants Defining Special Destructor Behavior ** ** These are special values for the destructor that is passed in as the -** final argument to routines like [sqlite3_result_blob()]. If the destructor +** final argument to routines like [sqlite3_result_blob()]. ^If the destructor ** argument is SQLITE_STATIC, it means that the content pointer is constant -** and will never change. It does not need to be destroyed. The +** and will never change. It does not need to be destroyed. ^The ** SQLITE_TRANSIENT value means that the content will likely change in ** the near future and that SQLite should make its own private copy of ** the content before returning. ** ** The typedef is necessary to work around problems in certain -** C++ compilers. See ticket #2191. +** C++ compilers. */ typedef void (*sqlite3_destructor_type)(void*); #define SQLITE_STATIC ((sqlite3_destructor_type)0) #define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) /* -** CAPI3REF: Setting The Result Of An SQL Function {H16400} +** CAPI3REF: Setting The Result Of An SQL Function ** ** These routines are used by the xFunc or xFinal callbacks that ** implement SQL functions and aggregates. See @@ -3922,102 +4360,103 @@ typedef void (*sqlite3_destructor_type)(void*); ** functions used to bind values to host parameters in prepared statements. ** Refer to the [SQL parameter] documentation for additional information. ** -** The sqlite3_result_blob() interface sets the result from +** ^The sqlite3_result_blob() interface sets the result from ** an application-defined function to be the BLOB whose content is pointed ** to by the second parameter and which is N bytes long where N is the ** third parameter. ** -** The sqlite3_result_zeroblob() interfaces set the result of +** ^The sqlite3_result_zeroblob() interfaces set the result of ** the application-defined function to be a BLOB containing all zero ** bytes and N bytes in size, where N is the value of the 2nd parameter. ** -** The sqlite3_result_double() interface sets the result from +** ^The sqlite3_result_double() interface sets the result from ** an application-defined function to be a floating point value specified ** by its 2nd argument. ** -** The sqlite3_result_error() and sqlite3_result_error16() functions +** ^The sqlite3_result_error() and sqlite3_result_error16() functions ** cause the implemented SQL function to throw an exception. -** SQLite uses the string pointed to by the +** ^SQLite uses the string pointed to by the ** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() -** as the text of an error message. SQLite interprets the error -** message string from sqlite3_result_error() as UTF-8. SQLite +** as the text of an error message. ^SQLite interprets the error +** message string from sqlite3_result_error() as UTF-8. ^SQLite ** interprets the string from sqlite3_result_error16() as UTF-16 in native -** byte order. If the third parameter to sqlite3_result_error() +** byte order. ^If the third parameter to sqlite3_result_error() ** or sqlite3_result_error16() is negative then SQLite takes as the error ** message all text up through the first zero character. -** If the third parameter to sqlite3_result_error() or +** ^If the third parameter to sqlite3_result_error() or ** sqlite3_result_error16() is non-negative then SQLite takes that many ** bytes (not characters) from the 2nd parameter as the error message. -** The sqlite3_result_error() and sqlite3_result_error16() +** ^The sqlite3_result_error() and sqlite3_result_error16() ** routines make a private copy of the error message text before ** they return. Hence, the calling function can deallocate or ** modify the text after they return without harm. -** The sqlite3_result_error_code() function changes the error code -** returned by SQLite as a result of an error in a function. By default, -** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error() +** ^The sqlite3_result_error_code() function changes the error code +** returned by SQLite as a result of an error in a function. ^By default, +** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. ** -** The sqlite3_result_toobig() interface causes SQLite to throw an error -** indicating that a string or BLOB is to long to represent. +** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an +** error indicating that a string or BLOB is too long to represent. ** -** The sqlite3_result_nomem() interface causes SQLite to throw an error -** indicating that a memory allocation failed. +** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an +** error indicating that a memory allocation failed. ** -** The sqlite3_result_int() interface sets the return value +** ^The sqlite3_result_int() interface sets the return value ** of the application-defined function to be the 32-bit signed integer ** value given in the 2nd argument. -** The sqlite3_result_int64() interface sets the return value +** ^The sqlite3_result_int64() interface sets the return value ** of the application-defined function to be the 64-bit signed integer ** value given in the 2nd argument. ** -** The sqlite3_result_null() interface sets the return value +** ^The sqlite3_result_null() interface sets the return value ** of the application-defined function to be NULL. ** -** The sqlite3_result_text(), sqlite3_result_text16(), +** ^The sqlite3_result_text(), sqlite3_result_text16(), ** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces ** set the return value of the application-defined function to be ** a text string which is represented as UTF-8, UTF-16 native byte order, ** UTF-16 little endian, or UTF-16 big endian, respectively. -** SQLite takes the text result from the application from +** ^SQLite takes the text result from the application from ** the 2nd parameter of the sqlite3_result_text* interfaces. -** If the 3rd parameter to the sqlite3_result_text* interfaces +** ^If the 3rd parameter to the sqlite3_result_text* interfaces ** is negative, then SQLite takes result text from the 2nd parameter ** through the first zero character. -** If the 3rd parameter to the sqlite3_result_text* interfaces +** ^If the 3rd parameter to the sqlite3_result_text* interfaces ** is non-negative, then as many bytes (not characters) of the text ** pointed to by the 2nd parameter are taken as the application-defined -** function result. -** If the 4th parameter to the sqlite3_result_text* interfaces +** function result. If the 3rd parameter is non-negative, then it +** must be the byte offset into the string where the NUL terminator would +** appear if the string where NUL terminated. If any NUL characters occur +** in the string at a byte offset that is less than the value of the 3rd +** parameter, then the resulting string will contain embedded NULs and the +** result of expressions operating on strings with embedded NULs is undefined. +** ^If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that ** function as the destructor on the text or BLOB result when it has ** finished using that result. -** If the 4th parameter to the sqlite3_result_text* interfaces or +** ^If the 4th parameter to the sqlite3_result_text* interfaces or to ** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite ** assumes that the text or BLOB result is in constant space and does not -** copy the it or call a destructor when it has finished using that result. -** If the 4th parameter to the sqlite3_result_text* interfaces +** copy the content of the parameter nor call a destructor on the content +** when it has finished using that result. +** ^If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT ** then SQLite makes a copy of the result into space obtained from ** from [sqlite3_malloc()] before it returns. ** -** The sqlite3_result_value() interface sets the result of +** ^The sqlite3_result_value() interface sets the result of ** the application-defined function to be a copy the -** [unprotected sqlite3_value] object specified by the 2nd parameter. The +** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The ** sqlite3_result_value() interface makes a copy of the [sqlite3_value] ** so that the [sqlite3_value] specified in the parameter may change or ** be deallocated after sqlite3_result_value() returns without harm. -** A [protected sqlite3_value] object may always be used where an +** ^A [protected sqlite3_value] object may always be used where an ** [unprotected sqlite3_value] object is required, so either ** kind of [sqlite3_value] object can be used with this interface. ** ** If these routines are called from within the different thread ** than the one containing the application-defined function that received ** the [sqlite3_context] pointer, the results are undefined. -** -** Requirements: -** [H16403] [H16406] [H16409] [H16412] [H16415] [H16418] [H16421] [H16424] -** [H16427] [H16430] [H16433] [H16436] [H16439] [H16442] [H16445] [H16448] -** [H16451] [H16454] [H16457] [H16460] [H16463] */ SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); SQLITE_API void sqlite3_result_double(sqlite3_context*, double); @@ -4037,67 +4476,96 @@ SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*); SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n); /* -** CAPI3REF: Define New Collating Sequences {H16600} +** CAPI3REF: Define New Collating Sequences ** -** These functions are used to add new collation sequences to the -** [database connection] specified as the first argument. +** ^These functions add, remove, or modify a [collation] associated +** with the [database connection] specified as the first argument. ** -** The name of the new collation sequence is specified as a UTF-8 string +** ^The name of the collation is a UTF-8 string ** for sqlite3_create_collation() and sqlite3_create_collation_v2() -** and a UTF-16 string for sqlite3_create_collation16(). In all cases -** the name is passed as the second function argument. -** -** The third argument may be one of the constants [SQLITE_UTF8], -** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied -** routine expects to be passed pointers to strings encoded using UTF-8, -** UTF-16 little-endian, or UTF-16 big-endian, respectively. The -** third argument might also be [SQLITE_UTF16] to indicate that the routine -** expects pointers to be UTF-16 strings in the native byte order, or the -** argument can be [SQLITE_UTF16_ALIGNED] if the -** the routine expects pointers to 16-bit word aligned strings -** of UTF-16 in the native byte order. -** -** A pointer to the user supplied routine must be passed as the fifth -** argument. If it is NULL, this is the same as deleting the collation -** sequence (so that SQLite cannot call it anymore). -** Each time the application supplied function is invoked, it is passed -** as its first parameter a copy of the void* passed as the fourth argument -** to sqlite3_create_collation() or sqlite3_create_collation16(). -** -** The remaining arguments to the application-supplied routine are two strings, -** each represented by a (length, data) pair and encoded in the encoding -** that was passed as the third argument when the collation sequence was -** registered. {END} The application defined collation routine should -** return negative, zero or positive if the first string is less than, -** equal to, or greater than the second string. i.e. (STRING1 - STRING2). -** -** The sqlite3_create_collation_v2() works like sqlite3_create_collation() -** except that it takes an extra argument which is a destructor for -** the collation. The destructor is called when the collation is -** destroyed and is passed a copy of the fourth parameter void* pointer -** of the sqlite3_create_collation_v2(). -** Collations are destroyed when they are overridden by later calls to the -** collation creation functions or when the [database connection] is closed -** using [sqlite3_close()]. +** and a UTF-16 string in native byte order for sqlite3_create_collation16(). +** ^Collation names that compare equal according to [sqlite3_strnicmp()] are +** considered to be the same name. ** -** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()]. +** ^(The third argument (eTextRep) must be one of the constants: +**
      +**
    • [SQLITE_UTF8], +**
    • [SQLITE_UTF16LE], +**
    • [SQLITE_UTF16BE], +**
    • [SQLITE_UTF16], or +**
    • [SQLITE_UTF16_ALIGNED]. +**
    )^ +** ^The eTextRep argument determines the encoding of strings passed +** to the collating function callback, xCallback. +** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep +** force strings to be UTF16 with native byte order. +** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin +** on an even byte address. +** +** ^The fourth argument, pArg, is an application data pointer that is passed +** through as the first argument to the collating function callback. +** +** ^The fifth argument, xCallback, is a pointer to the collating function. +** ^Multiple collating functions can be registered using the same name but +** with different eTextRep parameters and SQLite will use whichever +** function requires the least amount of data transformation. +** ^If the xCallback argument is NULL then the collating function is +** deleted. ^When all collating functions having the same name are deleted, +** that collation is no longer usable. +** +** ^The collating function callback is invoked with a copy of the pArg +** application data pointer and with two strings in the encoding specified +** by the eTextRep argument. The collating function must return an +** integer that is negative, zero, or positive +** if the first string is less than, equal to, or greater than the second, +** respectively. A collating function must always return the same answer +** given the same inputs. If two or more collating functions are registered +** to the same collation name (using different eTextRep values) then all +** must give an equivalent answer when invoked with equivalent strings. +** The collating function must obey the following properties for all +** strings A, B, and C: ** -** Requirements: -** [H16603] [H16604] [H16606] [H16609] [H16612] [H16615] [H16618] [H16621] -** [H16624] [H16627] [H16630] +**
      +**
    1. If A==B then B==A. +**
    2. If A==B and B==C then A==C. +**
    3. If A<B THEN B>A. +**
    4. If A<B and B<C then A<C. +**
    +** +** If a collating function fails any of the above constraints and that +** collating function is registered and used, then the behavior of SQLite +** is undefined. +** +** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** with the addition that the xDestroy callback is invoked on pArg when +** the collating function is deleted. +** ^Collating functions are deleted when they are overridden by later +** calls to the collation creation functions or when the +** [database connection] is closed using [sqlite3_close()]. +** +** ^The xDestroy callback is not called if the +** sqlite3_create_collation_v2() function fails. Applications that invoke +** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should +** check the return code and dispose of the application data pointer +** themselves rather than expecting SQLite to deal with it for them. +** This is different from every other SQLite interface. The inconsistency +** is unfortunate but cannot be changed without breaking backwards +** compatibility. +** +** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()]. */ SQLITE_API int sqlite3_create_collation( sqlite3*, const char *zName, int eTextRep, - void*, + void *pArg, int(*xCompare)(void*,int,const void*,int,const void*) ); SQLITE_API int sqlite3_create_collation_v2( sqlite3*, const char *zName, int eTextRep, - void*, + void *pArg, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDestroy)(void*) ); @@ -4105,38 +4573,35 @@ SQLITE_API int sqlite3_create_collation16( sqlite3*, const void *zName, int eTextRep, - void*, + void *pArg, int(*xCompare)(void*,int,const void*,int,const void*) ); /* -** CAPI3REF: Collation Needed Callbacks {H16700} +** CAPI3REF: Collation Needed Callbacks ** -** To avoid having to register all collation sequences before a database +** ^To avoid having to register all collation sequences before a database ** can be used, a single callback function may be registered with the -** [database connection] to be called whenever an undefined collation +** [database connection] to be invoked whenever an undefined collation ** sequence is required. ** -** If the function is registered using the sqlite3_collation_needed() API, +** ^If the function is registered using the sqlite3_collation_needed() API, ** then it is passed the names of undefined collation sequences as strings -** encoded in UTF-8. {H16703} If sqlite3_collation_needed16() is used, +** encoded in UTF-8. ^If sqlite3_collation_needed16() is used, ** the names are passed as UTF-16 in machine native byte order. -** A call to either function replaces any existing callback. +** ^A call to either function replaces the existing collation-needed callback. ** -** When the callback is invoked, the first argument passed is a copy +** ^(When the callback is invoked, the first argument passed is a copy ** of the second argument to sqlite3_collation_needed() or ** sqlite3_collation_needed16(). The second argument is the database ** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE], ** or [SQLITE_UTF16LE], indicating the most desirable form of the collation ** sequence function required. The fourth parameter is the name of the -** required collation sequence. +** required collation sequence.)^ ** ** The callback function should register the desired collation using ** [sqlite3_create_collation()], [sqlite3_create_collation16()], or ** [sqlite3_create_collation_v2()]. -** -** Requirements: -** [H16702] [H16704] [H16706] */ SQLITE_API int sqlite3_collation_needed( sqlite3*, @@ -4149,6 +4614,7 @@ SQLITE_API int sqlite3_collation_needed16( void(*)(void*,sqlite3*,int eTextRep,const void*) ); +#ifdef SQLITE_HAS_CODEC /* ** Specify the key for an encrypted database. This routine should be ** called right after sqlite3_open(). @@ -4160,6 +4626,11 @@ SQLITE_API int sqlite3_key( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The key */ ); +SQLITE_API int sqlite3_key_v2( + sqlite3 *db, /* Database to be rekeyed */ + const char *zDbName, /* Name of the database */ + const void *pKey, int nKey /* The key */ +); /* ** Change the key on an open database. If the current database is not @@ -4173,9 +4644,33 @@ SQLITE_API int sqlite3_rekey( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The new key */ ); +SQLITE_API int sqlite3_rekey_v2( + sqlite3 *db, /* Database to be rekeyed */ + const char *zDbName, /* Name of the database */ + const void *pKey, int nKey /* The new key */ +); /* -** CAPI3REF: Suspend Execution For A Short Time {H10530} +** Specify the activation key for a SEE database. Unless +** activated, none of the SEE routines will work. +*/ +SQLITE_API void sqlite3_activate_see( + const char *zPassPhrase /* Activation phrase */ +); +#endif + +#ifdef SQLITE_ENABLE_CEROD +/* +** Specify the activation key for a CEROD database. Unless +** activated, none of the CEROD routines will work. +*/ +SQLITE_API void sqlite3_activate_cerod( + const char *zPassPhrase /* Activation phrase */ +); +#endif + +/* +** CAPI3REF: Suspend Execution For A Short Time ** ** The sqlite3_sleep() function causes the current thread to suspend execution ** for at least a number of milliseconds specified in its parameter. @@ -4185,19 +4680,21 @@ SQLITE_API int sqlite3_rekey( ** the nearest second. The number of milliseconds of sleep actually ** requested from the operating system is returned. ** -** SQLite implements this interface by calling the xSleep() -** method of the default [sqlite3_vfs] object. -** -** Requirements: [H10533] [H10536] +** ^SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. If the xSleep() method +** of the default VFS is not implemented correctly, or not implemented at +** all, then the behavior of sqlite3_sleep() may deviate from the description +** in the previous paragraphs. */ SQLITE_API int sqlite3_sleep(int); /* -** CAPI3REF: Name Of The Folder Holding Temporary Files {H10310} +** CAPI3REF: Name Of The Folder Holding Temporary Files ** -** If this global variable is made to point to a string which is +** ^(If this global variable is made to point to a string which is ** the name of a folder (a.k.a. directory), then all temporary files -** created by SQLite will be placed in that directory. If this variable +** created by SQLite when using a built-in [sqlite3_vfs | VFS] +** will be placed in that directory.)^ ^If this variable ** is a NULL pointer, then SQLite performs a search for an appropriate ** temporary file directory. ** @@ -4210,8 +4707,8 @@ SQLITE_API int sqlite3_sleep(int); ** routines have been called and that this variable remain unchanged ** thereafter. ** -** The [temp_store_directory pragma] may modify this variable and cause -** it to point to memory obtained from [sqlite3_malloc]. Furthermore, +** ^The [temp_store_directory pragma] may modify this variable and cause +** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, ** the [temp_store_directory pragma] always assumes that any string ** that this variable points to is held in memory obtained from ** [sqlite3_malloc] and the pragma may attempt to free that memory @@ -4219,18 +4716,70 @@ SQLITE_API int sqlite3_sleep(int); ** Hence, if this variable is modified directly, either it should be ** made NULL or made to point to memory obtained from [sqlite3_malloc] ** or else the use of the [temp_store_directory pragma] should be avoided. +** +** Note to Windows Runtime users: The temporary directory must be set +** prior to calling [sqlite3_open] or [sqlite3_open_v2]. Otherwise, various +** features that require the use of temporary files may fail. Here is an +** example of how to do this using C++ with the Windows Runtime: +** +**
    +** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
    +**       TemporaryFolder->Path->Data();
    +** char zPathBuf[MAX_PATH + 1];
    +** memset(zPathBuf, 0, sizeof(zPathBuf));
    +** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
    +**       NULL, NULL);
    +** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
    +** 
    */ SQLITE_API char *sqlite3_temp_directory; /* -** CAPI3REF: Test For Auto-Commit Mode {H12930} +** CAPI3REF: Name Of The Folder Holding Database Files +** +** ^(If this global variable is made to point to a string which is +** the name of a folder (a.k.a. directory), then all database files +** specified with a relative pathname and created or accessed by +** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed +** to be relative to that directory.)^ ^If this variable is a NULL +** pointer, then SQLite assumes that all database files specified +** with a relative pathname are relative to the current directory +** for the process. Only the windows VFS makes use of this global +** variable; it is ignored by the unix VFS. +** +** Changing the value of this variable while a database connection is +** open can result in a corrupt database. +** +** It is not safe to read or modify this variable in more than one +** thread at a time. It is not safe to read or modify this variable +** if a [database connection] is being used at the same time in a separate +** thread. +** It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been called and that this variable remain unchanged +** thereafter. +** +** ^The [data_store_directory pragma] may modify this variable and cause +** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, +** the [data_store_directory pragma] always assumes that any string +** that this variable points to is held in memory obtained from +** [sqlite3_malloc] and the pragma may attempt to free that memory +** using [sqlite3_free]. +** Hence, if this variable is modified directly, either it should be +** made NULL or made to point to memory obtained from [sqlite3_malloc] +** or else the use of the [data_store_directory pragma] should be avoided. +*/ +SQLITE_API char *sqlite3_data_directory; + +/* +** CAPI3REF: Test For Auto-Commit Mode ** KEYWORDS: {autocommit mode} ** -** The sqlite3_get_autocommit() interface returns non-zero or +** ^The sqlite3_get_autocommit() interface returns non-zero or ** zero if the given database connection is or is not in autocommit mode, -** respectively. Autocommit mode is on by default. -** Autocommit mode is disabled by a [BEGIN] statement. -** Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. +** respectively. ^Autocommit mode is on by default. +** ^Autocommit mode is disabled by a [BEGIN] statement. +** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. ** ** If certain kinds of errors occur on a statement within a multi-statement ** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR], @@ -4242,120 +4791,139 @@ SQLITE_API char *sqlite3_temp_directory; ** If another thread changes the autocommit status of the database ** connection while this routine is running, then the return value ** is undefined. -** -** Requirements: [H12931] [H12932] [H12933] [H12934] */ SQLITE_API int sqlite3_get_autocommit(sqlite3*); /* -** CAPI3REF: Find The Database Handle Of A Prepared Statement {H13120} +** CAPI3REF: Find The Database Handle Of A Prepared Statement ** -** The sqlite3_db_handle interface returns the [database connection] handle -** to which a [prepared statement] belongs. The [database connection] -** returned by sqlite3_db_handle is the same [database connection] that was the first argument +** ^The sqlite3_db_handle interface returns the [database connection] handle +** to which a [prepared statement] belongs. ^The [database connection] +** returned by sqlite3_db_handle is the same [database connection] +** that was the first argument ** to the [sqlite3_prepare_v2()] call (or its variants) that was used to ** create the statement in the first place. -** -** Requirements: [H13123] */ SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*); /* -** CAPI3REF: Find the next prepared statement {H13140} +** CAPI3REF: Return The Filename For A Database Connection +** +** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename +** associated with database N of connection D. ^The main database file +** has the name "main". If there is no attached database N on the database +** connection D, or if database N is a temporary or in-memory database, then +** a NULL pointer is returned. +** +** ^The filename returned by this function is the output of the +** xFullPathname method of the [VFS]. ^In other words, the filename +** will be an absolute pathname, even if the filename used +** to open the database originally was a URI or relative pathname. +*/ +SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName); + +/* +** CAPI3REF: Determine if a database is read-only +** +** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N +** of connection D is read-only, 0 if it is read/write, or -1 if N is not +** the name of a database on connection D. +*/ +SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName); + +/* +** CAPI3REF: Find the next prepared statement ** -** This interface returns a pointer to the next [prepared statement] after -** pStmt associated with the [database connection] pDb. If pStmt is NULL +** ^This interface returns a pointer to the next [prepared statement] after +** pStmt associated with the [database connection] pDb. ^If pStmt is NULL ** then this interface returns a pointer to the first prepared statement -** associated with the database connection pDb. If no prepared statement +** associated with the database connection pDb. ^If no prepared statement ** satisfies the conditions of this routine, it returns NULL. ** ** The [database connection] pointer D in a call to ** [sqlite3_next_stmt(D,S)] must refer to an open database ** connection and in particular must not be a NULL pointer. -** -** Requirements: [H13143] [H13146] [H13149] [H13152] */ SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt); /* -** CAPI3REF: Commit And Rollback Notification Callbacks {H12950} +** CAPI3REF: Commit And Rollback Notification Callbacks ** -** The sqlite3_commit_hook() interface registers a callback +** ^The sqlite3_commit_hook() interface registers a callback ** function to be invoked whenever a transaction is [COMMIT | committed]. -** Any callback set by a previous call to sqlite3_commit_hook() +** ^Any callback set by a previous call to sqlite3_commit_hook() ** for the same database connection is overridden. -** The sqlite3_rollback_hook() interface registers a callback +** ^The sqlite3_rollback_hook() interface registers a callback ** function to be invoked whenever a transaction is [ROLLBACK | rolled back]. -** Any callback set by a previous call to sqlite3_commit_hook() +** ^Any callback set by a previous call to sqlite3_rollback_hook() ** for the same database connection is overridden. -** The pArg argument is passed through to the callback. -** If the callback on a commit hook function returns non-zero, +** ^The pArg argument is passed through to the callback. +** ^If the callback on a commit hook function returns non-zero, ** then the commit is converted into a rollback. ** -** If another function was previously registered, its -** pArg value is returned. Otherwise NULL is returned. +** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions +** return the P argument from the previous call of the same function +** on the same [database connection] D, or NULL for +** the first call for each function on D. ** +** The commit and rollback hook callbacks are not reentrant. ** The callback implementation must not do anything that will modify ** the database connection that invoked the callback. Any actions ** to modify the database connection must be deferred until after the ** completion of the [sqlite3_step()] call that triggered the commit ** or rollback hook in the first place. -** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their -** database connections for the meaning of "modify" in this paragraph. +** Note that running any other SQL statements, including SELECT statements, +** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify +** the database connections for the meaning of "modify" in this paragraph. ** -** Registering a NULL function disables the callback. +** ^Registering a NULL function disables the callback. ** -** When the commit hook callback routine returns zero, the [COMMIT] -** operation is allowed to continue normally. If the commit hook +** ^When the commit hook callback routine returns zero, the [COMMIT] +** operation is allowed to continue normally. ^If the commit hook ** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK]. -** The rollback hook is invoked on a rollback that results from a commit +** ^The rollback hook is invoked on a rollback that results from a commit ** hook returning non-zero, just as it would be with any other rollback. ** -** For the purposes of this API, a transaction is said to have been +** ^For the purposes of this API, a transaction is said to have been ** rolled back if an explicit "ROLLBACK" statement is executed, or ** an error or constraint causes an implicit rollback to occur. -** The rollback callback is not invoked if a transaction is +** ^The rollback callback is not invoked if a transaction is ** automatically rolled back because the database connection is closed. -** The rollback callback is not invoked if a transaction is -** rolled back because a commit callback returned non-zero. -** Check on this ** ** See also the [sqlite3_update_hook()] interface. -** -** Requirements: -** [H12951] [H12952] [H12953] [H12954] [H12955] -** [H12961] [H12962] [H12963] [H12964] */ SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); /* -** CAPI3REF: Data Change Notification Callbacks {H12970} +** CAPI3REF: Data Change Notification Callbacks ** -** The sqlite3_update_hook() interface registers a callback function +** ^The sqlite3_update_hook() interface registers a callback function ** with the [database connection] identified by the first argument -** to be invoked whenever a row is updated, inserted or deleted. -** Any callback set by a previous call to this function +** to be invoked whenever a row is updated, inserted or deleted in +** a rowid table. +** ^Any callback set by a previous call to this function ** for the same database connection is overridden. ** -** The second argument is a pointer to the function to invoke when a -** row is updated, inserted or deleted. -** The first argument to the callback is a copy of the third argument +** ^The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted in a rowid table. +** ^The first argument to the callback is a copy of the third argument ** to sqlite3_update_hook(). -** The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE], +** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE], ** or [SQLITE_UPDATE], depending on the operation that caused the callback ** to be invoked. -** The third and fourth arguments to the callback contain pointers to the +** ^The third and fourth arguments to the callback contain pointers to the ** database and table name containing the affected row. -** The final callback parameter is the [rowid] of the row. -** In the case of an update, this is the [rowid] after the update takes place. +** ^The final callback parameter is the [rowid] of the row. +** ^In the case of an update, this is the [rowid] after the update takes place. ** -** The update hook is not invoked when internal system tables are -** modified (i.e. sqlite_master and sqlite_sequence). +** ^(The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence).)^ +** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified. ** -** In the current implementation, the update hook +** ^In the current implementation, the update hook ** is not invoked when duplication rows are deleted because of an -** [ON CONFLICT | ON CONFLICT REPLACE] clause. Nor is the update hook +** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook ** invoked when rows are deleted using the [truncate optimization]. ** The exceptions defined in this paragraph might change in a future ** release of SQLite. @@ -4367,14 +4935,13 @@ SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** -** If another function was previously registered, its pArg value -** is returned. Otherwise NULL is returned. +** ^The sqlite3_update_hook(D,C,P) function +** returns the P argument from the previous call +** on the same [database connection] D, or NULL for +** the first call on D. ** ** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()] ** interfaces. -** -** Requirements: -** [H12971] [H12973] [H12975] [H12977] [H12979] [H12981] [H12983] [H12986] */ SQLITE_API void *sqlite3_update_hook( sqlite3*, @@ -4383,112 +4950,152 @@ SQLITE_API void *sqlite3_update_hook( ); /* -** CAPI3REF: Enable Or Disable Shared Pager Cache {H10330} -** KEYWORDS: {shared cache} {shared cache mode} +** CAPI3REF: Enable Or Disable Shared Pager Cache ** -** This routine enables or disables the sharing of the database cache +** ^(This routine enables or disables the sharing of the database cache ** and schema data structures between [database connection | connections] ** to the same database. Sharing is enabled if the argument is true -** and disabled if the argument is false. +** and disabled if the argument is false.)^ ** -** Cache sharing is enabled and disabled for an entire process. +** ^Cache sharing is enabled and disabled for an entire process. ** This is a change as of SQLite version 3.5.0. In prior versions of SQLite, ** sharing was enabled or disabled for each thread separately. ** -** The cache sharing mode set by this interface effects all subsequent +** ^(The cache sharing mode set by this interface effects all subsequent ** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. ** Existing database connections continue use the sharing mode -** that was in effect at the time they were opened. +** that was in effect at the time they were opened.)^ ** -** Virtual tables cannot be used with a shared cache. When shared -** cache is enabled, the [sqlite3_create_module()] API used to register -** virtual tables will always return an error. +** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled +** successfully. An [error code] is returned otherwise.)^ ** -** This routine returns [SQLITE_OK] if shared cache was enabled or disabled -** successfully. An [error code] is returned otherwise. -** -** Shared cache is disabled by default. But this might change in +** ^Shared cache is disabled by default. But this might change in ** future releases of SQLite. Applications that care about shared ** cache setting should set it explicitly. ** -** See Also: [SQLite Shared-Cache Mode] +** This interface is threadsafe on processors where writing a +** 32-bit integer is atomic. ** -** Requirements: [H10331] [H10336] [H10337] [H10339] +** See Also: [SQLite Shared-Cache Mode] */ SQLITE_API int sqlite3_enable_shared_cache(int); /* -** CAPI3REF: Attempt To Free Heap Memory {H17340} +** CAPI3REF: Attempt To Free Heap Memory ** -** The sqlite3_release_memory() interface attempts to free N bytes +** ^The sqlite3_release_memory() interface attempts to free N bytes ** of heap memory by deallocating non-essential memory allocations -** held by the database library. {END} Memory used to cache database +** held by the database library. Memory used to cache database ** pages to improve performance is an example of non-essential memory. -** sqlite3_release_memory() returns the number of bytes actually freed, +** ^sqlite3_release_memory() returns the number of bytes actually freed, ** which might be more or less than the amount requested. +** ^The sqlite3_release_memory() routine is a no-op returning zero +** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT]. ** -** Requirements: [H17341] [H17342] +** See also: [sqlite3_db_release_memory()] */ SQLITE_API int sqlite3_release_memory(int); /* -** CAPI3REF: Impose A Limit On Heap Size {H17350} +** CAPI3REF: Free Memory Used By A Database Connection +** +** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap +** memory as possible from database connection D. Unlike the +** [sqlite3_release_memory()] interface, this interface is in effect even +** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is +** omitted. +** +** See also: [sqlite3_release_memory()] +*/ +SQLITE_API int sqlite3_db_release_memory(sqlite3*); + +/* +** CAPI3REF: Impose A Limit On Heap Size ** -** The sqlite3_soft_heap_limit() interface places a "soft" limit -** on the amount of heap memory that may be allocated by SQLite. -** If an internal allocation is requested that would exceed the -** soft heap limit, [sqlite3_release_memory()] is invoked one or -** more times to free up some space before the allocation is performed. +** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the +** soft limit on the amount of heap memory that may be allocated by SQLite. +** ^SQLite strives to keep heap memory utilization below the soft heap +** limit by reducing the number of pages held in the page cache +** as heap memory usages approaches the limit. +** ^The soft heap limit is "soft" because even though SQLite strives to stay +** below the limit, it will exceed the limit rather than generate +** an [SQLITE_NOMEM] error. In other words, the soft heap limit +** is advisory only. ** -** The limit is called "soft", because if [sqlite3_release_memory()] -** cannot free sufficient memory to prevent the limit from being exceeded, -** the memory is allocated anyway and the current operation proceeds. +** ^The return value from sqlite3_soft_heap_limit64() is the size of +** the soft heap limit prior to the call, or negative in the case of an +** error. ^If the argument N is negative +** then no change is made to the soft heap limit. Hence, the current +** size of the soft heap limit can be determined by invoking +** sqlite3_soft_heap_limit64() with a negative argument. ** -** A negative or zero value for N means that there is no soft heap limit and -** [sqlite3_release_memory()] will only be called when memory is exhausted. -** The default value for the soft heap limit is zero. +** ^If the argument N is zero then the soft heap limit is disabled. ** -** SQLite makes a best effort to honor the soft heap limit. -** But if the soft heap limit cannot be honored, execution will -** continue without error or notification. This is why the limit is -** called a "soft" limit. It is advisory only. +** ^(The soft heap limit is not enforced in the current implementation +** if one or more of following conditions are true: ** -** Prior to SQLite version 3.5.0, this routine only constrained the memory -** allocated by a single thread - the same thread in which this routine -** runs. Beginning with SQLite version 3.5.0, the soft heap limit is -** applied to all threads. The value specified for the soft heap limit -** is an upper bound on the total memory allocation for all threads. In -** version 3.5.0 there is no mechanism for limiting the heap usage for -** individual threads. +**
      +**
    • The soft heap limit is set to zero. +**
    • Memory accounting is disabled using a combination of the +** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and +** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option. +**
    • An alternative page cache implementation is specified using +** [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...). +**
    • The page cache allocates from its own memory pool supplied +** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than +** from the heap. +**
    )^ +** +** Beginning with SQLite version 3.7.3, the soft heap limit is enforced +** regardless of whether or not the [SQLITE_ENABLE_MEMORY_MANAGEMENT] +** compile-time option is invoked. With [SQLITE_ENABLE_MEMORY_MANAGEMENT], +** the soft heap limit is enforced on every memory allocation. Without +** [SQLITE_ENABLE_MEMORY_MANAGEMENT], the soft heap limit is only enforced +** when memory is allocated by the page cache. Testing suggests that because +** the page cache is the predominate memory user in SQLite, most +** applications will achieve adequate soft heap limit enforcement without +** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT]. +** +** The circumstances under which SQLite will enforce the soft heap limit may +** changes in future releases of SQLite. +*/ +SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N); + +/* +** CAPI3REF: Deprecated Soft Heap Limit Interface +** DEPRECATED ** -** Requirements: -** [H16351] [H16352] [H16353] [H16354] [H16355] [H16358] +** This is a deprecated version of the [sqlite3_soft_heap_limit64()] +** interface. This routine is provided for historical compatibility +** only. All new applications should use the +** [sqlite3_soft_heap_limit64()] interface rather than this one. */ -SQLITE_API void sqlite3_soft_heap_limit(int); +SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N); + /* -** CAPI3REF: Extract Metadata About A Column Of A Table {H12850} +** CAPI3REF: Extract Metadata About A Column Of A Table ** -** This routine returns metadata about a specific column of a specific +** ^This routine returns metadata about a specific column of a specific ** database table accessible using the [database connection] handle ** passed as the first function argument. ** -** The column is identified by the second, third and fourth parameters to -** this function. The second parameter is either the name of the database -** (i.e. "main", "temp" or an attached database) containing the specified -** table or NULL. If it is NULL, then all attached databases are searched +** ^The column is identified by the second, third and fourth parameters to +** this function. ^The second parameter is either the name of the database +** (i.e. "main", "temp", or an attached database) containing the specified +** table or NULL. ^If it is NULL, then all attached databases are searched ** for the table using the same algorithm used by the database engine to ** resolve unqualified table references. ** -** The third and fourth parameters to this function are the table and column +** ^The third and fourth parameters to this function are the table and column ** name of the desired column, respectively. Neither of these parameters ** may be NULL. ** -** Metadata is returned by writing to the memory locations passed as the 5th -** and subsequent parameters to this function. Any of these arguments may be +** ^Metadata is returned by writing to the memory locations passed as the 5th +** and subsequent parameters to this function. ^Any of these arguments may be ** NULL, in which case the corresponding element of metadata is omitted. ** -**
    +** ^(
    ** **
    Parameter Output
    Type
    Description ** @@ -4498,17 +5105,17 @@ SQLITE_API void sqlite3_soft_heap_limit(int); **
    8th int True if column is part of the PRIMARY KEY **
    9th int True if column is [AUTOINCREMENT] **
    -**
    +**
    )^ ** -** The memory pointed to by the character pointers returned for the +** ^The memory pointed to by the character pointers returned for the ** declaration type and collation sequence is valid only until the next ** call to any SQLite API function. ** -** If the specified table is actually a view, an [error code] is returned. +** ^If the specified table is actually a view, an [error code] is returned. ** -** If the specified column is "rowid", "oid" or "_rowid_" and an +** ^If the specified column is "rowid", "oid" or "_rowid_" and an ** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output -** parameters are set for the explicitly declared column. If there is no +** parameters are set for the explicitly declared column. ^(If there is no ** explicitly declared [INTEGER PRIMARY KEY] column, then the output ** parameters are set as follows: ** @@ -4518,14 +5125,14 @@ SQLITE_API void sqlite3_soft_heap_limit(int); ** not null: 0 ** primary key: 1 ** auto increment: 0 -** +** )^ ** -** This function may load one or more schemas from database files. If an +** ^(This function may load one or more schemas from database files. If an ** error occurs during this process, or if the requested table or column ** cannot be found, an [error code] is returned and an error message left -** in the [database connection] (to be retrieved using sqlite3_errmsg()). +** in the [database connection] (to be retrieved using sqlite3_errmsg()).)^ ** -** This API is only available if the library was compiled with the +** ^This API is only available if the library was compiled with the ** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined. */ SQLITE_API int sqlite3_table_column_metadata( @@ -4541,30 +5148,38 @@ SQLITE_API int sqlite3_table_column_metadata( ); /* -** CAPI3REF: Load An Extension {H12600} +** CAPI3REF: Load An Extension ** -** This interface loads an SQLite extension library from the named file. +** ^This interface loads an SQLite extension library from the named file. ** -** {H12601} The sqlite3_load_extension() interface attempts to load an -** SQLite extension library contained in the file zFile. +** ^The sqlite3_load_extension() interface attempts to load an +** [SQLite extension] library contained in the file zFile. If +** the file cannot be loaded directly, attempts are made to load +** with various operating-system specific extensions added. +** So for example, if "samplelib" cannot be loaded, then names like +** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might +** be tried also. ** -** {H12602} The entry point is zProc. +** ^The entry point is zProc. +** ^(zProc may be 0, in which case SQLite will try to come up with an +** entry point name on its own. It first tries "sqlite3_extension_init". +** If that does not work, it constructs a name "sqlite3_X_init" where the +** X is consists of the lower-case equivalent of all ASCII alphabetic +** characters in the filename from the last "/" to the first following +** "." and omitting any initial "lib".)^ +** ^The sqlite3_load_extension() interface returns +** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** ^If an error occurs and pzErrMsg is not 0, then the +** [sqlite3_load_extension()] interface shall attempt to +** fill *pzErrMsg with error message text stored in memory +** obtained from [sqlite3_malloc()]. The calling function +** should free this memory by calling [sqlite3_free()]. ** -** {H12603} zProc may be 0, in which case the name of the entry point -** defaults to "sqlite3_extension_init". +** ^Extension loading must be enabled using +** [sqlite3_enable_load_extension()] prior to calling this API, +** otherwise an error will be returned. ** -** {H12604} The sqlite3_load_extension() interface shall return -** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. -** -** {H12605} If an error occurs and pzErrMsg is not 0, then the -** [sqlite3_load_extension()] interface shall attempt to -** fill *pzErrMsg with error message text stored in memory -** obtained from [sqlite3_malloc()]. {END} The calling function -** should free this memory by calling [sqlite3_free()]. -** -** {H12606} Extension loading must be enabled using -** [sqlite3_enable_load_extension()] prior to calling this API, -** otherwise an error will be returned. +** See also the [load_extension() SQL function]. */ SQLITE_API int sqlite3_load_extension( sqlite3 *db, /* Load the extension into this database connection */ @@ -4574,67 +5189,79 @@ SQLITE_API int sqlite3_load_extension( ); /* -** CAPI3REF: Enable Or Disable Extension Loading {H12620} +** CAPI3REF: Enable Or Disable Extension Loading ** -** So as not to open security holes in older applications that are -** unprepared to deal with extension loading, and as a means of disabling -** extension loading while evaluating user-entered SQL, the following API +** ^So as not to open security holes in older applications that are +** unprepared to deal with [extension loading], and as a means of disabling +** [extension loading] while evaluating user-entered SQL, the following API ** is provided to turn the [sqlite3_load_extension()] mechanism on and off. ** -** Extension loading is off by default. See ticket #1863. -** -** {H12621} Call the sqlite3_enable_load_extension() routine with onoff==1 -** to turn extension loading on and call it with onoff==0 to turn -** it back off again. -** -** {H12622} Extension loading is off by default. +** ^Extension loading is off by default. +** ^Call the sqlite3_enable_load_extension() routine with onoff==1 +** to turn extension loading on and call it with onoff==0 to turn +** it back off again. */ SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff); /* -** CAPI3REF: Automatically Load An Extensions {H12640} +** CAPI3REF: Automatically Load Statically Linked Extensions ** -** This API can be invoked at program startup in order to register -** one or more statically linked extensions that will be available -** to all new [database connections]. {END} +** ^This interface causes the xEntryPoint() function to be invoked for +** each new [database connection] that is created. The idea here is that +** xEntryPoint() is the entry point for a statically linked [SQLite extension] +** that is to be automatically loaded into all new database connections. ** -** This routine stores a pointer to the extension in an array that is -** obtained from [sqlite3_malloc()]. If you run a memory leak checker -** on your program and it reports a leak because of this array, invoke -** [sqlite3_reset_auto_extension()] prior to shutdown to free the memory. +** ^(Even though the function prototype shows that xEntryPoint() takes +** no arguments and returns void, SQLite invokes xEntryPoint() with three +** arguments and expects and integer result as if the signature of the +** entry point where as follows: ** -** {H12641} This function registers an extension entry point that is -** automatically invoked whenever a new [database connection] -** is opened using [sqlite3_open()], [sqlite3_open16()], -** or [sqlite3_open_v2()]. -** -** {H12642} Duplicate extensions are detected so calling this routine -** multiple times with the same extension is harmless. -** -** {H12643} This routine stores a pointer to the extension in an array -** that is obtained from [sqlite3_malloc()]. -** -** {H12644} Automatic extensions apply across all threads. +**
    +**    int xEntryPoint(
    +**      sqlite3 *db,
    +**      const char **pzErrMsg,
    +**      const struct sqlite3_api_routines *pThunk
    +**    );
    +** 
    )^ +** +** If the xEntryPoint routine encounters an error, it should make *pzErrMsg +** point to an appropriate error message (obtained from [sqlite3_mprintf()]) +** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg +** is NULL before calling the xEntryPoint(). ^SQLite will invoke +** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any +** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()], +** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail. +** +** ^Calling sqlite3_auto_extension(X) with an entry point X that is already +** on the list of automatic extensions is a harmless no-op. ^No entry point +** will be called more than once for each database connection that is opened. +** +** See also: [sqlite3_reset_auto_extension()] +** and [sqlite3_cancel_auto_extension()] */ SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void)); /* -** CAPI3REF: Reset Automatic Extension Loading {H12660} +** CAPI3REF: Cancel Automatic Extension Loading ** -** This function disables all previously registered automatic -** extensions. {END} It undoes the effect of all prior -** [sqlite3_auto_extension()] calls. -** -** {H12661} This function disables all previously registered -** automatic extensions. +** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the +** initialization routine X that was registered using a prior call to +** [sqlite3_auto_extension(X)]. ^The [sqlite3_cancel_auto_extension(X)] +** routine returns 1 if initialization routine X was successfully +** unregistered and it returns 0 if X was not on the list of initialization +** routines. +*/ +SQLITE_API int sqlite3_cancel_auto_extension(void (*xEntryPoint)(void)); + +/* +** CAPI3REF: Reset Automatic Extension Loading ** -** {H12662} This function disables automatic extensions in all threads. +** ^This interface disables all automatic extensions previously +** registered using [sqlite3_auto_extension()]. */ SQLITE_API void sqlite3_reset_auto_extension(void); /* -****** EXPERIMENTAL - subject to change without notice ************** -** ** The interface to the virtual-table mechanism is currently considered ** to be experimental. The interface might change in incompatible ways. ** If this is a problem for you, do not use the interface at this time. @@ -4652,18 +5279,17 @@ typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; typedef struct sqlite3_module sqlite3_module; /* -** CAPI3REF: Virtual Table Object {H18000} +** CAPI3REF: Virtual Table Object ** KEYWORDS: sqlite3_module {virtual table module} -** EXPERIMENTAL ** -** This structure, sometimes called a a "virtual table module", +** This structure, sometimes called a "virtual table module", ** defines the implementation of a [virtual tables]. ** This structure consists mostly of methods for the module. ** -** A virtual table module is created by filling in a persistent +** ^A virtual table module is created by filling in a persistent ** instance of this structure and passing a pointer to that instance ** to [sqlite3_create_module()] or [sqlite3_create_module_v2()]. -** The registration remains valid until it is replaced by a different +** ^The registration remains valid until it is replaced by a different ** module or until the [database connection] closes. The content ** of this structure must not change while it is registered with ** any database connection. @@ -4696,58 +5322,77 @@ struct sqlite3_module { void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), void **ppArg); int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); + /* The methods above are in version 1 of the sqlite_module object. Those + ** below are for version 2 and greater. */ + int (*xSavepoint)(sqlite3_vtab *pVTab, int); + int (*xRelease)(sqlite3_vtab *pVTab, int); + int (*xRollbackTo)(sqlite3_vtab *pVTab, int); }; /* -** CAPI3REF: Virtual Table Indexing Information {H18100} +** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info -** EXPERIMENTAL ** -** The sqlite3_index_info structure and its substructures is used to +** The sqlite3_index_info structure and its substructures is used as part +** of the [virtual table] interface to ** pass information into and receive the reply from the [xBestIndex] ** method of a [virtual table module]. The fields under **Inputs** are the ** inputs to xBestIndex and are read-only. xBestIndex inserts its ** results into the **Outputs** fields. ** -** The aConstraint[] array records WHERE clause constraints of the form: +** ^(The aConstraint[] array records WHERE clause constraints of the form: ** -**
    column OP expr
    +**
    column OP expr
    ** -** where OP is =, <, <=, >, or >=. The particular operator is -** stored in aConstraint[].op. The index of the column is stored in -** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is +** stored in aConstraint[].op using one of the +** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^ +** ^(The index of the column is stored in +** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the ** expr on the right-hand side can be evaluated (and thus the constraint -** is usable) and false if it cannot. +** is usable) and false if it cannot.)^ ** -** The optimizer automatically inverts terms of the form "expr OP column" +** ^The optimizer automatically inverts terms of the form "expr OP column" ** and makes other simplifications to the WHERE clause in an attempt to ** get as many WHERE clause terms into the form shown above as possible. -** The aConstraint[] array only reports WHERE clause terms in the correct -** form that refer to the particular virtual table being queried. +** ^The aConstraint[] array only reports WHERE clause terms that are +** relevant to the particular virtual table being queried. ** -** Information about the ORDER BY clause is stored in aOrderBy[]. -** Each term of aOrderBy records a column of the ORDER BY clause. +** ^Information about the ORDER BY clause is stored in aOrderBy[]. +** ^Each term of aOrderBy records a column of the ORDER BY clause. ** ** The [xBestIndex] method must fill aConstraintUsage[] with information -** about what parameters to pass to xFilter. If argvIndex>0 then +** about what parameters to pass to xFilter. ^If argvIndex>0 then ** the right-hand side of the corresponding aConstraint[] is evaluated -** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit ** is true, then the constraint is assumed to be fully handled by the -** virtual table and is not checked again by SQLite. +** virtual table and is not checked again by SQLite.)^ ** -** The idxNum and idxPtr values are recorded and passed into the +** ^The idxNum and idxPtr values are recorded and passed into the ** [xFilter] method. -** [sqlite3_free()] is used to free idxPtr if and only iff +** ^[sqlite3_free()] is used to free idxPtr if and only if ** needToFreeIdxPtr is true. ** -** The orderByConsumed means that output from [xFilter]/[xNext] will occur in +** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in ** the correct order to satisfy the ORDER BY clause so that no separate ** sorting step is required. ** -** The estimatedCost value is an estimate of the cost of doing the -** particular lookup. A full scan of a table with N entries should have -** a cost of N. A binary search of a table of N entries should have a -** cost of approximately log(N). +** ^The estimatedCost value is an estimate of the cost of a particular +** strategy. A cost of N indicates that the cost of the strategy is similar +** to a linear scan of an SQLite table with N rows. A cost of log(N) +** indicates that the expense of the operation is similar to that of a +** binary search on a unique indexed field of an SQLite table with N rows. +** +** ^The estimatedRows value is an estimate of the number of rows that +** will be returned by the strategy. +** +** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info +** structure for SQLite version 3.8.2. If a virtual table extension is +** used with an SQLite version earlier than 3.8.2, the results of attempting +** to read or write the estimatedRows field are undefined (but are likely +** to included crashing the application). The estimatedRows field should +** therefore only be used if [sqlite3_libversion_number()] returns a +** value greater than or equal to 3008002. */ struct sqlite3_index_info { /* Inputs */ @@ -4772,8 +5417,19 @@ struct sqlite3_index_info { char *idxStr; /* String, possibly obtained from sqlite3_malloc */ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ int orderByConsumed; /* True if output is already ordered */ - double estimatedCost; /* Estimated cost of using this index */ + double estimatedCost; /* Estimated cost of using this index */ + /* Fields below are only available in SQLite 3.8.2 and later */ + sqlite3_int64 estimatedRows; /* Estimated number of rows returned */ }; + +/* +** CAPI3REF: Virtual Table Constraint Operator Codes +** +** These macros defined the allowed values for the +** [sqlite3_index_info].aConstraint[].op field. Each value represents +** an operator that is part of a constraint term in the wHERE clause of +** a query that uses a [virtual table]. +*/ #define SQLITE_INDEX_CONSTRAINT_EQ 2 #define SQLITE_INDEX_CONSTRAINT_GT 4 #define SQLITE_INDEX_CONSTRAINT_LE 8 @@ -4782,43 +5438,37 @@ struct sqlite3_index_info { #define SQLITE_INDEX_CONSTRAINT_MATCH 64 /* -** CAPI3REF: Register A Virtual Table Implementation {H18200} -** EXPERIMENTAL +** CAPI3REF: Register A Virtual Table Implementation ** -** This routine is used to register a new [virtual table module] name. -** Module names must be registered before -** creating a new [virtual table] using the module, or before using a +** ^These routines are used to register a new [virtual table module] name. +** ^Module names must be registered before +** creating a new [virtual table] using the module and before using a ** preexisting [virtual table] for the module. ** -** The module name is registered on the [database connection] specified -** by the first parameter. The name of the module is given by the -** second parameter. The third parameter is a pointer to -** the implementation of the [virtual table module]. The fourth +** ^The module name is registered on the [database connection] specified +** by the first parameter. ^The name of the module is given by the +** second parameter. ^The third parameter is a pointer to +** the implementation of the [virtual table module]. ^The fourth ** parameter is an arbitrary client data pointer that is passed through ** into the [xCreate] and [xConnect] methods of the virtual table module ** when a new virtual table is be being created or reinitialized. ** -** This interface has exactly the same effect as calling -** [sqlite3_create_module_v2()] with a NULL client data destructor. +** ^The sqlite3_create_module_v2() interface has a fifth parameter which +** is a pointer to a destructor for the pClientData. ^SQLite will +** invoke the destructor function (if it is not NULL) when SQLite +** no longer needs the pClientData pointer. ^The destructor will also +** be invoked if the call to sqlite3_create_module_v2() fails. +** ^The sqlite3_create_module() +** interface is equivalent to sqlite3_create_module_v2() with a NULL +** destructor. */ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module( +SQLITE_API int sqlite3_create_module( sqlite3 *db, /* SQLite connection to register module with */ const char *zName, /* Name of the module */ const sqlite3_module *p, /* Methods for the module */ void *pClientData /* Client data for xCreate/xConnect */ ); - -/* -** CAPI3REF: Register A Virtual Table Implementation {H18210} -** EXPERIMENTAL -** -** This routine is identical to the [sqlite3_create_module()] method, -** except that it has an extra parameter to specify -** a destructor function for the client data pointer. SQLite will -** invoke the destructor function (if it is not NULL) when SQLite -** no longer needs the pClientData pointer. -*/ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module_v2( +SQLITE_API int sqlite3_create_module_v2( sqlite3 *db, /* SQLite connection to register module with */ const char *zName, /* Name of the module */ const sqlite3_module *p, /* Methods for the module */ @@ -4827,42 +5477,40 @@ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module_v2( ); /* -** CAPI3REF: Virtual Table Instance Object {H18010} +** CAPI3REF: Virtual Table Instance Object ** KEYWORDS: sqlite3_vtab -** EXPERIMENTAL ** ** Every [virtual table module] implementation uses a subclass -** of the following structure to describe a particular instance +** of this object to describe a particular instance ** of the [virtual table]. Each subclass will ** be tailored to the specific needs of the module implementation. ** The purpose of this superclass is to define certain fields that are ** common to all module implementations. ** -** Virtual tables methods can set an error message by assigning a +** ^Virtual tables methods can set an error message by assigning a ** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should ** take care that any prior string is freed by a call to [sqlite3_free()] -** prior to assigning a new string to zErrMsg. After the error message +** prior to assigning a new string to zErrMsg. ^After the error message ** is delivered up to the client application, the string will be automatically ** freed by sqlite3_free() and the zErrMsg field will be zeroed. */ struct sqlite3_vtab { const sqlite3_module *pModule; /* The module for this virtual table */ - int nRef; /* Used internally */ + int nRef; /* NO LONGER USED */ char *zErrMsg; /* Error message from sqlite3_mprintf() */ /* Virtual table implementations will typically add additional fields */ }; /* -** CAPI3REF: Virtual Table Cursor Object {H18020} +** CAPI3REF: Virtual Table Cursor Object ** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor} -** EXPERIMENTAL ** ** Every [virtual table module] implementation uses a subclass of the ** following structure to describe cursors that point into the ** [virtual table] and are used ** to loop through the virtual table. Cursors are created using the ** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed -** by the [sqlite3_module.xClose | xClose] method. Cussors are used +** by the [sqlite3_module.xClose | xClose] method. Cursors are used ** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods ** of the module. Each module implementation will define ** the content of a cursor structure to suit its own needs. @@ -4876,34 +5524,32 @@ struct sqlite3_vtab_cursor { }; /* -** CAPI3REF: Declare The Schema Of A Virtual Table {H18280} -** EXPERIMENTAL +** CAPI3REF: Declare The Schema Of A Virtual Table ** -** The [xCreate] and [xConnect] methods of a +** ^The [xCreate] and [xConnect] methods of a ** [virtual table module] call this interface ** to declare the format (the names and datatypes of the columns) of ** the virtual tables they implement. */ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_declare_vtab(sqlite3*, const char *zSQL); +SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL); /* -** CAPI3REF: Overload A Function For A Virtual Table {H18300} -** EXPERIMENTAL +** CAPI3REF: Overload A Function For A Virtual Table ** -** Virtual tables can provide alternative implementations of functions +** ^(Virtual tables can provide alternative implementations of functions ** using the [xFindFunction] method of the [virtual table module]. ** But global versions of those functions -** must exist in order to be overloaded. +** must exist in order to be overloaded.)^ ** -** This API makes sure a global version of a function with a particular +** ^(This API makes sure a global version of a function with a particular ** name and number of parameters exists. If no such function exists -** before this API is called, a new function is created. The implementation +** before this API is called, a new function is created.)^ ^The implementation ** of the new function always causes an exception to be thrown. So ** the new function is not good for anything by itself. Its only ** purpose is to be a placeholder function that can be overloaded ** by a [virtual table]. */ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); +SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); /* ** The interface to the virtual-table mechanism defined above (back up @@ -4913,79 +5559,80 @@ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const cha ** ** When the virtual-table mechanism stabilizes, we will declare the ** interface fixed, support it indefinitely, and remove this comment. -** -****** EXPERIMENTAL - subject to change without notice ************** */ /* -** CAPI3REF: A Handle To An Open BLOB {H17800} +** CAPI3REF: A Handle To An Open BLOB ** KEYWORDS: {BLOB handle} {BLOB handles} ** ** An instance of this object represents an open BLOB on which ** [sqlite3_blob_open | incremental BLOB I/O] can be performed. -** Objects of this type are created by [sqlite3_blob_open()] +** ^Objects of this type are created by [sqlite3_blob_open()] ** and destroyed by [sqlite3_blob_close()]. -** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces ** can be used to read or write small subsections of the BLOB. -** The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. +** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. */ typedef struct sqlite3_blob sqlite3_blob; /* -** CAPI3REF: Open A BLOB For Incremental I/O {H17810} +** CAPI3REF: Open A BLOB For Incremental I/O ** -** This interfaces opens a [BLOB handle | handle] to the BLOB located +** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located ** in row iRow, column zColumn, table zTable in database zDb; ** in other words, the same BLOB that would be selected by: ** **
     **     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
    -** 
    {END} +** )^ ** -** If the flags parameter is non-zero, then the BLOB is opened for read -** and write access. If it is zero, the BLOB is opened for read access. +** ^If the flags parameter is non-zero, then the BLOB is opened for read +** and write access. ^If it is zero, the BLOB is opened for read access. +** ^It is not possible to open a column that is part of an index or primary +** key for writing. ^If [foreign key constraints] are enabled, it is +** not possible to open a column that is part of a [child key] for writing. ** -** Note that the database name is not the filename that contains +** ^Note that the database name is not the filename that contains ** the database but rather the symbolic name of the database that -** is assigned when the database is connected using [ATTACH]. -** For the main database file, the database name is "main". -** For TEMP tables, the database name is "temp". +** appears after the AS keyword when the database is connected using [ATTACH]. +** ^For the main database file, the database name is "main". +** ^For TEMP tables, the database name is "temp". ** -** On success, [SQLITE_OK] is returned and the new [BLOB handle] is written +** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written ** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set -** to be a null pointer. -** This function sets the [database connection] error code and message +** to be a null pointer.)^ +** ^This function sets the [database connection] error code and message ** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related -** functions. Note that the *ppBlob variable is always initialized in a +** functions. ^Note that the *ppBlob variable is always initialized in a ** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob ** regardless of the success or failure of this routine. ** -** If the row that a BLOB handle points to is modified by an +** ^(If the row that a BLOB handle points to is modified by an ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects ** then the BLOB handle is marked as "expired". ** This is true if any column of the row is changed, even a column -** other than the one the BLOB handle is open on. -** Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for -** a expired BLOB handle fail with an return code of [SQLITE_ABORT]. -** Changes written into a BLOB prior to the BLOB expiring are not -** rollback by the expiration of the BLOB. Such changes will eventually -** commit if the transaction continues to completion. -** -** Use the [sqlite3_blob_bytes()] interface to determine the size of -** the opened blob. The size of a blob may not be changed by this -** underface. Use the [UPDATE] SQL command to change the size of a +** other than the one the BLOB handle is open on.)^ +** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for +** an expired BLOB handle fail with a return code of [SQLITE_ABORT]. +** ^(Changes written into a BLOB prior to the BLOB expiring are not +** rolled back by the expiration of the BLOB. Such changes will eventually +** commit if the transaction continues to completion.)^ +** +** ^Use the [sqlite3_blob_bytes()] interface to determine the size of +** the opened blob. ^The size of a blob may not be changed by this +** interface. Use the [UPDATE] SQL command to change the size of a ** blob. ** -** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces +** ^The [sqlite3_blob_open()] interface will fail for a [WITHOUT ROWID] +** table. Incremental BLOB I/O is not possible on [WITHOUT ROWID] tables. +** +** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces ** and the built-in [zeroblob] SQL function can be used, if desired, ** to create an empty, zero-filled blob in which to read or write using ** this interface. ** ** To avoid a resource leak, every open [BLOB handle] should eventually ** be released by a call to [sqlite3_blob_close()]. -** -** Requirements: -** [H17813] [H17814] [H17816] [H17819] [H17821] [H17824] */ SQLITE_API int sqlite3_blob_open( sqlite3*, @@ -4998,37 +5645,58 @@ SQLITE_API int sqlite3_blob_open( ); /* -** CAPI3REF: Close A BLOB Handle {H17830} +** CAPI3REF: Move a BLOB Handle to a New Row +** +** ^This function is used to move an existing blob handle so that it points +** to a different row of the same database table. ^The new row is identified +** by the rowid value passed as the second argument. Only the row can be +** changed. ^The database, table and column on which the blob handle is open +** remain the same. Moving an existing blob handle to a new row can be +** faster than closing the existing handle and opening a new one. +** +** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] - +** it must exist and there must be either a blob or text value stored in +** the nominated column.)^ ^If the new row is not present in the table, or if +** it does not contain a blob or text value, or if another error occurs, an +** SQLite error code is returned and the blob handle is considered aborted. +** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or +** [sqlite3_blob_reopen()] on an aborted blob handle immediately return +** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle +** always returns zero. +** +** ^This function sets the database handle error code and message. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); + +/* +** CAPI3REF: Close A BLOB Handle ** -** Closes an open [BLOB handle]. +** ^Closes an open [BLOB handle]. ** -** Closing a BLOB shall cause the current transaction to commit +** ^Closing a BLOB shall cause the current transaction to commit ** if there are no other BLOBs, no pending prepared statements, and the ** database connection is in [autocommit mode]. -** If any writes were made to the BLOB, they might be held in cache +** ^If any writes were made to the BLOB, they might be held in cache ** until the close operation if they will fit. ** -** Closing the BLOB often forces the changes +** ^(Closing the BLOB often forces the changes ** out to disk and so if any I/O errors occur, they will likely occur ** at the time when the BLOB is closed. Any errors that occur during -** closing are reported as a non-zero return value. -** -** The BLOB is closed unconditionally. Even if this routine returns -** an error code, the BLOB is still closed. +** closing are reported as a non-zero return value.)^ ** -** Calling this routine with a null pointer (which as would be returned -** by failed call to [sqlite3_blob_open()]) is a harmless no-op. +** ^(The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed.)^ ** -** Requirements: -** [H17833] [H17836] [H17839] +** ^Calling this routine with a null pointer (such as would be returned +** by a failed call to [sqlite3_blob_open()]) is a harmless no-op. */ SQLITE_API int sqlite3_blob_close(sqlite3_blob *); /* -** CAPI3REF: Return The Size Of An Open BLOB {H17840} +** CAPI3REF: Return The Size Of An Open BLOB ** -** Returns the size in bytes of the BLOB accessible via the -** successfully opened [BLOB handle] in its only argument. The +** ^Returns the size in bytes of the BLOB accessible via the +** successfully opened [BLOB handle] in its only argument. ^The ** incremental blob I/O routines can only read or overwriting existing ** blob content; they cannot change the size of a blob. ** @@ -5036,30 +5704,27 @@ SQLITE_API int sqlite3_blob_close(sqlite3_blob *); ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. -** -** Requirements: -** [H17843] */ SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *); /* -** CAPI3REF: Read Data From A BLOB Incrementally {H17850} +** CAPI3REF: Read Data From A BLOB Incrementally ** -** This function is used to read data from an open [BLOB handle] into a +** ^(This function is used to read data from an open [BLOB handle] into a ** caller-supplied buffer. N bytes of data are copied into buffer Z -** from the open BLOB, starting at offset iOffset. +** from the open BLOB, starting at offset iOffset.)^ ** -** If offset iOffset is less than N bytes from the end of the BLOB, -** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is +** ^If offset iOffset is less than N bytes from the end of the BLOB, +** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is ** less than zero, [SQLITE_ERROR] is returned and no data is read. -** The size of the blob (and hence the maximum value of N+iOffset) +** ^The size of the blob (and hence the maximum value of N+iOffset) ** can be determined using the [sqlite3_blob_bytes()] interface. ** -** An attempt to read from an expired [BLOB handle] fails with an +** ^An attempt to read from an expired [BLOB handle] fails with an ** error code of [SQLITE_ABORT]. ** -** On success, SQLITE_OK is returned. -** Otherwise, an [error code] or an [extended error code] is returned. +** ^(On success, sqlite3_blob_read() returns SQLITE_OK. +** Otherwise, an [error code] or an [extended error code] is returned.)^ ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not @@ -5067,40 +5732,37 @@ SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *); ** to this routine results in undefined and probably undesirable behavior. ** ** See also: [sqlite3_blob_write()]. -** -** Requirements: -** [H17853] [H17856] [H17859] [H17862] [H17863] [H17865] [H17868] */ SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); /* -** CAPI3REF: Write Data Into A BLOB Incrementally {H17870} +** CAPI3REF: Write Data Into A BLOB Incrementally ** -** This function is used to write data into an open [BLOB handle] from a -** caller-supplied buffer. N bytes of data are copied from the buffer Z +** ^This function is used to write data into an open [BLOB handle] from a +** caller-supplied buffer. ^N bytes of data are copied from the buffer Z ** into the open BLOB, starting at offset iOffset. ** -** If the [BLOB handle] passed as the first argument was not opened for +** ^If the [BLOB handle] passed as the first argument was not opened for ** writing (the flags parameter to [sqlite3_blob_open()] was zero), ** this function returns [SQLITE_READONLY]. ** -** This function may only modify the contents of the BLOB; it is +** ^This function may only modify the contents of the BLOB; it is ** not possible to increase the size of a BLOB using this API. -** If offset iOffset is less than N bytes from the end of the BLOB, -** [SQLITE_ERROR] is returned and no data is written. If N is +** ^If offset iOffset is less than N bytes from the end of the BLOB, +** [SQLITE_ERROR] is returned and no data is written. ^If N is ** less than zero [SQLITE_ERROR] is returned and no data is written. ** The size of the BLOB (and hence the maximum value of N+iOffset) ** can be determined using the [sqlite3_blob_bytes()] interface. ** -** An attempt to write to an expired [BLOB handle] fails with an -** error code of [SQLITE_ABORT]. Writes to the BLOB that occurred +** ^An attempt to write to an expired [BLOB handle] fails with an +** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred ** before the [BLOB handle] expired are not rolled back by the ** expiration of the handle, though of course those changes might ** have been overwritten by the statement that expired the BLOB handle ** or by other independent statements. ** -** On success, SQLITE_OK is returned. -** Otherwise, an [error code] or an [extended error code] is returned. +** ^(On success, sqlite3_blob_write() returns SQLITE_OK. +** Otherwise, an [error code] or an [extended error code] is returned.)^ ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not @@ -5108,15 +5770,11 @@ SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); ** to this routine results in undefined and probably undesirable behavior. ** ** See also: [sqlite3_blob_read()]. -** -** Requirements: -** [H17873] [H17874] [H17875] [H17876] [H17877] [H17879] [H17882] [H17885] -** [H17888] */ SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); /* -** CAPI3REF: Virtual File System Objects {H11200} +** CAPI3REF: Virtual File System Objects ** ** A virtual filesystem (VFS) is an [sqlite3_vfs] object ** that SQLite uses to interact @@ -5125,34 +5783,31 @@ SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOff ** New VFSes can be registered and existing VFSes can be unregistered. ** The following interfaces are provided. ** -** The sqlite3_vfs_find() interface returns a pointer to a VFS given its name. -** Names are case sensitive. -** Names are zero-terminated UTF-8 strings. -** If there is no match, a NULL pointer is returned. -** If zVfsName is NULL then the default VFS is returned. +** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name. +** ^Names are case sensitive. +** ^Names are zero-terminated UTF-8 strings. +** ^If there is no match, a NULL pointer is returned. +** ^If zVfsName is NULL then the default VFS is returned. ** -** New VFSes are registered with sqlite3_vfs_register(). -** Each new VFS becomes the default VFS if the makeDflt flag is set. -** The same VFS can be registered multiple times without injury. -** To make an existing VFS into the default VFS, register it again +** ^New VFSes are registered with sqlite3_vfs_register(). +** ^Each new VFS becomes the default VFS if the makeDflt flag is set. +** ^The same VFS can be registered multiple times without injury. +** ^To make an existing VFS into the default VFS, register it again ** with the makeDflt flag set. If two different VFSes with the ** same name are registered, the behavior is undefined. If a ** VFS is registered with a name that is NULL or an empty string, ** then the behavior is undefined. ** -** Unregister a VFS with the sqlite3_vfs_unregister() interface. -** If the default VFS is unregistered, another VFS is chosen as -** the default. The choice for the new VFS is arbitrary. -** -** Requirements: -** [H11203] [H11206] [H11209] [H11212] [H11215] [H11218] +** ^Unregister a VFS with the sqlite3_vfs_unregister() interface. +** ^(If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary.)^ */ SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); /* -** CAPI3REF: Mutexes {H17000} +** CAPI3REF: Mutexes ** ** The SQLite core uses these routines for thread ** synchronization. Though they are intended for internal @@ -5161,34 +5816,33 @@ SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); ** ** The SQLite source code contains multiple implementations ** of these mutex routines. An appropriate implementation -** is selected automatically at compile-time. The following +** is selected automatically at compile-time. ^(The following ** implementations are available in the SQLite core: ** **
      -**
    • SQLITE_MUTEX_OS2 -**
    • SQLITE_MUTEX_PTHREAD +**
    • SQLITE_MUTEX_PTHREADS **
    • SQLITE_MUTEX_W32 **
    • SQLITE_MUTEX_NOOP -**
    +** )^ ** -** The SQLITE_MUTEX_NOOP implementation is a set of routines +** ^The SQLITE_MUTEX_NOOP implementation is a set of routines ** that does no real locking and is appropriate for use in -** a single-threaded application. The SQLITE_MUTEX_OS2, -** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations -** are appropriate for use on OS/2, Unix, and Windows. +** a single-threaded application. ^The SQLITE_MUTEX_PTHREADS and +** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix +** and Windows. ** -** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex ** implementation is included with the library. In this case the ** application must supply a custom mutex implementation using the ** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function ** before calling sqlite3_initialize() or any other public sqlite3_ -** function that calls sqlite3_initialize(). +** function that calls sqlite3_initialize().)^ ** -** {H17011} The sqlite3_mutex_alloc() routine allocates a new -** mutex and returns a pointer to it. {H17012} If it returns NULL -** that means that a mutex could not be allocated. {H17013} SQLite -** will unwind its stack and return an error. {H17014} The argument +** ^The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. ^If it returns NULL +** that means that a mutex could not be allocated. ^SQLite +** will unwind its stack and return an error. ^(The argument ** to sqlite3_mutex_alloc() is one of these integer constants: ** **
      @@ -5200,64 +5854,66 @@ SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); **
    • SQLITE_MUTEX_STATIC_PRNG **
    • SQLITE_MUTEX_STATIC_LRU **
    • SQLITE_MUTEX_STATIC_LRU2 -**
    +** )^ ** -** {H17015} The first two constants cause sqlite3_mutex_alloc() to create -** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE -** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) +** cause sqlite3_mutex_alloc() to create +** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does -** not want to. {H17016} But SQLite will only request a recursive mutex in -** cases where it really needs one. {END} If a faster non-recursive mutex +** not want to. ^SQLite will only request a recursive mutex in +** cases where it really needs one. ^If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** -** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return -** a pointer to a static preexisting mutex. {END} Four static mutexes are +** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other +** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return +** a pointer to a static preexisting mutex. ^Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** -** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() -** returns a different mutex on every call. {H17034} But for the static +** returns a different mutex on every call. ^But for the static ** mutex types, the same mutex is returned on every call that has ** the same type number. ** -** {H17019} The sqlite3_mutex_free() routine deallocates a previously -** allocated dynamic mutex. {H17020} SQLite is careful to deallocate every -** dynamic mutex that it allocates. {A17021} The dynamic mutexes must not be in -** use when they are deallocated. {A17022} Attempting to deallocate a static -** mutex results in undefined behavior. {H17023} SQLite never deallocates -** a static mutex. {END} +** ^The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. ^SQLite is careful to deallocate every +** dynamic mutex that it allocates. The dynamic mutexes must not be in +** use when they are deallocated. Attempting to deallocate a static +** mutex results in undefined behavior. ^SQLite never deallocates +** a static mutex. ** -** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt -** to enter a mutex. {H17024} If another thread is already within the mutex, +** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. ^If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return -** SQLITE_BUSY. {H17025} The sqlite3_mutex_try() interface returns [SQLITE_OK] -** upon successful entry. {H17026} Mutexes created using +** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK] +** upon successful entry. ^(Mutexes created using ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. -** {H17027} In such cases the, +** In such cases the, ** mutex must be exited an equal number of times before another thread -** can enter. {A17028} If the same thread tries to enter any other +** can enter.)^ ^(If the same thread tries to enter any other ** kind of mutex more than once, the behavior is undefined. -** {H17029} SQLite will never exhibit -** such behavior in its own use of mutexes. +** SQLite will never exhibit +** such behavior in its own use of mutexes.)^ ** -** Some systems (for example, Windows 95) do not support the operation +** ^(Some systems (for example, Windows 95) do not support the operation ** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() -** will always return SQLITE_BUSY. {H17030} The SQLite core only ever uses -** sqlite3_mutex_try() as an optimization so this is acceptable behavior. +** will always return SQLITE_BUSY. The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^ ** -** {H17031} The sqlite3_mutex_leave() routine exits a mutex that was -** previously entered by the same thread. {A17032} The behavior +** ^The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. ^(The behavior ** is undefined if the mutex is not currently entered by the -** calling thread or is not currently allocated. {H17033} SQLite will -** never do either. {END} +** calling thread or is not currently allocated. SQLite will +** never do either.)^ ** -** If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or +** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or ** sqlite3_mutex_leave() is a NULL pointer, then all three routines ** behave as no-ops. ** @@ -5270,8 +5926,7 @@ SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*); SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); /* -** CAPI3REF: Mutex Methods Object {H17120} -** EXPERIMENTAL +** CAPI3REF: Mutex Methods Object ** ** An instance of this structure defines the low-level routines ** used to allocate and use mutexes. @@ -5286,19 +5941,19 @@ SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); ** output variable when querying the system for the current mutex ** implementation, using the [SQLITE_CONFIG_GETMUTEX] option. ** -** The xMutexInit method defined by this structure is invoked as +** ^The xMutexInit method defined by this structure is invoked as ** part of system initialization by the sqlite3_initialize() function. -** {H17001} The xMutexInit routine shall be called by SQLite once for each +** ^The xMutexInit routine is called by SQLite exactly once for each ** effective call to [sqlite3_initialize()]. ** -** The xMutexEnd method defined by this structure is invoked as +** ^The xMutexEnd method defined by this structure is invoked as ** part of system shutdown by the sqlite3_shutdown() function. The ** implementation of this method is expected to release all outstanding ** resources obtained by the mutex methods implementation, especially -** those obtained by the xMutexInit method. {H17003} The xMutexEnd() -** interface shall be invoked once for each call to [sqlite3_shutdown()]. +** those obtained by the xMutexInit method. ^The xMutexEnd() +** interface is invoked exactly once for each call to [sqlite3_shutdown()]. ** -** The remaining seven methods defined by this structure (xMutexAlloc, +** ^(The remaining seven methods defined by this structure (xMutexAlloc, ** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and ** xMutexNotheld) implement the following interfaces (respectively): ** @@ -5310,7 +5965,7 @@ SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); **
  • [sqlite3_mutex_leave()]
  • **
  • [sqlite3_mutex_held()]
  • **
  • [sqlite3_mutex_notheld()]
  • -** +** )^ ** ** The only difference is that the public sqlite3_XXX functions enumerated ** above silently ignore any invocations that pass a NULL pointer instead @@ -5319,6 +5974,21 @@ SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). +** +** The xMutexInit() method must be threadsafe. ^It must be harmless to +** invoke xMutexInit() multiple times within the same process and without +** intervening calls to xMutexEnd(). Second and subsequent calls to +** xMutexInit() must be no-ops. +** +** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] +** and its associates). ^Similarly, xMutexAlloc() must not use SQLite memory +** allocation for a static mutex. ^However xMutexAlloc() may use SQLite +** memory allocation for a fast or recursive mutex. +** +** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is +** called, but only if the prior call to xMutexInit returned SQLITE_OK. +** If xMutexInit fails in any way, it is expected to clean up after itself +** prior to returning. */ typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; struct sqlite3_mutex_methods { @@ -5334,39 +6004,41 @@ struct sqlite3_mutex_methods { }; /* -** CAPI3REF: Mutex Verification Routines {H17080} +** CAPI3REF: Mutex Verification Routines ** ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines -** are intended for use inside assert() statements. {H17081} The SQLite core +** are intended for use inside assert() statements. ^The SQLite core ** never uses these routines except inside an assert() and applications -** are advised to follow the lead of the core. {H17082} The core only +** are advised to follow the lead of the core. ^The SQLite core only ** provides implementations for these routines when it is compiled -** with the SQLITE_DEBUG flag. {A17087} External mutex implementations +** with the SQLITE_DEBUG flag. ^External mutex implementations ** are only required to provide these routines if SQLITE_DEBUG is ** defined and if NDEBUG is not defined. ** -** {H17083} These routines should return true if the mutex in their argument +** ^These routines should return true if the mutex in their argument ** is held or not held, respectively, by the calling thread. ** -** {X17084} The implementation is not required to provided versions of these +** ^The implementation is not required to provide versions of these ** routines that actually work. If the implementation does not provide working ** versions of these routines, it should at least provide stubs that always ** return true so that one does not get spurious assertion failures. ** -** {H17085} If the argument to sqlite3_mutex_held() is a NULL pointer then -** the routine should return 1. {END} This seems counter-intuitive since -** clearly the mutex cannot be held if it does not exist. But the +** ^If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But ** the reason the mutex does not exist is because the build is not ** using mutexes. And we do not want the assert() containing the ** call to sqlite3_mutex_held() to fail, so a non-zero return is -** the appropriate thing to do. {H17086} The sqlite3_mutex_notheld() +** the appropriate thing to do. ^The sqlite3_mutex_notheld() ** interface should also return 1 when given a NULL pointer. */ +#ifndef NDEBUG SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*); SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*); +#endif /* -** CAPI3REF: Mutex Types {H17001} +** CAPI3REF: Mutex Types ** ** The [sqlite3_mutex_alloc()] interface takes a single argument ** which is one of these integer constants. @@ -5383,51 +6055,60 @@ SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*); #define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */ #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ -#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */ +#define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ +#define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ /* -** CAPI3REF: Retrieve the mutex for a database connection {H17002} +** CAPI3REF: Retrieve the mutex for a database connection ** -** This interface returns a pointer the [sqlite3_mutex] object that +** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument ** when the [threading mode] is Serialized. -** If the [threading mode] is Single-thread or Multi-thread then this +** ^If the [threading mode] is Single-thread or Multi-thread then this ** routine returns a NULL pointer. */ SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*); /* -** CAPI3REF: Low-Level Control Of Database Files {H11300} +** CAPI3REF: Low-Level Control Of Database Files ** -** {H11301} The [sqlite3_file_control()] interface makes a direct call to the +** ^The [sqlite3_file_control()] interface makes a direct call to the ** xFileControl method for the [sqlite3_io_methods] object associated -** with a particular database identified by the second argument. {H11302} The -** name of the database is the name assigned to the database by the -** ATTACH SQL command that opened the -** database. {H11303} To control the main database file, use the name "main" -** or a NULL pointer. {H11304} The third and fourth parameters to this routine +** with a particular database identified by the second argument. ^The +** name of the database is "main" for the main database or "temp" for the +** TEMP database, or the name that appears after the AS keyword for +** databases that are added using the [ATTACH] SQL command. +** ^A NULL pointer can be used in place of "main" to refer to the +** main database file. +** ^The third and fourth parameters to this routine ** are passed directly through to the second and third parameters of -** the xFileControl method. {H11305} The return value of the xFileControl +** the xFileControl method. ^The return value of the xFileControl ** method becomes the return value of this routine. ** -** {H11306} If the second parameter (zDbName) does not match the name of any -** open database file, then SQLITE_ERROR is returned. {H11307} This error +** ^The SQLITE_FCNTL_FILE_POINTER value for the op parameter causes +** a pointer to the underlying [sqlite3_file] object to be written into +** the space pointed to by the 4th parameter. ^The SQLITE_FCNTL_FILE_POINTER +** case is a short-circuit path which does not actually invoke the +** underlying sqlite3_io_methods.xFileControl method. +** +** ^If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. ^This error ** code is not remembered and will not be recalled by [sqlite3_errcode()] -** or [sqlite3_errmsg()]. {A11308} The underlying xFileControl method might -** also return SQLITE_ERROR. {A11309} There is no way to distinguish between +** or [sqlite3_errmsg()]. The underlying xFileControl method might +** also return SQLITE_ERROR. There is no way to distinguish between ** an incorrect zDbName and an SQLITE_ERROR return from the underlying -** xFileControl method. {END} +** xFileControl method. ** ** See also: [SQLITE_FCNTL_LOCKSTATE] */ SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); /* -** CAPI3REF: Testing Interface {H11400} +** CAPI3REF: Testing Interface ** -** The sqlite3_test_control() interface is used to read out internal +** ^The sqlite3_test_control() interface is used to read out internal ** state of SQLite and to inject faults into SQLite for testing -** purposes. The first parameter is an operation code that determines +** purposes. ^The first parameter is an operation code that determines ** the number, meaning, and operation of all subsequent parameters. ** ** This interface is not for use by applications. It exists solely @@ -5442,7 +6123,7 @@ SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void* SQLITE_API int sqlite3_test_control(int op, ...); /* -** CAPI3REF: Testing Interface Operation Codes {H11410} +** CAPI3REF: Testing Interface Operation Codes ** ** These constants are the valid operation code parameters used ** as the first argument to [sqlite3_test_control()]. @@ -5452,6 +6133,7 @@ SQLITE_API int sqlite3_test_control(int op, ...); ** Applications should not use any of these parameters or the ** [sqlite3_test_control()] interface. */ +#define SQLITE_TESTCTRL_FIRST 5 #define SQLITE_TESTCTRL_PRNG_SAVE 5 #define SQLITE_TESTCTRL_PRNG_RESTORE 6 #define SQLITE_TESTCTRL_PRNG_RESET 7 @@ -5461,29 +6143,36 @@ SQLITE_API int sqlite3_test_control(int op, ...); #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 - -/* -** CAPI3REF: SQLite Runtime Status {H17200} -** EXPERIMENTAL -** -** This interface is used to retrieve runtime status information -** about the preformance of SQLite, and optionally to reset various -** highwater marks. The first argument is an integer code for -** the specific parameter to measure. Recognized integer codes -** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...]. -** The current value of the parameter is returned into *pCurrent. -** The highest recorded value is returned in *pHighwater. If the +#define SQLITE_TESTCTRL_RESERVE 14 +#define SQLITE_TESTCTRL_OPTIMIZATIONS 15 +#define SQLITE_TESTCTRL_ISKEYWORD 16 +#define SQLITE_TESTCTRL_SCRATCHMALLOC 17 +#define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 +#define SQLITE_TESTCTRL_EXPLAIN_STMT 19 +#define SQLITE_TESTCTRL_NEVER_CORRUPT 20 +#define SQLITE_TESTCTRL_LAST 20 + +/* +** CAPI3REF: SQLite Runtime Status +** +** ^This interface is used to retrieve runtime status information +** about the performance of SQLite, and optionally to reset various +** highwater marks. ^The first argument is an integer code for +** the specific parameter to measure. ^(Recognized integer codes +** are of the form [status parameters | SQLITE_STATUS_...].)^ +** ^The current value of the parameter is returned into *pCurrent. +** ^The highest recorded value is returned in *pHighwater. ^If the ** resetFlag is true, then the highest record value is reset after -** *pHighwater is written. Some parameters do not record the highest +** *pHighwater is written. ^(Some parameters do not record the highest ** value. For those parameters -** nothing is written into *pHighwater and the resetFlag is ignored. -** Other parameters record only the highwater mark and not the current -** value. For these latter parameters nothing is written into *pCurrent. +** nothing is written into *pHighwater and the resetFlag is ignored.)^ +** ^(Other parameters record only the highwater mark and not the current +** value. For these latter parameters nothing is written into *pCurrent.)^ ** -** This routine returns SQLITE_OK on success and a non-zero -** [error code] on failure. +** ^The sqlite3_status() routine returns SQLITE_OK on success and a +** non-zero [error code] on failure. ** -** This routine is threadsafe but is not atomic. This routine can +** This routine is threadsafe but is not atomic. This routine can be ** called while other threads are running the same or different SQLite ** interfaces. However the values returned in *pCurrent and ** *pHighwater reflect the status of SQLite at different points in time @@ -5492,18 +6181,18 @@ SQLITE_API int sqlite3_test_control(int op, ...); ** ** See also: [sqlite3_db_status()] */ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); +SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); /* -** CAPI3REF: Status Parameters {H17250} -** EXPERIMENTAL +** CAPI3REF: Status Parameters +** KEYWORDS: {status parameters} ** ** These integer constants designate various run-time status parameters ** that can be returned by [sqlite3_status()]. ** **
    -**
    SQLITE_STATUS_MEMORY_USED
    +** [[SQLITE_STATUS_MEMORY_USED]] ^(
    SQLITE_STATUS_MEMORY_USED
    **
    This parameter is the current amount of memory checked out ** using [sqlite3_malloc()], either directly or indirectly. The ** figure includes calls made to [sqlite3_malloc()] by the application @@ -5511,63 +6200,68 @@ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_status(int op, int *pCurrent, int *pH ** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache ** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in ** this parameter. The amount returned is the sum of the allocation -** sizes as reported by the xSize method in [sqlite3_mem_methods].
    +** sizes as reported by the xSize method in [sqlite3_mem_methods].)^ ** -**
    SQLITE_STATUS_MALLOC_SIZE
    +** [[SQLITE_STATUS_MALLOC_SIZE]] ^(
    SQLITE_STATUS_MALLOC_SIZE
    **
    This parameter records the largest memory allocation request ** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their ** internal equivalents). Only the value returned in the ** *pHighwater parameter to [sqlite3_status()] is of interest. -** The value written into the *pCurrent parameter is undefined.
    +** The value written into the *pCurrent parameter is undefined.)^ ** -**
    SQLITE_STATUS_PAGECACHE_USED
    +** [[SQLITE_STATUS_MALLOC_COUNT]] ^(
    SQLITE_STATUS_MALLOC_COUNT
    +**
    This parameter records the number of separate memory allocations +** currently checked out.
    )^ +** +** [[SQLITE_STATUS_PAGECACHE_USED]] ^(
    SQLITE_STATUS_PAGECACHE_USED
    **
    This parameter returns the number of pages used out of the ** [pagecache memory allocator] that was configured using ** [SQLITE_CONFIG_PAGECACHE]. The -** value returned is in pages, not in bytes.
    +** value returned is in pages, not in bytes.)^ ** -**
    SQLITE_STATUS_PAGECACHE_OVERFLOW
    +** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]] +** ^(
    SQLITE_STATUS_PAGECACHE_OVERFLOW
    **
    This parameter returns the number of bytes of page cache -** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE] +** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE] ** buffer and where forced to overflow to [sqlite3_malloc()]. The ** returned value includes allocations that overflowed because they ** where too large (they were larger than the "sz" parameter to ** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because -** no space was left in the page cache.
    +** no space was left in the page cache.)^ ** -**
    SQLITE_STATUS_PAGECACHE_SIZE
    +** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(
    SQLITE_STATUS_PAGECACHE_SIZE
    **
    This parameter records the largest memory allocation request ** handed to [pagecache memory allocator]. Only the value returned in the ** *pHighwater parameter to [sqlite3_status()] is of interest. -** The value written into the *pCurrent parameter is undefined.
    +** The value written into the *pCurrent parameter is undefined.)^ ** -**
    SQLITE_STATUS_SCRATCH_USED
    +** [[SQLITE_STATUS_SCRATCH_USED]] ^(
    SQLITE_STATUS_SCRATCH_USED
    **
    This parameter returns the number of allocations used out of the ** [scratch memory allocator] configured using ** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not ** in bytes. Since a single thread may only have one scratch allocation ** outstanding at time, this parameter also reports the number of threads -** using scratch memory at the same time.
    +** using scratch memory at the same time.)^ ** -**
    SQLITE_STATUS_SCRATCH_OVERFLOW
    +** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(
    SQLITE_STATUS_SCRATCH_OVERFLOW
    **
    This parameter returns the number of bytes of scratch memory -** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH] +** allocation which could not be satisfied by the [SQLITE_CONFIG_SCRATCH] ** buffer and where forced to overflow to [sqlite3_malloc()]. The values ** returned include overflows because the requested allocation was too ** larger (that is, because the requested allocation was larger than the ** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer ** slots were available. -**
    +** )^ ** -**
    SQLITE_STATUS_SCRATCH_SIZE
    +** [[SQLITE_STATUS_SCRATCH_SIZE]] ^(
    SQLITE_STATUS_SCRATCH_SIZE
    **
    This parameter records the largest memory allocation request ** handed to [scratch memory allocator]. Only the value returned in the ** *pHighwater parameter to [sqlite3_status()] is of interest. -** The value written into the *pCurrent parameter is undefined.
    +** The value written into the *pCurrent parameter is undefined.)^ ** -**
    SQLITE_STATUS_PARSER_STACK
    +** [[SQLITE_STATUS_PARSER_STACK]] ^(
    SQLITE_STATUS_PARSER_STACK
    **
    This parameter records the deepest parser stack. It is only -** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].
    +** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].)^ **
    ** ** New status parameters may be added from time to time. @@ -5581,96 +6275,205 @@ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_status(int op, int *pCurrent, int *pH #define SQLITE_STATUS_PARSER_STACK 6 #define SQLITE_STATUS_PAGECACHE_SIZE 7 #define SQLITE_STATUS_SCRATCH_SIZE 8 +#define SQLITE_STATUS_MALLOC_COUNT 9 /* -** CAPI3REF: Database Connection Status {H17500} -** EXPERIMENTAL +** CAPI3REF: Database Connection Status ** -** This interface is used to retrieve runtime status information -** about a single [database connection]. The first argument is the -** database connection object to be interrogated. The second argument -** is the parameter to interrogate. Currently, the only allowed value -** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED]. -** Additional options will likely appear in future releases of SQLite. +** ^This interface is used to retrieve runtime status information +** about a single [database connection]. ^The first argument is the +** database connection object to be interrogated. ^The second argument +** is an integer constant, taken from the set of +** [SQLITE_DBSTATUS options], that +** determines the parameter to interrogate. The set of +** [SQLITE_DBSTATUS options] is likely +** to grow in future releases of SQLite. ** -** The current value of the requested parameter is written into *pCur -** and the highest instantaneous value is written into *pHiwtr. If +** ^The current value of the requested parameter is written into *pCur +** and the highest instantaneous value is written into *pHiwtr. ^If ** the resetFlg is true, then the highest instantaneous value is ** reset back down to the current value. ** +** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a +** non-zero [error code] on failure. +** ** See also: [sqlite3_status()] and [sqlite3_stmt_status()]. */ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); +SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); /* -** CAPI3REF: Status Parameters for database connections {H17520} -** EXPERIMENTAL +** CAPI3REF: Status Parameters for database connections +** KEYWORDS: {SQLITE_DBSTATUS options} +** +** These constants are the available integer "verbs" that can be passed as +** the second argument to the [sqlite3_db_status()] interface. ** -** Status verbs for [sqlite3_db_status()]. +** New verbs may be added in future releases of SQLite. Existing verbs +** might be discontinued. Applications should check the return code from +** [sqlite3_db_status()] to make sure that the call worked. +** The [sqlite3_db_status()] interface will return a non-zero error code +** if a discontinued or unsupported verb is invoked. ** **
    -**
    SQLITE_DBSTATUS_LOOKASIDE_USED
    +** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(
    SQLITE_DBSTATUS_LOOKASIDE_USED
    **
    This parameter returns the number of lookaside memory slots currently -** checked out.
    +** checked out.)^ +** +** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(
    SQLITE_DBSTATUS_LOOKASIDE_HIT
    +**
    This parameter returns the number malloc attempts that were +** satisfied using lookaside memory. Only the high-water value is meaningful; +** the current value is always zero.)^ +** +** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]] +** ^(
    SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE
    +**
    This parameter returns the number malloc attempts that might have +** been satisfied using lookaside memory but failed due to the amount of +** memory requested being larger than the lookaside slot size. +** Only the high-water value is meaningful; +** the current value is always zero.)^ +** +** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]] +** ^(
    SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL
    +**
    This parameter returns the number malloc attempts that might have +** been satisfied using lookaside memory but failed due to all lookaside +** memory already being in use. +** Only the high-water value is meaningful; +** the current value is always zero.)^ +** +** [[SQLITE_DBSTATUS_CACHE_USED]] ^(
    SQLITE_DBSTATUS_CACHE_USED
    +**
    This parameter returns the approximate number of of bytes of heap +** memory used by all pager caches associated with the database connection.)^ +** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. +** +** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(
    SQLITE_DBSTATUS_SCHEMA_USED
    +**
    This parameter returns the approximate number of of bytes of heap +** memory used to store the schema for all databases associated +** with the connection - main, temp, and any [ATTACH]-ed databases.)^ +** ^The full amount of memory used by the schemas is reported, even if the +** schema memory is shared with other database connections due to +** [shared cache mode] being enabled. +** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0. +** +** [[SQLITE_DBSTATUS_STMT_USED]] ^(
    SQLITE_DBSTATUS_STMT_USED
    +**
    This parameter returns the approximate number of of bytes of heap +** and lookaside memory used by all prepared statements associated with +** the database connection.)^ +** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0. +**
    +** +** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(
    SQLITE_DBSTATUS_CACHE_HIT
    +**
    This parameter returns the number of pager cache hits that have +** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT +** is always 0. +**
    +** +** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(
    SQLITE_DBSTATUS_CACHE_MISS
    +**
    This parameter returns the number of pager cache misses that have +** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS +** is always 0. +**
    +** +** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(
    SQLITE_DBSTATUS_CACHE_WRITE
    +**
    This parameter returns the number of dirty cache entries that have +** been written to disk. Specifically, the number of pages written to the +** wal file in wal mode databases, or the number of pages written to the +** database file in rollback mode databases. Any pages written as part of +** transaction rollback or database recovery operations are not included. +** If an IO or other error occurs while writing a page to disk, the effect +** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The +** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0. +**
    +** +** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(
    SQLITE_DBSTATUS_DEFERRED_FKS
    +**
    This parameter returns zero for the current value if and only if +** all foreign key constraints (deferred or immediate) have been +** resolved.)^ ^The highwater mark is always 0. +**
    **
    */ -#define SQLITE_DBSTATUS_LOOKASIDE_USED 0 +#define SQLITE_DBSTATUS_LOOKASIDE_USED 0 +#define SQLITE_DBSTATUS_CACHE_USED 1 +#define SQLITE_DBSTATUS_SCHEMA_USED 2 +#define SQLITE_DBSTATUS_STMT_USED 3 +#define SQLITE_DBSTATUS_LOOKASIDE_HIT 4 +#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5 +#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6 +#define SQLITE_DBSTATUS_CACHE_HIT 7 +#define SQLITE_DBSTATUS_CACHE_MISS 8 +#define SQLITE_DBSTATUS_CACHE_WRITE 9 +#define SQLITE_DBSTATUS_DEFERRED_FKS 10 +#define SQLITE_DBSTATUS_MAX 10 /* Largest defined DBSTATUS */ /* -** CAPI3REF: Prepared Statement Status {H17550} -** EXPERIMENTAL +** CAPI3REF: Prepared Statement Status ** -** Each prepared statement maintains various -** [SQLITE_STMTSTATUS_SORT | counters] that measure the number -** of times it has performed specific operations. These counters can +** ^(Each prepared statement maintains various +** [SQLITE_STMTSTATUS counters] that measure the number +** of times it has performed specific operations.)^ These counters can ** be used to monitor the performance characteristics of the prepared ** statements. For example, if the number of table steps greatly exceeds ** the number of table searches or result rows, that would tend to indicate ** that the prepared statement is using a full table scan rather than ** an index. ** -** This interface is used to retrieve and reset counter values from +** ^(This interface is used to retrieve and reset counter values from ** a [prepared statement]. The first argument is the prepared statement ** object to be interrogated. The second argument -** is an integer code for a specific [SQLITE_STMTSTATUS_SORT | counter] -** to be interrogated. -** The current value of the requested counter is returned. -** If the resetFlg is true, then the counter is reset to zero after this +** is an integer code for a specific [SQLITE_STMTSTATUS counter] +** to be interrogated.)^ +** ^The current value of the requested counter is returned. +** ^If the resetFlg is true, then the counter is reset to zero after this ** interface call returns. ** ** See also: [sqlite3_status()] and [sqlite3_db_status()]. */ -SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg); +SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg); /* -** CAPI3REF: Status Parameters for prepared statements {H17570} -** EXPERIMENTAL +** CAPI3REF: Status Parameters for prepared statements +** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters} ** ** These preprocessor macros define integer codes that name counter ** values associated with the [sqlite3_stmt_status()] interface. ** The meanings of the various counters are as follows: ** **
    -**
    SQLITE_STMTSTATUS_FULLSCAN_STEP
    -**
    This is the number of times that SQLite has stepped forward in +** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]]
    SQLITE_STMTSTATUS_FULLSCAN_STEP
    +**
    ^This is the number of times that SQLite has stepped forward in ** a table as part of a full table scan. Large numbers for this counter ** may indicate opportunities for performance improvement through ** careful use of indices.
    ** -**
    SQLITE_STMTSTATUS_SORT
    -**
    This is the number of sort operations that have occurred. +** [[SQLITE_STMTSTATUS_SORT]]
    SQLITE_STMTSTATUS_SORT
    +**
    ^This is the number of sort operations that have occurred. ** A non-zero value in this counter may indicate an opportunity to ** improvement performance through careful use of indices.
    ** +** [[SQLITE_STMTSTATUS_AUTOINDEX]]
    SQLITE_STMTSTATUS_AUTOINDEX
    +**
    ^This is the number of rows inserted into transient indices that +** were created automatically in order to help joins run faster. +** A non-zero value in this counter may indicate an opportunity to +** improvement performance by adding permanent indices that do not +** need to be reinitialized each time the statement is run.
    +** +** [[SQLITE_STMTSTATUS_VM_STEP]]
    SQLITE_STMTSTATUS_VM_STEP
    +**
    ^This is the number of virtual machine operations executed +** by the prepared statement if that number is less than or equal +** to 2147483647. The number of virtual machine operations can be +** used as a proxy for the total work done by the prepared statement. +** If the number of virtual machine operations exceeds 2147483647 +** then the value returned by this statement status code is undefined. +**
    **
    */ #define SQLITE_STMTSTATUS_FULLSCAN_STEP 1 #define SQLITE_STMTSTATUS_SORT 2 +#define SQLITE_STMTSTATUS_AUTOINDEX 3 +#define SQLITE_STMTSTATUS_VM_STEP 4 /* ** CAPI3REF: Custom Page Cache Object -** EXPERIMENTAL ** ** The sqlite3_pcache type is opaque. It is implemented by ** the pluggable module. The SQLite core has no knowledge of @@ -5678,110 +6481,164 @@ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_stmt_status(sqlite3_stmt*, int op,int ** sqlite3_pcache object except by holding and passing pointers ** to the object. ** -** See [sqlite3_pcache_methods] for additional information. +** See [sqlite3_pcache_methods2] for additional information. */ typedef struct sqlite3_pcache sqlite3_pcache; +/* +** CAPI3REF: Custom Page Cache Object +** +** The sqlite3_pcache_page object represents a single page in the +** page cache. The page cache will allocate instances of this +** object. Various methods of the page cache use pointers to instances +** of this object as parameters or as their return value. +** +** See [sqlite3_pcache_methods2] for additional information. +*/ +typedef struct sqlite3_pcache_page sqlite3_pcache_page; +struct sqlite3_pcache_page { + void *pBuf; /* The content of the page */ + void *pExtra; /* Extra information associated with the page */ +}; + /* ** CAPI3REF: Application Defined Page Cache. -** EXPERIMENTAL +** KEYWORDS: {page cache} ** -** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can +** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can ** register an alternative page cache implementation by passing in an -** instance of the sqlite3_pcache_methods structure. The majority of the -** heap memory used by sqlite is used by the page cache to cache data read -** from, or ready to be written to, the database file. By implementing a -** custom page cache using this API, an application can control more -** precisely the amount of memory consumed by sqlite, the way in which -** said memory is allocated and released, and the policies used to +** instance of the sqlite3_pcache_methods2 structure.)^ +** In many applications, most of the heap memory allocated by +** SQLite is used for the page cache. +** By implementing a +** custom page cache using this API, an application can better control +** the amount of memory consumed by SQLite, the way in which +** that memory is allocated and released, and the policies used to ** determine exactly which parts of a database file are cached and for ** how long. ** -** The contents of the structure are copied to an internal buffer by sqlite -** within the call to [sqlite3_config]. -** -** The xInit() method is called once for each call to [sqlite3_initialize()] -** (usually only once during the lifetime of the process). It is passed -** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set -** up global structures and mutexes required by the custom page cache -** implementation. The xShutdown() method is called from within -** [sqlite3_shutdown()], if the application invokes this API. It can be used -** to clean up any outstanding resources before process shutdown, if required. -** -** The xCreate() method is used to construct a new cache instance. The +** The alternative page cache mechanism is an +** extreme measure that is only needed by the most demanding applications. +** The built-in page cache is recommended for most uses. +** +** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an +** internal buffer by SQLite within the call to [sqlite3_config]. Hence +** the application may discard the parameter after the call to +** [sqlite3_config()] returns.)^ +** +** [[the xInit() page cache method]] +** ^(The xInit() method is called once for each effective +** call to [sqlite3_initialize()])^ +** (usually only once during the lifetime of the process). ^(The xInit() +** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^ +** The intent of the xInit() method is to set up global data structures +** required by the custom page cache implementation. +** ^(If the xInit() method is NULL, then the +** built-in default page cache is used instead of the application defined +** page cache.)^ +** +** [[the xShutdown() page cache method]] +** ^The xShutdown() method is called by [sqlite3_shutdown()]. +** It can be used to clean up +** any outstanding resources before process shutdown, if required. +** ^The xShutdown() method may be NULL. +** +** ^SQLite automatically serializes calls to the xInit method, +** so the xInit method need not be threadsafe. ^The +** xShutdown method is only called from [sqlite3_shutdown()] so it does +** not need to be threadsafe either. All other methods must be threadsafe +** in multithreaded applications. +** +** ^SQLite will never invoke xInit() more than once without an intervening +** call to xShutdown(). +** +** [[the xCreate() page cache methods]] +** ^SQLite invokes the xCreate() method to construct a new cache instance. +** SQLite will typically create one cache instance for each open database file, +** though this is not guaranteed. ^The ** first parameter, szPage, is the size in bytes of the pages that must -** be allocated by the cache. szPage will not be a power of two. The -** second argument, bPurgeable, is true if the cache being created will -** be used to cache database pages read from a file stored on disk, or +** be allocated by the cache. ^szPage will always a power of two. ^The +** second parameter szExtra is a number of bytes of extra storage +** associated with each page cache entry. ^The szExtra parameter will +** a number less than 250. SQLite will use the +** extra szExtra bytes on each page to store metadata about the underlying +** database page on disk. The value passed into szExtra depends +** on the SQLite version, the target platform, and how SQLite was compiled. +** ^The third argument to xCreate(), bPurgeable, is true if the cache being +** created will be used to cache database pages of a file stored on disk, or ** false if it is used for an in-memory database. The cache implementation -** does not have to do anything special based on the value of bPurgeable, -** it is purely advisory. -** -** The xCachesize() method may be called at any time by SQLite to set the +** does not have to do anything special based with the value of bPurgeable; +** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will +** never invoke xUnpin() except to deliberately delete a page. +** ^In other words, calls to xUnpin() on a cache with bPurgeable set to +** false will always have the "discard" flag set to true. +** ^Hence, a cache created with bPurgeable false will +** never contain any unpinned pages. +** +** [[the xCachesize() page cache method]] +** ^(The xCachesize() method may be called at any time by SQLite to set the ** suggested maximum cache-size (number of pages stored by) the cache ** instance passed as the first argument. This is the value configured using -** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter, -** the implementation is not required to do anything special with this -** value, it is advisory only. +** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable +** parameter, the implementation is not required to do anything with this +** value; it is advisory only. ** -** The xPagecount() method should return the number of pages currently -** stored in the cache supplied as an argument. +** [[the xPagecount() page cache methods]] +** The xPagecount() method must return the number of pages currently +** stored in the cache, both pinned and unpinned. ** -** The xFetch() method is used to fetch a page and return a pointer to it. -** A 'page', in this context, is a buffer of szPage bytes aligned at an -** 8-byte boundary. The page to be fetched is determined by the key. The -** mimimum key value is 1. After it has been retrieved using xFetch, the page -** is considered to be pinned. -** -** If the requested page is already in the page cache, then a pointer to -** the cached buffer should be returned with its contents intact. If the -** page is not already in the cache, then the expected behaviour of the -** cache is determined by the value of the createFlag parameter passed -** to xFetch, according to the following table: +** [[the xFetch() page cache methods]] +** The xFetch() method locates a page in the cache and returns a pointer to +** an sqlite3_pcache_page object associated with that page, or a NULL pointer. +** The pBuf element of the returned sqlite3_pcache_page object will be a +** pointer to a buffer of szPage bytes used to store the content of a +** single database page. The pExtra element of sqlite3_pcache_page will be +** a pointer to the szExtra bytes of extra storage that SQLite has requested +** for each entry in the page cache. +** +** The page to be fetched is determined by the key. ^The minimum key value +** is 1. After it has been retrieved using xFetch, the page is considered +** to be "pinned". +** +** If the requested page is already in the page cache, then the page cache +** implementation must return a pointer to the page buffer with its content +** intact. If the requested page is not already in the cache, then the +** cache implementation should use the value of the createFlag +** parameter to help it determined what action to take: ** ** -**
    createFlagExpected Behaviour -**
    0NULL should be returned. No new cache entry is created. -**
    1If createFlag is set to 1, this indicates that -** SQLite is holding pinned pages that can be unpinned -** by writing their contents to the database file (a -** relatively expensive operation). In this situation the -** cache implementation has two choices: it can return NULL, -** in which case SQLite will attempt to unpin one or more -** pages before re-requesting the same page, or it can -** allocate a new page and return a pointer to it. If a new -** page is allocated, then the first sizeof(void*) bytes of -** it (at least) must be zeroed before it is returned. -**
    2If createFlag is set to 2, then SQLite is not holding any -** pinned pages associated with the specific cache passed -** as the first argument to xFetch() that can be unpinned. The -** cache implementation should attempt to allocate a new -** cache entry and return a pointer to it. Again, the first -** sizeof(void*) bytes of the page should be zeroed before -** it is returned. If the xFetch() method returns NULL when -** createFlag==2, SQLite assumes that a memory allocation -** failed and returns SQLITE_NOMEM to the user. +**
    createFlag Behavior when page is not already in cache +**
    0 Do not allocate a new page. Return NULL. +**
    1 Allocate a new page if it easy and convenient to do so. +** Otherwise return NULL. +**
    2 Make every effort to allocate a new page. Only return +** NULL if allocating a new page is effectively impossible. **
    ** -** xUnpin() is called by SQLite with a pointer to a currently pinned page -** as its second argument. If the third parameter, discard, is non-zero, -** then the page should be evicted from the cache. In this case SQLite -** assumes that the next time the page is retrieved from the cache using -** the xFetch() method, it will be zeroed. If the discard parameter is -** zero, then the page is considered to be unpinned. The cache implementation -** may choose to reclaim (free or recycle) unpinned pages at any time. -** SQLite assumes that next time the page is retrieved from the cache -** it will either be zeroed, or contain the same data that it did when it -** was unpinned. -** -** The cache is not required to perform any reference counting. A single +** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite +** will only use a createFlag of 2 after a prior call with a createFlag of 1 +** failed.)^ In between the to xFetch() calls, SQLite may +** attempt to unpin one or more cache pages by spilling the content of +** pinned pages to disk and synching the operating system disk cache. +** +** [[the xUnpin() page cache method]] +** ^xUnpin() is called by SQLite with a pointer to a currently pinned page +** as its second argument. If the third parameter, discard, is non-zero, +** then the page must be evicted from the cache. +** ^If the discard parameter is +** zero, then the page may be discarded or retained at the discretion of +** page cache implementation. ^The page cache implementation +** may choose to evict unpinned pages at any time. +** +** The cache must not perform any reference counting. A single ** call to xUnpin() unpins the page regardless of the number of prior calls ** to xFetch(). ** +** [[the xRekey() page cache methods]] ** The xRekey() method is used to change the key value associated with the -** page passed as the second argument from oldKey to newKey. If the cache -** previously contains an entry associated with newKey, it should be -** discarded. Any prior cache entry associated with newKey is guaranteed not +** page passed as the second argument. If the cache +** previously contains an entry associated with newKey, it must be +** discarded. ^Any prior cache entry associated with newKey is guaranteed not ** to be pinned. ** ** When SQLite calls the xTruncate() method, the cache must discard all @@ -5790,11 +6647,41 @@ typedef struct sqlite3_pcache sqlite3_pcache; ** of these pages are pinned, they are implicitly unpinned, meaning that ** they can be safely discarded. ** -** The xDestroy() method is used to delete a cache allocated by xCreate(). -** All resources associated with the specified cache should be freed. After +** [[the xDestroy() page cache method]] +** ^The xDestroy() method is used to delete a cache allocated by xCreate(). +** All resources associated with the specified cache should be freed. ^After ** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*] -** handle invalid, and will not use it with any other sqlite3_pcache_methods +** handle invalid, and will not use it with any other sqlite3_pcache_methods2 ** functions. +** +** [[the xShrink() page cache method]] +** ^SQLite invokes the xShrink() method when it wants the page cache to +** free up as much of heap memory as possible. The page cache implementation +** is not obligated to free any memory, but well-behaved implementations should +** do their best. +*/ +typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2; +struct sqlite3_pcache_methods2 { + int iVersion; + void *pArg; + int (*xInit)(void*); + void (*xShutdown)(void*); + sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable); + void (*xCachesize)(sqlite3_pcache*, int nCachesize); + int (*xPagecount)(sqlite3_pcache*); + sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag); + void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard); + void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*, + unsigned oldKey, unsigned newKey); + void (*xTruncate)(sqlite3_pcache*, unsigned iLimit); + void (*xDestroy)(sqlite3_pcache*); + void (*xShrink)(sqlite3_pcache*); +}; + +/* +** This is the obsolete pcache_methods object that has now been replaced +** by sqlite3_pcache_methods2. This object is not used by SQLite. It is +** retained in the header file for backwards compatibility only. */ typedef struct sqlite3_pcache_methods sqlite3_pcache_methods; struct sqlite3_pcache_methods { @@ -5811,12 +6698,12 @@ struct sqlite3_pcache_methods { void (*xDestroy)(sqlite3_pcache*); }; + /* ** CAPI3REF: Online Backup Object -** EXPERIMENTAL ** ** The sqlite3_backup object records state information about an ongoing -** online backup operation. The sqlite3_backup object is created by +** online backup operation. ^The sqlite3_backup object is created by ** a call to [sqlite3_backup_init()] and is destroyed by a call to ** [sqlite3_backup_finish()]. ** @@ -5826,22 +6713,22 @@ typedef struct sqlite3_backup sqlite3_backup; /* ** CAPI3REF: Online Backup API. -** EXPERIMENTAL ** -** This API is used to overwrite the contents of one database with that -** of another. It is useful either for creating backups of databases or +** The backup API copies the content of one database into another. +** It is useful either for creating backups of databases or ** for copying in-memory databases to or from persistent files. ** ** See Also: [Using the SQLite Online Backup API] ** -** Exclusive access is required to the destination database for the -** duration of the operation. However the source database is only -** read-locked while it is actually being read, it is not locked -** continuously for the entire operation. Thus, the backup may be -** performed on a live database without preventing other users from -** writing to the database for an extended period of time. +** ^SQLite holds a write transaction open on the destination database file +** for the duration of the backup operation. +** ^The source database is read-locked only while it is being read; +** it is not locked continuously for the entire backup operation. +** ^Thus, the backup may be performed on a live source database without +** preventing other database connections from +** reading or writing to the source database while the backup is underway. ** -** To perform a backup operation: +** ^(To perform a backup operation: **
      **
    1. sqlite3_backup_init() is called once to initialize the ** backup, @@ -5849,143 +6736,153 @@ typedef struct sqlite3_backup sqlite3_backup; ** the data between the two databases, and finally **
    2. sqlite3_backup_finish() is called to release all resources ** associated with the backup operation. -**
    +** )^ ** There should be exactly one call to sqlite3_backup_finish() for each ** successful call to sqlite3_backup_init(). ** -** sqlite3_backup_init() -** -** The first two arguments passed to [sqlite3_backup_init()] are the database -** handle associated with the destination database and the database name -** used to attach the destination database to the handle. The database name -** is "main" for the main database, "temp" for the temporary database, or -** the name specified as part of the [ATTACH] statement if the destination is -** an attached database. The third and fourth arguments passed to -** sqlite3_backup_init() identify the [database connection] -** and database name used -** to access the source database. The values passed for the source and -** destination [database connection] parameters must not be the same. -** -** If an error occurs within sqlite3_backup_init(), then NULL is returned -** and an error code and error message written into the [database connection] -** passed as the first argument. They may be retrieved using the -** [sqlite3_errcode()], [sqlite3_errmsg()], and [sqlite3_errmsg16()] functions. -** Otherwise, if successful, a pointer to an [sqlite3_backup] object is -** returned. This pointer may be used with the sqlite3_backup_step() and +** [[sqlite3_backup_init()]] sqlite3_backup_init() +** +** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the +** [database connection] associated with the destination database +** and the database name, respectively. +** ^The database name is "main" for the main database, "temp" for the +** temporary database, or the name specified after the AS keyword in +** an [ATTACH] statement for an attached database. +** ^The S and M arguments passed to +** sqlite3_backup_init(D,N,S,M) identify the [database connection] +** and database name of the source database, respectively. +** ^The source and destination [database connections] (parameters S and D) +** must be different or else sqlite3_backup_init(D,N,S,M) will fail with +** an error. +** +** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is +** returned and an error code and error message are stored in the +** destination [database connection] D. +** ^The error code and message for the failed call to sqlite3_backup_init() +** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or +** [sqlite3_errmsg16()] functions. +** ^A successful call to sqlite3_backup_init() returns a pointer to an +** [sqlite3_backup] object. +** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and ** sqlite3_backup_finish() functions to perform the specified backup ** operation. ** -** sqlite3_backup_step() -** -** Function [sqlite3_backup_step()] is used to copy up to nPage pages between -** the source and destination databases, where nPage is the value of the -** second parameter passed to sqlite3_backup_step(). If nPage is a negative -** value, all remaining source pages are copied. If the required pages are -** succesfully copied, but there are still more pages to copy before the -** backup is complete, it returns [SQLITE_OK]. If no error occured and there -** are no more pages to copy, then [SQLITE_DONE] is returned. If an error -** occurs, then an SQLite error code is returned. As well as [SQLITE_OK] and +** [[sqlite3_backup_step()]] sqlite3_backup_step() +** +** ^Function sqlite3_backup_step(B,N) will copy up to N pages between +** the source and destination databases specified by [sqlite3_backup] object B. +** ^If N is negative, all remaining source pages are copied. +** ^If sqlite3_backup_step(B,N) successfully copies N pages and there +** are still more pages to be copied, then the function returns [SQLITE_OK]. +** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages +** from source to destination, then it returns [SQLITE_DONE]. +** ^If an error occurs while running sqlite3_backup_step(B,N), +** then an [error code] is returned. ^As well as [SQLITE_OK] and ** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY], ** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code. ** -** As well as the case where the destination database file was opened for -** read-only access, sqlite3_backup_step() may return [SQLITE_READONLY] if -** the destination is an in-memory database with a different page size -** from the source database. -** -** If sqlite3_backup_step() cannot obtain a required file-system lock, then +** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if +**
      +**
    1. the destination database was opened read-only, or +**
    2. the destination database is using write-ahead-log journaling +** and the destination and source page sizes differ, or +**
    3. the destination database is an in-memory database and the +** destination and source page sizes differ. +**
    )^ +** +** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then ** the [sqlite3_busy_handler | busy-handler function] -** is invoked (if one is specified). If the +** is invoked (if one is specified). ^If the ** busy-handler returns non-zero before the lock is available, then -** [SQLITE_BUSY] is returned to the caller. In this case the call to -** sqlite3_backup_step() can be retried later. If the source +** [SQLITE_BUSY] is returned to the caller. ^In this case the call to +** sqlite3_backup_step() can be retried later. ^If the source ** [database connection] ** is being used to write to the source database when sqlite3_backup_step() -** is called, then [SQLITE_LOCKED] is returned immediately. Again, in this -** case the call to sqlite3_backup_step() can be retried later on. If +** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this +** case the call to sqlite3_backup_step() can be retried later on. ^(If ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or ** [SQLITE_READONLY] is returned, then ** there is no point in retrying the call to sqlite3_backup_step(). These -** errors are considered fatal. At this point the application must accept +** errors are considered fatal.)^ The application must accept ** that the backup operation has failed and pass the backup operation handle ** to the sqlite3_backup_finish() to release associated resources. ** -** Following the first call to sqlite3_backup_step(), an exclusive lock is -** obtained on the destination file. It is not released until either +** ^The first call to sqlite3_backup_step() obtains an exclusive lock +** on the destination file. ^The exclusive lock is not released until either ** sqlite3_backup_finish() is called or the backup operation is complete -** and sqlite3_backup_step() returns [SQLITE_DONE]. Additionally, each time -** a call to sqlite3_backup_step() is made a [shared lock] is obtained on -** the source database file. This lock is released before the -** sqlite3_backup_step() call returns. Because the source database is not -** locked between calls to sqlite3_backup_step(), it may be modified mid-way -** through the backup procedure. If the source database is modified by an +** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to +** sqlite3_backup_step() obtains a [shared lock] on the source database that +** lasts for the duration of the sqlite3_backup_step() call. +** ^Because the source database is not locked between calls to +** sqlite3_backup_step(), the source database may be modified mid-way +** through the backup process. ^If the source database is modified by an ** external process or via a database connection other than the one being -** used by the backup operation, then the backup will be transparently -** restarted by the next call to sqlite3_backup_step(). If the source +** used by the backup operation, then the backup will be automatically +** restarted by the next call to sqlite3_backup_step(). ^If the source ** database is modified by the using the same database connection as is used -** by the backup operation, then the backup database is transparently +** by the backup operation, then the backup database is automatically ** updated at the same time. ** -** sqlite3_backup_finish() +** [[sqlite3_backup_finish()]] sqlite3_backup_finish() ** -** Once sqlite3_backup_step() has returned [SQLITE_DONE], or when the -** application wishes to abandon the backup operation, the [sqlite3_backup] -** object should be passed to sqlite3_backup_finish(). This releases all -** resources associated with the backup operation. If sqlite3_backup_step() -** has not yet returned [SQLITE_DONE], then any active write-transaction on the -** destination database is rolled back. The [sqlite3_backup] object is invalid +** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the +** application wishes to abandon the backup operation, the application +** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish(). +** ^The sqlite3_backup_finish() interfaces releases all +** resources associated with the [sqlite3_backup] object. +** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any +** active write-transaction on the destination database is rolled back. +** The [sqlite3_backup] object is invalid ** and may not be used following a call to sqlite3_backup_finish(). ** -** The value returned by sqlite3_backup_finish is [SQLITE_OK] if no error -** occurred, regardless or whether or not sqlite3_backup_step() was called -** a sufficient number of times to complete the backup operation. Or, if -** an out-of-memory condition or IO error occured during a call to -** sqlite3_backup_step() then [SQLITE_NOMEM] or an -** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] error code -** is returned. In this case the error code and an error message are -** written to the destination [database connection]. -** -** A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() is -** not a permanent error and does not affect the return value of +** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no +** sqlite3_backup_step() errors occurred, regardless or whether or not +** sqlite3_backup_step() completed. +** ^If an out-of-memory condition or IO error occurred during any prior +** sqlite3_backup_step() call on the same [sqlite3_backup] object, then +** sqlite3_backup_finish() returns the corresponding [error code]. +** +** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() +** is not a permanent error and does not affect the return value of ** sqlite3_backup_finish(). ** -** sqlite3_backup_remaining(), sqlite3_backup_pagecount() +** [[sqlite3_backup__remaining()]] [[sqlite3_backup_pagecount()]] +** sqlite3_backup_remaining() and sqlite3_backup_pagecount() ** -** Each call to sqlite3_backup_step() sets two values stored internally -** by an [sqlite3_backup] object. The number of pages still to be backed -** up, which may be queried by sqlite3_backup_remaining(), and the total -** number of pages in the source database file, which may be queried by -** sqlite3_backup_pagecount(). +** ^Each call to sqlite3_backup_step() sets two values inside +** the [sqlite3_backup] object: the number of pages still to be backed +** up and the total number of pages in the source database file. +** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces +** retrieve these two values, respectively. ** -** The values returned by these functions are only updated by -** sqlite3_backup_step(). If the source database is modified during a backup +** ^The values returned by these functions are only updated by +** sqlite3_backup_step(). ^If the source database is modified during a backup ** operation, then the values are not updated to account for any extra ** pages that need to be updated or the size of the source database file ** changing. ** ** Concurrent Usage of Database Handles ** -** The source [database connection] may be used by the application for other +** ^The source [database connection] may be used by the application for other ** purposes while a backup operation is underway or being initialized. -** If SQLite is compiled and configured to support threadsafe database +** ^If SQLite is compiled and configured to support threadsafe database ** connections, then the source database connection may be used concurrently ** from within other threads. ** -** However, the application must guarantee that the destination database -** connection handle is not passed to any other API (by any thread) after +** However, the application must guarantee that the destination +** [database connection] is not passed to any other API (by any thread) after ** sqlite3_backup_init() is called and before the corresponding call to -** sqlite3_backup_finish(). Unfortunately SQLite does not currently check -** for this, if the application does use the destination [database connection] -** for some other purpose during a backup operation, things may appear to -** work correctly but in fact be subtly malfunctioning. Use of the -** destination database connection while a backup is in progress might -** also cause a mutex deadlock. -** -** Furthermore, if running in [shared cache mode], the application must +** sqlite3_backup_finish(). SQLite does not currently check to see +** if the application incorrectly accesses the destination [database connection] +** and so no error code is reported, but the operations may malfunction +** nevertheless. Use of the destination database connection while a +** backup is in progress might also also cause a mutex deadlock. +** +** If running in [shared cache mode], the application must ** guarantee that the shared cache used by the destination database ** is not accessed while the backup is running. In practice this means -** that the application must guarantee that the file-system file being +** that the application must guarantee that the disk file being ** backed up to is not accessed by any connection within the process, ** not just the specific connection that was passed to sqlite3_backup_init(). ** @@ -6009,50 +6906,49 @@ SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p); /* ** CAPI3REF: Unlock Notification -** EXPERIMENTAL ** -** When running in shared-cache mode, a database operation may fail with +** ^When running in shared-cache mode, a database operation may fail with ** an [SQLITE_LOCKED] error if the required locks on the shared-cache or ** individual tables within the shared-cache cannot be obtained. See ** [SQLite Shared-Cache Mode] for a description of shared-cache locking. -** This API may be used to register a callback that SQLite will invoke +** ^This API may be used to register a callback that SQLite will invoke ** when the connection currently holding the required lock relinquishes it. -** This API is only available if the library was compiled with the +** ^This API is only available if the library was compiled with the ** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined. ** ** See Also: [Using the SQLite Unlock Notification Feature]. ** -** Shared-cache locks are released when a database connection concludes +** ^Shared-cache locks are released when a database connection concludes ** its current transaction, either by committing it or rolling it back. ** -** When a connection (known as the blocked connection) fails to obtain a +** ^When a connection (known as the blocked connection) fails to obtain a ** shared-cache lock and SQLITE_LOCKED is returned to the caller, the ** identity of the database connection (the blocking connection) that -** has locked the required resource is stored internally. After an +** has locked the required resource is stored internally. ^After an ** application receives an SQLITE_LOCKED error, it may call the ** sqlite3_unlock_notify() method with the blocked connection handle as ** the first argument to register for a callback that will be invoked -** when the blocking connections current transaction is concluded. The +** when the blocking connections current transaction is concluded. ^The ** callback is invoked from within the [sqlite3_step] or [sqlite3_close] ** call that concludes the blocking connections transaction. ** -** If sqlite3_unlock_notify() is called in a multi-threaded application, +** ^(If sqlite3_unlock_notify() is called in a multi-threaded application, ** there is a chance that the blocking connection will have already ** concluded its transaction by the time sqlite3_unlock_notify() is invoked. ** If this happens, then the specified callback is invoked immediately, -** from within the call to sqlite3_unlock_notify(). +** from within the call to sqlite3_unlock_notify().)^ ** -** If the blocked connection is attempting to obtain a write-lock on a +** ^If the blocked connection is attempting to obtain a write-lock on a ** shared-cache table, and more than one other connection currently holds ** a read-lock on the same table, then SQLite arbitrarily selects one of ** the other connections to use as the blocking connection. ** -** There may be at most one unlock-notify callback registered by a +** ^(There may be at most one unlock-notify callback registered by a ** blocked connection. If sqlite3_unlock_notify() is called when the ** blocked connection already has a registered unlock-notify callback, -** then the new callback replaces the old. If sqlite3_unlock_notify() is +** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is ** called with a NULL pointer as its second argument, then any existing -** unlock-notify callback is cancelled. The blocked connections +** unlock-notify callback is canceled. ^The blocked connections ** unlock-notify callback may also be canceled by closing the blocked ** connection using [sqlite3_close()]. ** @@ -6060,7 +6956,7 @@ SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p); ** any sqlite3_xxx API functions from within an unlock-notify callback, a ** crash or deadlock may be the result. ** -** Unless deadlock is detected (see below), sqlite3_unlock_notify() always +** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always ** returns SQLITE_OK. ** ** Callback Invocation Details @@ -6074,7 +6970,7 @@ SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p); ** ** When a blocking connections transaction is concluded, there may be ** more than one blocked connection that has registered for an unlock-notify -** callback. If two or more such blocked connections have specified the +** callback. ^If two or more such blocked connections have specified the ** same callback function, then instead of invoking the callback function ** multiple times, it is invoked once with the set of void* context pointers ** specified by the blocked connections bundled together into an array. @@ -6092,16 +6988,16 @@ SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p); ** will proceed and the system may remain deadlocked indefinitely. ** ** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock -** detection. If a given call to sqlite3_unlock_notify() would put the +** detection. ^If a given call to sqlite3_unlock_notify() would put the ** system in a deadlocked state, then SQLITE_LOCKED is returned and no ** unlock-notify callback is registered. The system is said to be in ** a deadlocked state if connection A has registered for an unlock-notify ** callback on the conclusion of connection B's transaction, and connection ** B has itself registered for an unlock-notify callback when connection -** A's transaction is concluded. Indirect deadlock is also detected, so +** A's transaction is concluded. ^Indirect deadlock is also detected, so ** the system is also considered to be deadlocked if connection B has ** registered for an unlock-notify callback on the conclusion of connection -** C's transaction, where connection C is waiting on connection A. Any +** C's transaction, where connection C is waiting on connection A. ^Any ** number of levels of indirection are allowed. ** ** The "DROP TABLE" Exception @@ -6117,10 +7013,10 @@ SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p); ** or "DROP INDEX" query, an infinite loop might be the result. ** ** One way around this problem is to check the extended error code returned -** by an sqlite3_step() call. If there is a blocking connection, then the +** by an sqlite3_step() call. ^(If there is a blocking connection, then the ** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in ** the special "DROP TABLE/INDEX" case, the extended error code is just -** SQLITE_LOCKED. +** SQLITE_LOCKED.)^ */ SQLITE_API int sqlite3_unlock_notify( sqlite3 *pBlocked, /* Waiting connection */ @@ -6128,870 +7024,926 @@ SQLITE_API int sqlite3_unlock_notify( void *pNotifyArg /* Argument to pass to xNotify */ ); + /* -** Undo the hack that converts floating point types to integer for -** builds on processors without floating point support. +** CAPI3REF: String Comparison +** +** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications +** and extensions to compare the contents of two buffers containing UTF-8 +** strings in a case-independent fashion, using the same definition of "case +** independence" that SQLite uses internally when comparing identifiers. */ -#ifdef SQLITE_OMIT_FLOATING_POINT -# undef double -#endif +SQLITE_API int sqlite3_stricmp(const char *, const char *); +SQLITE_API int sqlite3_strnicmp(const char *, const char *, int); -#if 0 -} /* End of the 'extern "C"' block */ -#endif -#endif +/* +** CAPI3REF: String Globbing +* +** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches +** the glob pattern P, and it returns non-zero if string X does not match +** the glob pattern P. ^The definition of glob pattern matching used in +** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the +** SQL dialect used by SQLite. ^The sqlite3_strglob(P,X) function is case +** sensitive. +** +** Note that this routine returns zero on a match and non-zero if the strings +** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()]. +*/ +SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr); -/************** End of sqlite3.h *********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include hash.h in the middle of sqliteInt.h ******************/ -/************** Begin file hash.h ********************************************/ /* -** 2001 September 22 +** CAPI3REF: Error Logging Interface ** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: +** ^The [sqlite3_log()] interface writes a message into the [error log] +** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()]. +** ^If logging is enabled, the zFormat string and subsequent arguments are +** used with [sqlite3_snprintf()] to generate the final output string. ** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. +** The sqlite3_log() interface is intended for use by extensions such as +** virtual tables, collating functions, and SQL functions. While there is +** nothing to prevent an application from calling sqlite3_log(), doing so +** is considered bad form. ** -************************************************************************* -** This is the header file for the generic hash-table implemenation -** used in SQLite. +** The zFormat string must not be NULL. ** -** $Id: hash.h,v 1.15 2009/05/02 13:29:38 drh Exp $ +** To avoid deadlocks and other threading problems, the sqlite3_log() routine +** will not use dynamically allocated memory. The log message is stored in +** a fixed-length buffer on the stack. If the log message is longer than +** a few hundred characters, it will be truncated to the length of the +** buffer. */ -#ifndef _SQLITE_HASH_H_ -#define _SQLITE_HASH_H_ +SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...); -/* Forward declarations of structures. */ -typedef struct Hash Hash; -typedef struct HashElem HashElem; +/* +** CAPI3REF: Write-Ahead Log Commit Hook +** +** ^The [sqlite3_wal_hook()] function is used to register a callback that +** will be invoked each time a database connection commits data to a +** [write-ahead log] (i.e. whenever a transaction is committed in +** [journal_mode | journal_mode=WAL mode]). +** +** ^The callback is invoked by SQLite after the commit has taken place and +** the associated write-lock on the database released, so the implementation +** may read, write or [checkpoint] the database as required. +** +** ^The first parameter passed to the callback function when it is invoked +** is a copy of the third parameter passed to sqlite3_wal_hook() when +** registering the callback. ^The second is a copy of the database handle. +** ^The third parameter is the name of the database that was written to - +** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter +** is the number of pages currently in the write-ahead log file, +** including those that were just committed. +** +** The callback function should normally return [SQLITE_OK]. ^If an error +** code is returned, that error will propagate back up through the +** SQLite code base to cause the statement that provoked the callback +** to report an error, though the commit will have still occurred. If the +** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value +** that does not correspond to any valid SQLite error code, the results +** are undefined. +** +** A single database handle may have at most a single write-ahead log callback +** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any +** previously registered write-ahead log callback. ^Note that the +** [sqlite3_wal_autocheckpoint()] interface and the +** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will +** those overwrite any prior [sqlite3_wal_hook()] settings. +*/ +SQLITE_API void *sqlite3_wal_hook( + sqlite3*, + int(*)(void *,sqlite3*,const char*,int), + void* +); -/* A complete hash table is an instance of the following structure. -** The internals of this structure are intended to be opaque -- client -** code should not attempt to access or modify the fields of this structure -** directly. Change this structure only by using the routines below. -** However, some of the "procedures" and "functions" for modifying and -** accessing this structure are really macros, so we can't really make -** this structure opaque. +/* +** CAPI3REF: Configure an auto-checkpoint ** -** All elements of the hash table are on a single doubly-linked list. -** Hash.first points to the head of this list. +** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around +** [sqlite3_wal_hook()] that causes any database on [database connection] D +** to automatically [checkpoint] +** after committing a transaction if there are N or +** more frames in the [write-ahead log] file. ^Passing zero or +** a negative value as the nFrame parameter disables automatic +** checkpoints entirely. ** -** There are Hash.htsize buckets. Each bucket points to a spot in -** the global doubly-linked list. The contents of the bucket are the -** element pointed to plus the next _ht.count-1 elements in the list. +** ^The callback registered by this function replaces any existing callback +** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback +** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism +** configured by this function. ** -** Hash.htsize and Hash.ht may be zero. In that case lookup is done -** by a linear search of the global list. For small tables, the -** Hash.ht table is never allocated because if there are few elements -** in the table, it is faster to do a linear search than to manage -** the hash table. +** ^The [wal_autocheckpoint pragma] can be used to invoke this interface +** from SQL. +** +** ^Every new [database connection] defaults to having the auto-checkpoint +** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT] +** pages. The use of this interface +** is only necessary if the default setting is found to be suboptimal +** for a particular application. */ -struct Hash { - unsigned int htsize; /* Number of buckets in the hash table */ - unsigned int count; /* Number of entries in this table */ - HashElem *first; /* The first element of the array */ - struct _ht { /* the hash table */ - int count; /* Number of entries with this hash */ - HashElem *chain; /* Pointer to first entry with this hash */ - } *ht; -}; +SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N); -/* Each element in the hash table is an instance of the following -** structure. All elements are stored on a single doubly-linked list. +/* +** CAPI3REF: Checkpoint a database ** -** Again, this structure is intended to be opaque, but it can't really -** be opaque because it is used by macros. +** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X +** on [database connection] D to be [checkpointed]. ^If X is NULL or an +** empty string, then a checkpoint is run on all databases of +** connection D. ^If the database connection D is not in +** [WAL | write-ahead log mode] then this interface is a harmless no-op. +** +** ^The [wal_checkpoint pragma] can be used to invoke this interface +** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the +** [wal_autocheckpoint pragma] can be used to cause this interface to be +** run whenever the WAL reaches a certain size threshold. +** +** See also: [sqlite3_wal_checkpoint_v2()] */ -struct HashElem { - HashElem *next, *prev; /* Next and previous elements in the table */ - void *data; /* Data associated with this element */ - const char *pKey; int nKey; /* Key associated with this element */ -}; +SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* -** Access routines. To delete, insert a NULL pointer. +** CAPI3REF: Checkpoint a database +** +** Run a checkpoint operation on WAL database zDb attached to database +** handle db. The specific operation is determined by the value of the +** eMode parameter: +** +**
    +**
    SQLITE_CHECKPOINT_PASSIVE
    +** Checkpoint as many frames as possible without waiting for any database +** readers or writers to finish. Sync the db file if all frames in the log +** are checkpointed. This mode is the same as calling +** sqlite3_wal_checkpoint(). The busy-handler callback is never invoked. +** +**
    SQLITE_CHECKPOINT_FULL
    +** This mode blocks (calls the busy-handler callback) until there is no +** database writer and all readers are reading from the most recent database +** snapshot. It then checkpoints all frames in the log file and syncs the +** database file. This call blocks database writers while it is running, +** but not database readers. +** +**
    SQLITE_CHECKPOINT_RESTART
    +** This mode works the same way as SQLITE_CHECKPOINT_FULL, except after +** checkpointing the log file it blocks (calls the busy-handler callback) +** until all readers are reading from the database file only. This ensures +** that the next client to write to the database file restarts the log file +** from the beginning. This call blocks database writers while it is running, +** but not database readers. +**
    +** +** If pnLog is not NULL, then *pnLog is set to the total number of frames in +** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to +** the total number of checkpointed frames (including any that were already +** checkpointed when this function is called). *pnLog and *pnCkpt may be +** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK. +** If no values are available because of an error, they are both set to -1 +** before returning to communicate this to the caller. +** +** All calls obtain an exclusive "checkpoint" lock on the database file. If +** any other process is running a checkpoint operation at the same time, the +** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a +** busy-handler configured, it will not be invoked in this case. +** +** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive +** "writer" lock on the database file. If the writer lock cannot be obtained +** immediately, and a busy-handler is configured, it is invoked and the writer +** lock retried until either the busy-handler returns 0 or the lock is +** successfully obtained. The busy-handler is also invoked while waiting for +** database readers as described above. If the busy-handler returns 0 before +** the writer lock is obtained or while waiting for database readers, the +** checkpoint operation proceeds from that point in the same way as +** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible +** without blocking any further. SQLITE_BUSY is returned in this case. +** +** If parameter zDb is NULL or points to a zero length string, then the +** specified operation is attempted on all WAL databases. In this case the +** values written to output parameters *pnLog and *pnCkpt are undefined. If +** an SQLITE_BUSY error is encountered when processing one or more of the +** attached WAL databases, the operation is still attempted on any remaining +** attached databases and SQLITE_BUSY is returned to the caller. If any other +** error occurs while processing an attached database, processing is abandoned +** and the error code returned to the caller immediately. If no error +** (SQLITE_BUSY or otherwise) is encountered while processing the attached +** databases, SQLITE_OK is returned. +** +** If database zDb is the name of an attached database that is not in WAL +** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If +** zDb is not NULL (or a zero length string) and is not the name of any +** attached database, SQLITE_ERROR is returned to the caller. +*/ +SQLITE_API int sqlite3_wal_checkpoint_v2( + sqlite3 *db, /* Database handle */ + const char *zDb, /* Name of attached database (or NULL) */ + int eMode, /* SQLITE_CHECKPOINT_* value */ + int *pnLog, /* OUT: Size of WAL log in frames */ + int *pnCkpt /* OUT: Total number of frames checkpointed */ +); + +/* +** CAPI3REF: Checkpoint operation parameters +** +** These constants can be used as the 3rd parameter to +** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()] +** documentation for additional information about the meaning and use of +** each of these values. */ -SQLITE_PRIVATE void sqlite3HashInit(Hash*); -SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData); -SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey, int nKey); -SQLITE_PRIVATE void sqlite3HashClear(Hash*); +#define SQLITE_CHECKPOINT_PASSIVE 0 +#define SQLITE_CHECKPOINT_FULL 1 +#define SQLITE_CHECKPOINT_RESTART 2 /* -** Macros for looping over all elements of a hash table. The idiom is -** like this: +** CAPI3REF: Virtual Table Interface Configuration ** -** Hash h; -** HashElem *p; -** ... -** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){ -** SomeStructure *pData = sqliteHashData(p); -** // do something with pData -** } +** This function may be called by either the [xConnect] or [xCreate] method +** of a [virtual table] implementation to configure +** various facets of the virtual table interface. +** +** If this interface is invoked outside the context of an xConnect or +** xCreate virtual table method then the behavior is undefined. +** +** At present, there is only one option that may be configured using +** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].) Further options +** may be added in the future. */ -#define sqliteHashFirst(H) ((H)->first) -#define sqliteHashNext(E) ((E)->next) -#define sqliteHashData(E) ((E)->data) -/* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */ -/* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */ +SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...); /* -** Number of entries in a hash table +** CAPI3REF: Virtual Table Configuration Options +** +** These macros define the various options to the +** [sqlite3_vtab_config()] interface that [virtual table] implementations +** can use to customize and optimize their behavior. +** +**
    +**
    SQLITE_VTAB_CONSTRAINT_SUPPORT +**
    Calls of the form +** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported, +** where X is an integer. If X is zero, then the [virtual table] whose +** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not +** support constraints. In this configuration (which is the default) if +** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire +** statement is rolled back as if [ON CONFLICT | OR ABORT] had been +** specified as part of the users SQL statement, regardless of the actual +** ON CONFLICT mode specified. +** +** If X is non-zero, then the virtual table implementation guarantees +** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before +** any modifications to internal or persistent data structures have been made. +** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite +** is able to roll back a statement or database transaction, and abandon +** or continue processing the current SQL statement as appropriate. +** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns +** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode +** had been ABORT. +** +** Virtual table implementations that are required to handle OR REPLACE +** must do so within the [xUpdate] method. If a call to the +** [sqlite3_vtab_on_conflict()] function indicates that the current ON +** CONFLICT policy is REPLACE, the virtual table implementation should +** silently replace the appropriate rows within the xUpdate callback and +** return SQLITE_OK. Or, if this is not possible, it may return +** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT +** constraint handling. +**
    */ -/* #define sqliteHashCount(H) ((H)->count) // NOT USED */ +#define SQLITE_VTAB_CONSTRAINT_SUPPORT 1 -#endif /* _SQLITE_HASH_H_ */ +/* +** CAPI3REF: Determine The Virtual Table Conflict Policy +** +** This function may only be called from within a call to the [xUpdate] method +** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The +** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL], +** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode +** of the SQL statement that triggered the call to the [xUpdate] method of the +** [virtual table]. +*/ +SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *); + +/* +** CAPI3REF: Conflict resolution modes +** +** These constants are returned by [sqlite3_vtab_on_conflict()] to +** inform a [virtual table] implementation what the [ON CONFLICT] mode +** is for the SQL statement being evaluated. +** +** Note that the [SQLITE_IGNORE] constant is also used as a potential +** return value from the [sqlite3_set_authorizer()] callback and that +** [SQLITE_ABORT] is also a [result code]. +*/ +#define SQLITE_ROLLBACK 1 +/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */ +#define SQLITE_FAIL 3 +/* #define SQLITE_ABORT 4 // Also an error code */ +#define SQLITE_REPLACE 5 -/************** End of hash.h ************************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include parse.h in the middle of sqliteInt.h *****************/ -/************** Begin file parse.h *******************************************/ -#define TK_SEMI 1 -#define TK_EXPLAIN 2 -#define TK_QUERY 3 -#define TK_PLAN 4 -#define TK_BEGIN 5 -#define TK_TRANSACTION 6 -#define TK_DEFERRED 7 -#define TK_IMMEDIATE 8 -#define TK_EXCLUSIVE 9 -#define TK_COMMIT 10 -#define TK_END 11 -#define TK_ROLLBACK 12 -#define TK_SAVEPOINT 13 -#define TK_RELEASE 14 -#define TK_TO 15 -#define TK_TABLE 16 -#define TK_CREATE 17 -#define TK_IF 18 -#define TK_NOT 19 -#define TK_EXISTS 20 -#define TK_TEMP 21 -#define TK_LP 22 -#define TK_RP 23 -#define TK_AS 24 -#define TK_COMMA 25 -#define TK_ID 26 -#define TK_INDEXED 27 -#define TK_ABORT 28 -#define TK_AFTER 29 -#define TK_ANALYZE 30 -#define TK_ASC 31 -#define TK_ATTACH 32 -#define TK_BEFORE 33 -#define TK_BY 34 -#define TK_CASCADE 35 -#define TK_CAST 36 -#define TK_COLUMNKW 37 -#define TK_CONFLICT 38 -#define TK_DATABASE 39 -#define TK_DESC 40 -#define TK_DETACH 41 -#define TK_EACH 42 -#define TK_FAIL 43 -#define TK_FOR 44 -#define TK_IGNORE 45 -#define TK_INITIALLY 46 -#define TK_INSTEAD 47 -#define TK_LIKE_KW 48 -#define TK_MATCH 49 -#define TK_KEY 50 -#define TK_OF 51 -#define TK_OFFSET 52 -#define TK_PRAGMA 53 -#define TK_RAISE 54 -#define TK_REPLACE 55 -#define TK_RESTRICT 56 -#define TK_ROW 57 -#define TK_TRIGGER 58 -#define TK_VACUUM 59 -#define TK_VIEW 60 -#define TK_VIRTUAL 61 -#define TK_REINDEX 62 -#define TK_RENAME 63 -#define TK_CTIME_KW 64 -#define TK_ANY 65 -#define TK_OR 66 -#define TK_AND 67 -#define TK_IS 68 -#define TK_BETWEEN 69 -#define TK_IN 70 -#define TK_ISNULL 71 -#define TK_NOTNULL 72 -#define TK_NE 73 -#define TK_EQ 74 -#define TK_GT 75 -#define TK_LE 76 -#define TK_LT 77 -#define TK_GE 78 -#define TK_ESCAPE 79 -#define TK_BITAND 80 -#define TK_BITOR 81 -#define TK_LSHIFT 82 -#define TK_RSHIFT 83 -#define TK_PLUS 84 -#define TK_MINUS 85 -#define TK_STAR 86 -#define TK_SLASH 87 -#define TK_REM 88 -#define TK_CONCAT 89 -#define TK_COLLATE 90 -#define TK_UMINUS 91 -#define TK_UPLUS 92 -#define TK_BITNOT 93 -#define TK_STRING 94 -#define TK_JOIN_KW 95 -#define TK_CONSTRAINT 96 -#define TK_DEFAULT 97 -#define TK_NULL 98 -#define TK_PRIMARY 99 -#define TK_UNIQUE 100 -#define TK_CHECK 101 -#define TK_REFERENCES 102 -#define TK_AUTOINCR 103 -#define TK_ON 104 -#define TK_DELETE 105 -#define TK_UPDATE 106 -#define TK_INSERT 107 -#define TK_SET 108 -#define TK_DEFERRABLE 109 -#define TK_FOREIGN 110 -#define TK_DROP 111 -#define TK_UNION 112 -#define TK_ALL 113 -#define TK_EXCEPT 114 -#define TK_INTERSECT 115 -#define TK_SELECT 116 -#define TK_DISTINCT 117 -#define TK_DOT 118 -#define TK_FROM 119 -#define TK_JOIN 120 -#define TK_USING 121 -#define TK_ORDER 122 -#define TK_GROUP 123 -#define TK_HAVING 124 -#define TK_LIMIT 125 -#define TK_WHERE 126 -#define TK_INTO 127 -#define TK_VALUES 128 -#define TK_INTEGER 129 -#define TK_FLOAT 130 -#define TK_BLOB 131 -#define TK_REGISTER 132 -#define TK_VARIABLE 133 -#define TK_CASE 134 -#define TK_WHEN 135 -#define TK_THEN 136 -#define TK_ELSE 137 -#define TK_INDEX 138 -#define TK_ALTER 139 -#define TK_ADD 140 -#define TK_TO_TEXT 141 -#define TK_TO_BLOB 142 -#define TK_TO_NUMERIC 143 -#define TK_TO_INT 144 -#define TK_TO_REAL 145 -#define TK_END_OF_FILE 146 -#define TK_ILLEGAL 147 -#define TK_SPACE 148 -#define TK_UNCLOSED_STRING 149 -#define TK_FUNCTION 150 -#define TK_COLUMN 151 -#define TK_AGG_FUNCTION 152 -#define TK_AGG_COLUMN 153 -#define TK_CONST_FUNC 154 -/************** End of parse.h ***********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -#include -#include -#include -#include -#include /* -** If compiling for a processor that lacks floating point support, -** substitute integer for floating-point +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT -# define double sqlite_int64 -# define LONGDOUBLE_TYPE sqlite_int64 -# ifndef SQLITE_BIG_DBL -# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<60) -# endif -# define SQLITE_OMIT_DATETIME_FUNCS 1 -# define SQLITE_OMIT_TRACE 1 -# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT -# undef SQLITE_HAVE_ISNAN +# undef double #endif -#ifndef SQLITE_BIG_DBL -# define SQLITE_BIG_DBL (1e99) + +#if 0 +} /* End of the 'extern "C"' block */ #endif +#endif /* _SQLITE3_H_ */ /* -** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 -** afterward. Having this macro allows us to cause the C compiler -** to omit code used by TEMP tables without messy #ifndef statements. +** 2010 August 30 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* */ -#ifdef SQLITE_OMIT_TEMPDB -#define OMIT_TEMPDB 1 -#else -#define OMIT_TEMPDB 0 + +#ifndef _SQLITE3RTREE_H_ +#define _SQLITE3RTREE_H_ + + +#if 0 +extern "C" { #endif +typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry; + /* -** If the following macro is set to 1, then NULL values are considered -** distinct when determining whether or not two entries are the same -** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, -** OCELOT, and Firebird all work. The SQL92 spec explicitly says this -** is the way things are suppose to work. +** Register a geometry callback named zGeom that can be used as part of an +** R-Tree geometry query as follows: ** -** If the following macro is set to 0, the NULLs are indistinct for -** a UNIQUE index. In this mode, you can only have a single NULL entry -** for a column declared UNIQUE. This is the way Informix and SQL Server -** work. +** SELECT ... FROM WHERE MATCH $zGeom(... params ...) */ -#define NULL_DISTINCT_FOR_UNIQUE 1 +SQLITE_API int sqlite3_rtree_geometry_callback( + sqlite3 *db, + const char *zGeom, +#ifdef SQLITE_RTREE_INT_ONLY + int (*xGeom)(sqlite3_rtree_geometry*, int n, sqlite3_int64 *a, int *pRes), +#else + int (*xGeom)(sqlite3_rtree_geometry*, int n, double *a, int *pRes), +#endif + void *pContext +); + /* -** The "file format" number is an integer that is incremented whenever -** the VDBE-level file format changes. The following macros define the -** the default file format for new databases and the maximum file format -** that the library can read. +** A pointer to a structure of the following type is passed as the first +** argument to callbacks registered using rtree_geometry_callback(). */ -#define SQLITE_MAX_FILE_FORMAT 4 -#ifndef SQLITE_DEFAULT_FILE_FORMAT -# define SQLITE_DEFAULT_FILE_FORMAT 1 +struct sqlite3_rtree_geometry { + void *pContext; /* Copy of pContext passed to s_r_g_c() */ + int nParam; /* Size of array aParam[] */ + double *aParam; /* Parameters passed to SQL geom function */ + void *pUser; /* Callback implementation user data */ + void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */ +}; + + +#if 0 +} /* end of the 'extern "C"' block */ #endif +#endif /* ifndef _SQLITE3RTREE_H_ */ + + +/************** End of sqlite3.h *********************************************/ +/************** Begin file sqliteInt.h ***************************************/ /* -** Provide a default value for SQLITE_TEMP_STORE in case it is not specified -** on the command-line +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Internal interface definitions for SQLite. +** */ -#ifndef SQLITE_TEMP_STORE -# define SQLITE_TEMP_STORE 1 -#endif +#ifndef _SQLITEINT_H_ +#define _SQLITEINT_H_ /* -** GCC does not define the offsetof() macro so we'll have to do it -** ourselves. +** These #defines should enable >2GB file support on POSIX if the +** underlying operating system supports it. If the OS lacks +** large file support, or if the OS is windows, these should be no-ops. +** +** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any +** system #includes. Hence, this block of code must be the very first +** code in all source files. +** +** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch +** on the compiler command line. This is necessary if you are compiling +** on a recent machine (ex: Red Hat 7.2) but you want your code to work +** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 +** without this option, LFS is enable. But LFS does not exist in the kernel +** in Red Hat 6.0, so the code won't work. Hence, for maximum binary +** portability you should omit LFS. +** +** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. */ -#ifndef offsetof -#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) +#ifndef SQLITE_DISABLE_LFS +# define _LARGE_FILE 1 +# ifndef _FILE_OFFSET_BITS +# define _FILE_OFFSET_BITS 64 +# endif +# define _LARGEFILE_SOURCE 1 #endif /* -** Check to see if this machine uses EBCDIC. (Yes, believe it or -** not, there are still machines out there that use EBCDIC.) +** Include the configuration header output by 'configure' if we're using the +** autoconf-based build */ -#if 'A' == '\301' -# define SQLITE_EBCDIC 1 -#else -# define SQLITE_ASCII 1 +#ifdef _HAVE_SQLITE_CONFIG_H +#include "config.h" #endif +/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/ +/************** Begin file sqliteLimit.h *************************************/ /* -** Integers of known sizes. These typedefs might change for architectures -** where the sizes very. Preprocessor macros are available so that the -** types can be conveniently redefined at compile-type. Like this: +** 2007 May 7 ** -** cc '-DUINTPTR_TYPE=long long int' ... +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file defines various limits of what SQLite can process. */ -#ifndef UINT32_TYPE -# ifdef HAVE_UINT32_T -# define UINT32_TYPE uint32_t -# else -# define UINT32_TYPE unsigned int -# endif -#endif -#ifndef UINT16_TYPE -# ifdef HAVE_UINT16_T -# define UINT16_TYPE uint16_t -# else -# define UINT16_TYPE unsigned short int -# endif -#endif -#ifndef INT16_TYPE -# ifdef HAVE_INT16_T -# define INT16_TYPE int16_t -# else -# define INT16_TYPE short int -# endif -#endif -#ifndef UINT8_TYPE -# ifdef HAVE_UINT8_T -# define UINT8_TYPE uint8_t -# else -# define UINT8_TYPE unsigned char -# endif -#endif -#ifndef INT8_TYPE -# ifdef HAVE_INT8_T -# define INT8_TYPE int8_t -# else -# define INT8_TYPE signed char -# endif -#endif -#ifndef LONGDOUBLE_TYPE -# define LONGDOUBLE_TYPE long double -#endif -typedef sqlite_int64 i64; /* 8-byte signed integer */ -typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ -typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ -typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ -typedef INT16_TYPE i16; /* 2-byte signed integer */ -typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ -typedef INT8_TYPE i8; /* 1-byte signed integer */ /* -** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value -** that can be stored in a u32 without loss of data. The value -** is 0x00000000ffffffff. But because of quirks of some compilers, we -** have to specify the value in the less intuitive manner shown: +** The maximum length of a TEXT or BLOB in bytes. This also +** limits the size of a row in a table or index. +** +** The hard limit is the ability of a 32-bit signed integer +** to count the size: 2^31-1 or 2147483647. */ -#define SQLITE_MAX_U32 ((((u64)1)<<32)-1) +#ifndef SQLITE_MAX_LENGTH +# define SQLITE_MAX_LENGTH 1000000000 +#endif /* -** Macros to determine whether the machine is big or little endian, -** evaluated at runtime. +** This is the maximum number of +** +** * Columns in a table +** * Columns in an index +** * Columns in a view +** * Terms in the SET clause of an UPDATE statement +** * Terms in the result set of a SELECT statement +** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement. +** * Terms in the VALUES clause of an INSERT statement +** +** The hard upper limit here is 32676. Most database people will +** tell you that in a well-normalized database, you usually should +** not have more than a dozen or so columns in any table. And if +** that is the case, there is no point in having more than a few +** dozen values in any of the other situations described above. */ -#ifdef SQLITE_AMALGAMATION -SQLITE_PRIVATE const int sqlite3one = 1; -#else -SQLITE_PRIVATE const int sqlite3one; -#endif -#if defined(i386) || defined(__i386__) || defined(_M_IX86)\ - || defined(__x86_64) || defined(__x86_64__) -# define SQLITE_BIGENDIAN 0 -# define SQLITE_LITTLEENDIAN 1 -# define SQLITE_UTF16NATIVE SQLITE_UTF16LE -#else -# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) -# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) -# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) +#ifndef SQLITE_MAX_COLUMN +# define SQLITE_MAX_COLUMN 2000 #endif /* -** Constants for the largest and smallest possible 64-bit signed integers. -** These macros are designed to work correctly on both 32-bit and 64-bit -** compilers. +** The maximum length of a single SQL statement in bytes. +** +** It used to be the case that setting this value to zero would +** turn the limit off. That is no longer true. It is not possible +** to turn this limit off. */ -#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) -#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) +#ifndef SQLITE_MAX_SQL_LENGTH +# define SQLITE_MAX_SQL_LENGTH 1000000000 +#endif -/* -** Round up a number to the next larger multiple of 8. This is used -** to force 8-byte alignment on 64-bit architectures. +/* +** The maximum depth of an expression tree. This is limited to +** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might +** want to place more severe limits on the complexity of an +** expression. +** +** A value of 0 used to mean that the limit was not enforced. +** But that is no longer true. The limit is now strictly enforced +** at all times. */ -#define ROUND8(x) (((x)+7)&~7) +#ifndef SQLITE_MAX_EXPR_DEPTH +# define SQLITE_MAX_EXPR_DEPTH 1000 +#endif /* -** Round down to the nearest multiple of 8 +** The maximum number of terms in a compound SELECT statement. +** The code generator for compound SELECT statements does one +** level of recursion for each term. A stack overflow can result +** if the number of terms is too large. In practice, most SQL +** never has more than 3 or 4 terms. Use a value of 0 to disable +** any limit on the number of terms in a compount SELECT. */ -#define ROUNDDOWN8(x) ((x)&~7) +#ifndef SQLITE_MAX_COMPOUND_SELECT +# define SQLITE_MAX_COMPOUND_SELECT 500 +#endif /* -** Assert that the pointer X is aligned to an 8-byte boundary. +** The maximum number of opcodes in a VDBE program. +** Not currently enforced. */ -#define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) - +#ifndef SQLITE_MAX_VDBE_OP +# define SQLITE_MAX_VDBE_OP 25000 +#endif /* -** An instance of the following structure is used to store the busy-handler -** callback for a given sqlite handle. -** -** The sqlite.busyHandler member of the sqlite struct contains the busy -** callback for the database handle. Each pager opened via the sqlite -** handle is passed a pointer to sqlite.busyHandler. The busy-handler -** callback is currently invoked only from within pager.c. +** The maximum number of arguments to an SQL function. */ -typedef struct BusyHandler BusyHandler; -struct BusyHandler { - int (*xFunc)(void *,int); /* The busy callback */ - void *pArg; /* First arg to busy callback */ - int nBusy; /* Incremented with each busy call */ -}; +#ifndef SQLITE_MAX_FUNCTION_ARG +# define SQLITE_MAX_FUNCTION_ARG 127 +#endif /* -** Name of the master database table. The master database table -** is a special table that holds the names and attributes of all -** user tables and indices. +** The maximum number of in-memory pages to use for the main database +** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE */ -#define MASTER_NAME "sqlite_master" -#define TEMP_MASTER_NAME "sqlite_temp_master" +#ifndef SQLITE_DEFAULT_CACHE_SIZE +# define SQLITE_DEFAULT_CACHE_SIZE 2000 +#endif +#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE +# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500 +#endif /* -** The root-page of the master database table. +** The default number of frames to accumulate in the log file before +** checkpointing the database in WAL mode. */ -#define MASTER_ROOT 1 +#ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT +# define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000 +#endif /* -** The name of the schema table. +** The maximum number of attached databases. This must be between 0 +** and 62. The upper bound on 62 is because a 64-bit integer bitmap +** is used internally to track attached databases. */ -#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) +#ifndef SQLITE_MAX_ATTACHED +# define SQLITE_MAX_ATTACHED 10 +#endif + /* -** A convenience macro that returns the number of elements in -** an array. +** The maximum value of a ?nnn wildcard that the parser will accept. */ -#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) +#ifndef SQLITE_MAX_VARIABLE_NUMBER +# define SQLITE_MAX_VARIABLE_NUMBER 999 +#endif -/* -** The following value as a destructor means to use sqlite3DbFree(). -** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. +/* Maximum page size. The upper bound on this value is 65536. This a limit +** imposed by the use of 16-bit offsets within each page. +** +** Earlier versions of SQLite allowed the user to change this value at +** compile time. This is no longer permitted, on the grounds that it creates +** a library that is technically incompatible with an SQLite library +** compiled with a different limit. If a process operating on a database +** with a page-size of 65536 bytes crashes, then an instance of SQLite +** compiled with the default page-size limit will not be able to rollback +** the aborted transaction. This could lead to database corruption. */ -#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) +#ifdef SQLITE_MAX_PAGE_SIZE +# undef SQLITE_MAX_PAGE_SIZE +#endif +#define SQLITE_MAX_PAGE_SIZE 65536 + /* -** When SQLITE_OMIT_WSD is defined, it means that the target platform does -** not support Writable Static Data (WSD) such as global and static variables. -** All variables must either be on the stack or dynamically allocated from -** the heap. When WSD is unsupported, the variable declarations scattered -** throughout the SQLite code must become constants instead. The SQLITE_WSD -** macro is used for this purpose. And instead of referencing the variable -** directly, we use its constant as a key to lookup the run-time allocated -** buffer that holds real variable. The constant is also the initializer -** for the run-time allocated buffer. -** -** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL -** macros become no-ops and have zero performance impact. +** The default size of a database page. */ -#ifdef SQLITE_OMIT_WSD - #define SQLITE_WSD const - #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) - #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) -SQLITE_API int sqlite3_wsd_init(int N, int J); -SQLITE_API void *sqlite3_wsd_find(void *K, int L); -#else - #define SQLITE_WSD - #define GLOBAL(t,v) v - #define sqlite3GlobalConfig sqlite3Config +#ifndef SQLITE_DEFAULT_PAGE_SIZE +# define SQLITE_DEFAULT_PAGE_SIZE 1024 +#endif +#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE +# undef SQLITE_DEFAULT_PAGE_SIZE +# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE #endif /* -** The following macros are used to suppress compiler warnings and to -** make it clear to human readers when a function parameter is deliberately -** left unused within the body of a function. This usually happens when -** a function is called via a function pointer. For example the -** implementation of an SQL aggregate step callback may not use the -** parameter indicating the number of arguments passed to the aggregate, -** if it knows that this is enforced elsewhere. -** -** When a function parameter is not used at all within the body of a function, -** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. -** However, these macros may also be used to suppress warnings related to -** parameters that may or may not be used depending on compilation options. -** For example those parameters only used in assert() statements. In these -** cases the parameters are named as per the usual conventions. +** Ordinarily, if no value is explicitly provided, SQLite creates databases +** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain +** device characteristics (sector-size and atomic write() support), +** SQLite may choose a larger value. This constant is the maximum value +** SQLite will choose on its own. */ -#define UNUSED_PARAMETER(x) (void)(x) -#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) +#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE +# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192 +#endif +#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE +# undef SQLITE_MAX_DEFAULT_PAGE_SIZE +# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE +#endif + /* -** Forward references to structures +** Maximum number of pages in one database file. +** +** This is really just the default value for the max_page_count pragma. +** This value can be lowered (or raised) at run-time using that the +** max_page_count macro. */ -typedef struct AggInfo AggInfo; -typedef struct AuthContext AuthContext; -typedef struct AutoincInfo AutoincInfo; -typedef struct Bitvec Bitvec; -typedef struct RowSet RowSet; -typedef struct CollSeq CollSeq; -typedef struct Column Column; -typedef struct Db Db; -typedef struct Schema Schema; -typedef struct Expr Expr; -typedef struct ExprList ExprList; -typedef struct ExprSpan ExprSpan; -typedef struct FKey FKey; -typedef struct FuncDef FuncDef; -typedef struct FuncDefHash FuncDefHash; -typedef struct IdList IdList; -typedef struct Index Index; -typedef struct KeyClass KeyClass; -typedef struct KeyInfo KeyInfo; -typedef struct Lookaside Lookaside; -typedef struct LookasideSlot LookasideSlot; -typedef struct Module Module; -typedef struct NameContext NameContext; -typedef struct Parse Parse; -typedef struct Savepoint Savepoint; -typedef struct Select Select; -typedef struct SrcList SrcList; -typedef struct StrAccum StrAccum; -typedef struct Table Table; -typedef struct TableLock TableLock; -typedef struct Token Token; -typedef struct TriggerStack TriggerStack; -typedef struct TriggerStep TriggerStep; -typedef struct Trigger Trigger; -typedef struct UnpackedRecord UnpackedRecord; -typedef struct Walker Walker; -typedef struct WherePlan WherePlan; -typedef struct WhereInfo WhereInfo; -typedef struct WhereLevel WhereLevel; +#ifndef SQLITE_MAX_PAGE_COUNT +# define SQLITE_MAX_PAGE_COUNT 1073741823 +#endif /* -** Defer sourcing vdbe.h and btree.h until after the "u8" and -** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque -** pointer types (i.e. FuncDef) defined above. +** Maximum length (in bytes) of the pattern in a LIKE or GLOB +** operator. */ -/************** Include btree.h in the middle of sqliteInt.h *****************/ -/************** Begin file btree.h *******************************************/ +#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH +# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 +#endif + /* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This header file defines the interface that the sqlite B-Tree file -** subsystem. See comments in the source code for a detailed description -** of what each interface routine does. +** Maximum depth of recursion for triggers. ** -** @(#) $Id: btree.h,v 1.116 2009/06/03 11:25:07 danielk1977 Exp $ +** A value of 1 means that a trigger program will not be able to itself +** fire any triggers. A value of 0 means that no trigger programs at all +** may be executed. */ -#ifndef _BTREE_H_ -#define _BTREE_H_ +#ifndef SQLITE_MAX_TRIGGER_DEPTH +# define SQLITE_MAX_TRIGGER_DEPTH 1000 +#endif -/* TODO: This definition is just included so other modules compile. It -** needs to be revisited. -*/ -#define SQLITE_N_BTREE_META 10 +/************** End of sqliteLimit.h *****************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ -/* -** If defined as non-zero, auto-vacuum is enabled by default. Otherwise -** it must be turned on for each database using "PRAGMA auto_vacuum = 1". -*/ -#ifndef SQLITE_DEFAULT_AUTOVACUUM - #define SQLITE_DEFAULT_AUTOVACUUM 0 +/* Disable nuisance warnings on Borland compilers */ +#if defined(__BORLANDC__) +#pragma warn -rch /* unreachable code */ +#pragma warn -ccc /* Condition is always true or false */ +#pragma warn -aus /* Assigned value is never used */ +#pragma warn -csu /* Comparing signed and unsigned */ +#pragma warn -spa /* Suspicious pointer arithmetic */ #endif -#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */ -#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */ -#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ +/* Needed for various definitions... */ +#ifndef _GNU_SOURCE +# define _GNU_SOURCE +#endif + +#if defined(__OpenBSD__) && !defined(_BSD_SOURCE) +# define _BSD_SOURCE +#endif /* -** Forward declarations of structure +** Include standard header files as necessary */ -typedef struct Btree Btree; -typedef struct BtCursor BtCursor; -typedef struct BtShared BtShared; -typedef struct BtreeMutexArray BtreeMutexArray; +#ifdef HAVE_STDINT_H +#include +#endif +#ifdef HAVE_INTTYPES_H +#include +#endif /* -** This structure records all of the Btrees that need to hold -** a mutex before we enter sqlite3VdbeExec(). The Btrees are -** are placed in aBtree[] in order of aBtree[]->pBt. That way, -** we can always lock and unlock them all quickly. +** The following macros are used to cast pointers to integers and +** integers to pointers. The way you do this varies from one compiler +** to the next, so we have developed the following set of #if statements +** to generate appropriate macros for a wide range of compilers. +** +** The correct "ANSI" way to do this is to use the intptr_t type. +** Unfortunately, that typedef is not available on all compilers, or +** if it is available, it requires an #include of specific headers +** that vary from one machine to the next. +** +** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on +** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). +** So we have to define the macros in different ways depending on the +** compiler. */ -struct BtreeMutexArray { - int nMutex; - Btree *aBtree[SQLITE_MAX_ATTACHED+1]; -}; - - -SQLITE_PRIVATE int sqlite3BtreeOpen( - const char *zFilename, /* Name of database file to open */ - sqlite3 *db, /* Associated database connection */ - Btree **ppBtree, /* Return open Btree* here */ - int flags, /* Flags */ - int vfsFlags /* Flags passed through to VFS open */ -); +#if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ +# define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) +# define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) +#elif !defined(__GNUC__) /* Works for compilers other than LLVM */ +# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) +# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) +#elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ +# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) +# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) +#else /* Generates a warning - but it always works */ +# define SQLITE_INT_TO_PTR(X) ((void*)(X)) +# define SQLITE_PTR_TO_INT(X) ((int)(X)) +#endif -/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the -** following values. +/* +** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. +** 0 means mutexes are permanently disable and the library is never +** threadsafe. 1 means the library is serialized which is the highest +** level of threadsafety. 2 means the library is multithreaded - multiple +** threads can use SQLite as long as no two threads try to use the same +** database connection at the same time. ** -** NOTE: These values must match the corresponding PAGER_ values in -** pager.h. +** Older versions of SQLite used an optional THREADSAFE macro. +** We support that for legacy. */ -#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */ -#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */ -#define BTREE_MEMORY 4 /* In-memory DB. No argument */ -#define BTREE_READONLY 8 /* Open the database in read-only mode */ -#define BTREE_READWRITE 16 /* Open for both reading and writing */ -#define BTREE_CREATE 32 /* Create the database if it does not exist */ - -SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); -SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); -SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int); -SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*); -SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix); -SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*); -SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int); -SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*); -SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); -SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); -SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int); -SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); -SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*); -SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*); -SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*); -SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int); -SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags); -SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*); -SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*); -SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*); -SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); -SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *); -SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *, int, u8); -SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int); - -SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *); -SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *); -SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *); - -SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *); +#if !defined(SQLITE_THREADSAFE) +# if defined(THREADSAFE) +# define SQLITE_THREADSAFE THREADSAFE +# else +# define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ +# endif +#endif -/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR -** of the following flags: +/* +** Powersafe overwrite is on by default. But can be turned off using +** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. */ -#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ -#define BTREE_ZERODATA 2 /* Table has keys only - no data */ -#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */ - -SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*); -SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, int*); -SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int); +#ifndef SQLITE_POWERSAFE_OVERWRITE +# define SQLITE_POWERSAFE_OVERWRITE 1 +#endif -SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue); -SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); +/* +** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. +** It determines whether or not the features related to +** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can +** be overridden at runtime using the sqlite3_config() API. +*/ +#if !defined(SQLITE_DEFAULT_MEMSTATUS) +# define SQLITE_DEFAULT_MEMSTATUS 1 +#endif /* -** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta -** should be one of the following values. The integer values are assigned -** to constants so that the offset of the corresponding field in an -** SQLite database header may be found using the following formula: +** Exactly one of the following macros must be defined in order to +** specify which memory allocation subsystem to use. ** -** offset = 36 + (idx * 4) +** SQLITE_SYSTEM_MALLOC // Use normal system malloc() +** SQLITE_WIN32_MALLOC // Use Win32 native heap API +** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails +** SQLITE_MEMDEBUG // Debugging version of system malloc() ** -** For example, the free-page-count field is located at byte offset 36 of -** the database file header. The incr-vacuum-flag field is located at -** byte offset 64 (== 36+4*7). +** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the +** assert() macro is enabled, each call into the Win32 native heap subsystem +** will cause HeapValidate to be called. If heap validation should fail, an +** assertion will be triggered. +** +** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as +** the default. */ -#define BTREE_FREE_PAGE_COUNT 0 -#define BTREE_SCHEMA_VERSION 1 -#define BTREE_FILE_FORMAT 2 -#define BTREE_DEFAULT_CACHE_SIZE 3 -#define BTREE_LARGEST_ROOT_PAGE 4 -#define BTREE_TEXT_ENCODING 5 -#define BTREE_USER_VERSION 6 -#define BTREE_INCR_VACUUM 7 - -SQLITE_PRIVATE int sqlite3BtreeCursor( - Btree*, /* BTree containing table to open */ - int iTable, /* Index of root page */ - int wrFlag, /* 1 for writing. 0 for read-only */ - struct KeyInfo*, /* First argument to compare function */ - BtCursor *pCursor /* Space to write cursor structure */ -); -SQLITE_PRIVATE int sqlite3BtreeCursorSize(void); +#if defined(SQLITE_SYSTEM_MALLOC) \ + + defined(SQLITE_WIN32_MALLOC) \ + + defined(SQLITE_ZERO_MALLOC) \ + + defined(SQLITE_MEMDEBUG)>1 +# error "Two or more of the following compile-time configuration options\ + are defined but at most one is allowed:\ + SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ + SQLITE_ZERO_MALLOC" +#endif +#if defined(SQLITE_SYSTEM_MALLOC) \ + + defined(SQLITE_WIN32_MALLOC) \ + + defined(SQLITE_ZERO_MALLOC) \ + + defined(SQLITE_MEMDEBUG)==0 +# define SQLITE_SYSTEM_MALLOC 1 +#endif -SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*); -SQLITE_PRIVATE int sqlite3BtreeMoveto( - BtCursor*, - const void *pKey, - i64 nKey, - int bias, - int *pRes -); -SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked( - BtCursor*, - UnpackedRecord *pUnKey, - i64 intKey, - int bias, - int *pRes -); -SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*, int*); -SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*); -SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey, - const void *pData, int nData, - int nZero, int bias, int seekResult); -SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); -SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); -SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes); -SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); -SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor*); -SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes); -SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); -SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); -SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt); -SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt); -SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); -SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); -SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64); -SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*); +/* +** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the +** sizes of memory allocations below this value where possible. +*/ +#if !defined(SQLITE_MALLOC_SOFT_LIMIT) +# define SQLITE_MALLOC_SOFT_LIMIT 1024 +#endif -SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); -SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); +/* +** We need to define _XOPEN_SOURCE as follows in order to enable +** recursive mutexes on most Unix systems and fchmod() on OpenBSD. +** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit +** it. +*/ +#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) +# define _XOPEN_SOURCE 600 +#endif -SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); -SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *); -SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); +/* +** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that +** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, +** make it true by defining or undefining NDEBUG. +** +** Setting NDEBUG makes the code smaller and faster by disabling the +** assert() statements in the code. So we want the default action +** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG +** is set. Thus NDEBUG becomes an opt-in rather than an opt-out +** feature. +*/ +#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) +# define NDEBUG 1 +#endif +#if defined(NDEBUG) && defined(SQLITE_DEBUG) +# undef NDEBUG +#endif -#ifndef SQLITE_OMIT_BTREECOUNT -SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *); +/* +** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. +*/ +#if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) +# define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 #endif -#ifdef SQLITE_TEST -SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); -SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); +/* +** The testcase() macro is used to aid in coverage testing. When +** doing coverage testing, the condition inside the argument to +** testcase() must be evaluated both true and false in order to +** get full branch coverage. The testcase() macro is inserted +** to help ensure adequate test coverage in places where simple +** condition/decision coverage is inadequate. For example, testcase() +** can be used to make sure boundary values are tested. For +** bitmask tests, testcase() can be used to make sure each bit +** is significant and used at least once. On switch statements +** where multiple cases go to the same block of code, testcase() +** can insure that all cases are evaluated. +** +*/ +#ifdef SQLITE_COVERAGE_TEST +SQLITE_PRIVATE void sqlite3Coverage(int); +# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } +#else +# define testcase(X) #endif /* -** If we are not using shared cache, then there is no need to -** use mutexes to access the BtShared structures. So make the -** Enter and Leave procedures no-ops. +** The TESTONLY macro is used to enclose variable declarations or +** other bits of code that are needed to support the arguments +** within testcase() and assert() macros. */ -#ifndef SQLITE_OMIT_SHARED_CACHE -SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*); -SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*); +#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) +# define TESTONLY(X) X #else -# define sqlite3BtreeEnter(X) -# define sqlite3BtreeEnterAll(X) +# define TESTONLY(X) #endif -#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE -SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*); -SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*); -SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*); -SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*); -SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*); -SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*); -SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*); +/* +** Sometimes we need a small amount of code such as a variable initialization +** to setup for a later assert() statement. We do not want this code to +** appear when assert() is disabled. The following macro is therefore +** used to contain that setup code. The "VVA" acronym stands for +** "Verification, Validation, and Accreditation". In other words, the +** code within VVA_ONLY() will only run during verification processes. +*/ #ifndef NDEBUG - /* These routines are used inside assert() statements only. */ -SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*); -SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); -#endif +# define VVA_ONLY(X) X #else +# define VVA_ONLY(X) +#endif -# define sqlite3BtreeLeave(X) -# define sqlite3BtreeEnterCursor(X) -# define sqlite3BtreeLeaveCursor(X) -# define sqlite3BtreeLeaveAll(X) -# define sqlite3BtreeMutexArrayEnter(X) -# define sqlite3BtreeMutexArrayLeave(X) -# define sqlite3BtreeMutexArrayInsert(X,Y) - -# define sqlite3BtreeHoldsMutex(X) 1 -# define sqlite3BtreeHoldsAllMutexes(X) 1 +/* +** The ALWAYS and NEVER macros surround boolean expressions which +** are intended to always be true or false, respectively. Such +** expressions could be omitted from the code completely. But they +** are included in a few cases in order to enhance the resilience +** of SQLite to unexpected behavior - to make the code "self-healing" +** or "ductile" rather than being "brittle" and crashing at the first +** hint of unplanned behavior. +** +** In other words, ALWAYS and NEVER are added for defensive code. +** +** When doing coverage testing ALWAYS and NEVER are hard-coded to +** be true and false so that the unreachable code they specify will +** not be counted as untested code. +*/ +#if defined(SQLITE_COVERAGE_TEST) +# define ALWAYS(X) (1) +# define NEVER(X) (0) +#elif !defined(NDEBUG) +# define ALWAYS(X) ((X)?1:(assert(0),0)) +# define NEVER(X) ((X)?(assert(0),1):0) +#else +# define ALWAYS(X) (X) +# define NEVER(X) (X) #endif +/* +** Return true (non-zero) if the input is a integer that is too large +** to fit in 32-bits. This macro is used inside of various testcase() +** macros to verify that we have tested SQLite for large-file support. +*/ +#define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) -#endif /* _BTREE_H_ */ +/* +** The macro unlikely() is a hint that surrounds a boolean +** expression that is usually false. Macro likely() surrounds +** a boolean expression that is usually true. These hints could, +** in theory, be used by the compiler to generate better code, but +** currently they are just comments for human readers. +*/ +#define likely(X) (X) +#define unlikely(X) (X) -/************** End of btree.h ***********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include vdbe.h in the middle of sqliteInt.h ******************/ -/************** Begin file vdbe.h ********************************************/ +/************** Include hash.h in the middle of sqliteInt.h ******************/ +/************** Begin file hash.h ********************************************/ /* -** 2001 September 15 +** 2001 September 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: @@ -7001,718 +7953,972 @@ SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); ** May you share freely, never taking more than you give. ** ************************************************************************* -** Header file for the Virtual DataBase Engine (VDBE) +** This is the header file for the generic hash-table implementation +** used in SQLite. +*/ +#ifndef _SQLITE_HASH_H_ +#define _SQLITE_HASH_H_ + +/* Forward declarations of structures. */ +typedef struct Hash Hash; +typedef struct HashElem HashElem; + +/* A complete hash table is an instance of the following structure. +** The internals of this structure are intended to be opaque -- client +** code should not attempt to access or modify the fields of this structure +** directly. Change this structure only by using the routines below. +** However, some of the "procedures" and "functions" for modifying and +** accessing this structure are really macros, so we can't really make +** this structure opaque. ** -** This header defines the interface to the virtual database engine -** or VDBE. The VDBE implements an abstract machine that runs a -** simple program to access and modify the underlying database. +** All elements of the hash table are on a single doubly-linked list. +** Hash.first points to the head of this list. +** +** There are Hash.htsize buckets. Each bucket points to a spot in +** the global doubly-linked list. The contents of the bucket are the +** element pointed to plus the next _ht.count-1 elements in the list. ** -** $Id: vdbe.h,v 1.141 2009/04/10 00:56:29 drh Exp $ +** Hash.htsize and Hash.ht may be zero. In that case lookup is done +** by a linear search of the global list. For small tables, the +** Hash.ht table is never allocated because if there are few elements +** in the table, it is faster to do a linear search than to manage +** the hash table. */ -#ifndef _SQLITE_VDBE_H_ -#define _SQLITE_VDBE_H_ +struct Hash { + unsigned int htsize; /* Number of buckets in the hash table */ + unsigned int count; /* Number of entries in this table */ + HashElem *first; /* The first element of the array */ + struct _ht { /* the hash table */ + int count; /* Number of entries with this hash */ + HashElem *chain; /* Pointer to first entry with this hash */ + } *ht; +}; -/* -** A single VDBE is an opaque structure named "Vdbe". Only routines -** in the source file sqliteVdbe.c are allowed to see the insides -** of this structure. +/* Each element in the hash table is an instance of the following +** structure. All elements are stored on a single doubly-linked list. +** +** Again, this structure is intended to be opaque, but it can't really +** be opaque because it is used by macros. */ -typedef struct Vdbe Vdbe; +struct HashElem { + HashElem *next, *prev; /* Next and previous elements in the table */ + void *data; /* Data associated with this element */ + const char *pKey; int nKey; /* Key associated with this element */ +}; /* -** The names of the following types declared in vdbeInt.h are required -** for the VdbeOp definition. +** Access routines. To delete, insert a NULL pointer. */ -typedef struct VdbeFunc VdbeFunc; -typedef struct Mem Mem; +SQLITE_PRIVATE void sqlite3HashInit(Hash*); +SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData); +SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey, int nKey); +SQLITE_PRIVATE void sqlite3HashClear(Hash*); /* -** A single instruction of the virtual machine has an opcode -** and as many as three operands. The instruction is recorded -** as an instance of the following structure: +** Macros for looping over all elements of a hash table. The idiom is +** like this: +** +** Hash h; +** HashElem *p; +** ... +** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){ +** SomeStructure *pData = sqliteHashData(p); +** // do something with pData +** } */ -struct VdbeOp { - u8 opcode; /* What operation to perform */ - signed char p4type; /* One of the P4_xxx constants for p4 */ - u8 opflags; /* Not currently used */ - u8 p5; /* Fifth parameter is an unsigned character */ - int p1; /* First operand */ - int p2; /* Second parameter (often the jump destination) */ - int p3; /* The third parameter */ - union { /* forth parameter */ - int i; /* Integer value if p4type==P4_INT32 */ - void *p; /* Generic pointer */ - char *z; /* Pointer to data for string (char array) types */ - i64 *pI64; /* Used when p4type is P4_INT64 */ - double *pReal; /* Used when p4type is P4_REAL */ - FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ - VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */ - CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ - Mem *pMem; /* Used when p4type is P4_MEM */ - sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */ - KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ - int *ai; /* Used when p4type is P4_INTARRAY */ - } p4; -#ifdef SQLITE_DEBUG - char *zComment; /* Comment to improve readability */ -#endif -#ifdef VDBE_PROFILE - int cnt; /* Number of times this instruction was executed */ - u64 cycles; /* Total time spent executing this instruction */ -#endif -}; -typedef struct VdbeOp VdbeOp; +#define sqliteHashFirst(H) ((H)->first) +#define sqliteHashNext(E) ((E)->next) +#define sqliteHashData(E) ((E)->data) +/* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */ +/* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */ /* -** A smaller version of VdbeOp used for the VdbeAddOpList() function because -** it takes up less space. +** Number of entries in a hash table */ -struct VdbeOpList { - u8 opcode; /* What operation to perform */ - signed char p1; /* First operand */ - signed char p2; /* Second parameter (often the jump destination) */ - signed char p3; /* Third parameter */ -}; -typedef struct VdbeOpList VdbeOpList; +/* #define sqliteHashCount(H) ((H)->count) // NOT USED */ -/* -** Allowed values of VdbeOp.p3type -*/ -#define P4_NOTUSED 0 /* The P4 parameter is not used */ -#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ -#define P4_STATIC (-2) /* Pointer to a static string */ -#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ -#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ -#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ -#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */ -#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ -#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */ -#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */ -#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ -#define P4_REAL (-12) /* P4 is a 64-bit floating point value */ -#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ -#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ -#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ +#endif /* _SQLITE_HASH_H_ */ + +/************** End of hash.h ************************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include parse.h in the middle of sqliteInt.h *****************/ +/************** Begin file parse.h *******************************************/ +#define TK_SEMI 1 +#define TK_EXPLAIN 2 +#define TK_QUERY 3 +#define TK_PLAN 4 +#define TK_BEGIN 5 +#define TK_TRANSACTION 6 +#define TK_DEFERRED 7 +#define TK_IMMEDIATE 8 +#define TK_EXCLUSIVE 9 +#define TK_COMMIT 10 +#define TK_END 11 +#define TK_ROLLBACK 12 +#define TK_SAVEPOINT 13 +#define TK_RELEASE 14 +#define TK_TO 15 +#define TK_TABLE 16 +#define TK_CREATE 17 +#define TK_IF 18 +#define TK_NOT 19 +#define TK_EXISTS 20 +#define TK_TEMP 21 +#define TK_LP 22 +#define TK_RP 23 +#define TK_AS 24 +#define TK_WITHOUT 25 +#define TK_COMMA 26 +#define TK_ID 27 +#define TK_INDEXED 28 +#define TK_ABORT 29 +#define TK_ACTION 30 +#define TK_AFTER 31 +#define TK_ANALYZE 32 +#define TK_ASC 33 +#define TK_ATTACH 34 +#define TK_BEFORE 35 +#define TK_BY 36 +#define TK_CASCADE 37 +#define TK_CAST 38 +#define TK_COLUMNKW 39 +#define TK_CONFLICT 40 +#define TK_DATABASE 41 +#define TK_DESC 42 +#define TK_DETACH 43 +#define TK_EACH 44 +#define TK_FAIL 45 +#define TK_FOR 46 +#define TK_IGNORE 47 +#define TK_INITIALLY 48 +#define TK_INSTEAD 49 +#define TK_LIKE_KW 50 +#define TK_MATCH 51 +#define TK_NO 52 +#define TK_KEY 53 +#define TK_OF 54 +#define TK_OFFSET 55 +#define TK_PRAGMA 56 +#define TK_RAISE 57 +#define TK_RECURSIVE 58 +#define TK_REPLACE 59 +#define TK_RESTRICT 60 +#define TK_ROW 61 +#define TK_TRIGGER 62 +#define TK_VACUUM 63 +#define TK_VIEW 64 +#define TK_VIRTUAL 65 +#define TK_WITH 66 +#define TK_REINDEX 67 +#define TK_RENAME 68 +#define TK_CTIME_KW 69 +#define TK_ANY 70 +#define TK_OR 71 +#define TK_AND 72 +#define TK_IS 73 +#define TK_BETWEEN 74 +#define TK_IN 75 +#define TK_ISNULL 76 +#define TK_NOTNULL 77 +#define TK_NE 78 +#define TK_EQ 79 +#define TK_GT 80 +#define TK_LE 81 +#define TK_LT 82 +#define TK_GE 83 +#define TK_ESCAPE 84 +#define TK_BITAND 85 +#define TK_BITOR 86 +#define TK_LSHIFT 87 +#define TK_RSHIFT 88 +#define TK_PLUS 89 +#define TK_MINUS 90 +#define TK_STAR 91 +#define TK_SLASH 92 +#define TK_REM 93 +#define TK_CONCAT 94 +#define TK_COLLATE 95 +#define TK_BITNOT 96 +#define TK_STRING 97 +#define TK_JOIN_KW 98 +#define TK_CONSTRAINT 99 +#define TK_DEFAULT 100 +#define TK_NULL 101 +#define TK_PRIMARY 102 +#define TK_UNIQUE 103 +#define TK_CHECK 104 +#define TK_REFERENCES 105 +#define TK_AUTOINCR 106 +#define TK_ON 107 +#define TK_INSERT 108 +#define TK_DELETE 109 +#define TK_UPDATE 110 +#define TK_SET 111 +#define TK_DEFERRABLE 112 +#define TK_FOREIGN 113 +#define TK_DROP 114 +#define TK_UNION 115 +#define TK_ALL 116 +#define TK_EXCEPT 117 +#define TK_INTERSECT 118 +#define TK_SELECT 119 +#define TK_VALUES 120 +#define TK_DISTINCT 121 +#define TK_DOT 122 +#define TK_FROM 123 +#define TK_JOIN 124 +#define TK_USING 125 +#define TK_ORDER 126 +#define TK_GROUP 127 +#define TK_HAVING 128 +#define TK_LIMIT 129 +#define TK_WHERE 130 +#define TK_INTO 131 +#define TK_INTEGER 132 +#define TK_FLOAT 133 +#define TK_BLOB 134 +#define TK_VARIABLE 135 +#define TK_CASE 136 +#define TK_WHEN 137 +#define TK_THEN 138 +#define TK_ELSE 139 +#define TK_INDEX 140 +#define TK_ALTER 141 +#define TK_ADD 142 +#define TK_TO_TEXT 143 +#define TK_TO_BLOB 144 +#define TK_TO_NUMERIC 145 +#define TK_TO_INT 146 +#define TK_TO_REAL 147 +#define TK_ISNOT 148 +#define TK_END_OF_FILE 149 +#define TK_ILLEGAL 150 +#define TK_SPACE 151 +#define TK_UNCLOSED_STRING 152 +#define TK_FUNCTION 153 +#define TK_COLUMN 154 +#define TK_AGG_FUNCTION 155 +#define TK_AGG_COLUMN 156 +#define TK_UMINUS 157 +#define TK_UPLUS 158 +#define TK_REGISTER 159 + +/************** End of parse.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +#include +#include +#include +#include +#include -/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure -** is made. That copy is freed when the Vdbe is finalized. But if the -** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still -** gets freed when the Vdbe is finalized so it still should be obtained -** from a single sqliteMalloc(). But no copy is made and the calling -** function should *not* try to free the KeyInfo. +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point */ -#define P4_KEYINFO_HANDOFF (-16) -#define P4_KEYINFO_STATIC (-17) +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite_int64 +# define float sqlite_int64 +# define LONGDOUBLE_TYPE sqlite_int64 +# ifndef SQLITE_BIG_DBL +# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) +# endif +# define SQLITE_OMIT_DATETIME_FUNCS 1 +# define SQLITE_OMIT_TRACE 1 +# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT +# undef SQLITE_HAVE_ISNAN +#endif +#ifndef SQLITE_BIG_DBL +# define SQLITE_BIG_DBL (1e99) +#endif /* -** The Vdbe.aColName array contains 5n Mem structures, where n is the -** number of columns of data returned by the statement. +** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 +** afterward. Having this macro allows us to cause the C compiler +** to omit code used by TEMP tables without messy #ifndef statements. */ -#define COLNAME_NAME 0 -#define COLNAME_DECLTYPE 1 -#define COLNAME_DATABASE 2 -#define COLNAME_TABLE 3 -#define COLNAME_COLUMN 4 -#ifdef SQLITE_ENABLE_COLUMN_METADATA -# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */ +#ifdef SQLITE_OMIT_TEMPDB +#define OMIT_TEMPDB 1 #else -# ifdef SQLITE_OMIT_DECLTYPE -# define COLNAME_N 1 /* Store only the name */ -# else -# define COLNAME_N 2 /* Store the name and decltype */ -# endif +#define OMIT_TEMPDB 0 #endif /* -** The following macro converts a relative address in the p2 field -** of a VdbeOp structure into a negative number so that -** sqlite3VdbeAddOpList() knows that the address is relative. Calling -** the macro again restores the address. +** The "file format" number is an integer that is incremented whenever +** the VDBE-level file format changes. The following macros define the +** the default file format for new databases and the maximum file format +** that the library can read. */ -#define ADDR(X) (-1-(X)) +#define SQLITE_MAX_FILE_FORMAT 4 +#ifndef SQLITE_DEFAULT_FILE_FORMAT +# define SQLITE_DEFAULT_FILE_FORMAT 4 +#endif /* -** The makefile scans the vdbe.c source file and creates the "opcodes.h" -** header file that defines a number for each opcode used by the VDBE. +** Determine whether triggers are recursive by default. This can be +** changed at run-time using a pragma. */ -/************** Include opcodes.h in the middle of vdbe.h ********************/ -/************** Begin file opcodes.h *****************************************/ -/* Automatically generated. Do not edit */ -/* See the mkopcodeh.awk script for details */ -#define OP_VNext 1 -#define OP_Affinity 2 -#define OP_Column 3 -#define OP_SetCookie 4 -#define OP_Seek 5 -#define OP_Real 130 /* same as TK_FLOAT */ -#define OP_Sequence 6 -#define OP_Savepoint 7 -#define OP_Ge 78 /* same as TK_GE */ -#define OP_RowKey 8 -#define OP_SCopy 9 -#define OP_Eq 74 /* same as TK_EQ */ -#define OP_OpenWrite 10 -#define OP_NotNull 72 /* same as TK_NOTNULL */ -#define OP_If 11 -#define OP_ToInt 144 /* same as TK_TO_INT */ -#define OP_String8 94 /* same as TK_STRING */ -#define OP_CollSeq 12 -#define OP_OpenRead 13 -#define OP_Expire 14 -#define OP_AutoCommit 15 -#define OP_Gt 75 /* same as TK_GT */ -#define OP_Pagecount 16 -#define OP_IntegrityCk 17 -#define OP_Sort 18 -#define OP_Copy 20 -#define OP_Trace 21 -#define OP_Function 22 -#define OP_IfNeg 23 -#define OP_And 67 /* same as TK_AND */ -#define OP_Subtract 85 /* same as TK_MINUS */ -#define OP_Noop 24 -#define OP_Return 25 -#define OP_Remainder 88 /* same as TK_REM */ -#define OP_NewRowid 26 -#define OP_Multiply 86 /* same as TK_STAR */ -#define OP_Variable 27 -#define OP_String 28 -#define OP_RealAffinity 29 -#define OP_VRename 30 -#define OP_ParseSchema 31 -#define OP_VOpen 32 -#define OP_Close 33 -#define OP_CreateIndex 34 -#define OP_IsUnique 35 -#define OP_NotFound 36 -#define OP_Int64 37 -#define OP_MustBeInt 38 -#define OP_Halt 39 -#define OP_Rowid 40 -#define OP_IdxLT 41 -#define OP_AddImm 42 -#define OP_Statement 43 -#define OP_RowData 44 -#define OP_MemMax 45 -#define OP_Or 66 /* same as TK_OR */ -#define OP_NotExists 46 -#define OP_Gosub 47 -#define OP_Divide 87 /* same as TK_SLASH */ -#define OP_Integer 48 -#define OP_ToNumeric 143 /* same as TK_TO_NUMERIC*/ -#define OP_Prev 49 -#define OP_RowSetRead 50 -#define OP_Concat 89 /* same as TK_CONCAT */ -#define OP_RowSetAdd 51 -#define OP_BitAnd 80 /* same as TK_BITAND */ -#define OP_VColumn 52 -#define OP_CreateTable 53 -#define OP_Last 54 -#define OP_SeekLe 55 -#define OP_IsNull 71 /* same as TK_ISNULL */ -#define OP_IncrVacuum 56 -#define OP_IdxRowid 57 -#define OP_ShiftRight 83 /* same as TK_RSHIFT */ -#define OP_ResetCount 58 -#define OP_ContextPush 59 -#define OP_Yield 60 -#define OP_DropTrigger 61 -#define OP_DropIndex 62 -#define OP_IdxGE 63 -#define OP_IdxDelete 64 -#define OP_Vacuum 65 -#define OP_IfNot 68 -#define OP_DropTable 69 -#define OP_SeekLt 70 -#define OP_MakeRecord 79 -#define OP_ToBlob 142 /* same as TK_TO_BLOB */ -#define OP_ResultRow 90 -#define OP_Delete 91 -#define OP_AggFinal 92 -#define OP_Compare 95 -#define OP_ShiftLeft 82 /* same as TK_LSHIFT */ -#define OP_Goto 96 -#define OP_TableLock 97 -#define OP_Clear 98 -#define OP_Le 76 /* same as TK_LE */ -#define OP_VerifyCookie 99 -#define OP_AggStep 100 -#define OP_ToText 141 /* same as TK_TO_TEXT */ -#define OP_Not 19 /* same as TK_NOT */ -#define OP_ToReal 145 /* same as TK_TO_REAL */ -#define OP_SetNumColumns 101 -#define OP_Transaction 102 -#define OP_VFilter 103 -#define OP_Ne 73 /* same as TK_NE */ -#define OP_VDestroy 104 -#define OP_ContextPop 105 -#define OP_BitOr 81 /* same as TK_BITOR */ -#define OP_Next 106 -#define OP_Count 107 -#define OP_IdxInsert 108 -#define OP_Lt 77 /* same as TK_LT */ -#define OP_SeekGe 109 -#define OP_Insert 110 -#define OP_Destroy 111 -#define OP_ReadCookie 112 -#define OP_RowSetTest 113 -#define OP_LoadAnalysis 114 -#define OP_Explain 115 -#define OP_HaltIfNull 116 -#define OP_OpenPseudo 117 -#define OP_OpenEphemeral 118 -#define OP_Null 119 -#define OP_Move 120 -#define OP_Blob 121 -#define OP_Add 84 /* same as TK_PLUS */ -#define OP_Rewind 122 -#define OP_SeekGt 123 -#define OP_VBegin 124 -#define OP_VUpdate 125 -#define OP_IfZero 126 -#define OP_BitNot 93 /* same as TK_BITNOT */ -#define OP_VCreate 127 -#define OP_Found 128 -#define OP_IfPos 129 -#define OP_NullRow 131 -#define OP_Jump 132 -#define OP_Permutation 133 - -/* The following opcode values are never used */ -#define OP_NotUsed_134 134 -#define OP_NotUsed_135 135 -#define OP_NotUsed_136 136 -#define OP_NotUsed_137 137 -#define OP_NotUsed_138 138 -#define OP_NotUsed_139 139 -#define OP_NotUsed_140 140 +#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS +# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 +#endif +/* +** Provide a default value for SQLITE_TEMP_STORE in case it is not specified +** on the command-line +*/ +#ifndef SQLITE_TEMP_STORE +# define SQLITE_TEMP_STORE 1 +# define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ +#endif -/* Properties such as "out2" or "jump" that are specified in -** comments following the "case" for each opcode in the vdbe.c -** are encoded into bitvectors as follows: +/* +** GCC does not define the offsetof() macro so we'll have to do it +** ourselves. */ -#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */ -#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */ -#define OPFLG_IN1 0x0004 /* in1: P1 is an input */ -#define OPFLG_IN2 0x0008 /* in2: P2 is an input */ -#define OPFLG_IN3 0x0010 /* in3: P3 is an input */ -#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */ -#define OPFLG_INITIALIZER {\ -/* 0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x08, 0x02, 0x00,\ -/* 8 */ 0x00, 0x04, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,\ -/* 16 */ 0x02, 0x00, 0x01, 0x04, 0x04, 0x00, 0x00, 0x05,\ -/* 24 */ 0x00, 0x04, 0x02, 0x00, 0x02, 0x04, 0x00, 0x00,\ -/* 32 */ 0x00, 0x00, 0x02, 0x11, 0x11, 0x02, 0x05, 0x00,\ -/* 40 */ 0x02, 0x11, 0x04, 0x00, 0x00, 0x0c, 0x11, 0x01,\ -/* 48 */ 0x02, 0x01, 0x21, 0x08, 0x00, 0x02, 0x01, 0x11,\ -/* 56 */ 0x01, 0x02, 0x00, 0x00, 0x04, 0x00, 0x00, 0x11,\ -/* 64 */ 0x00, 0x00, 0x2c, 0x2c, 0x05, 0x00, 0x11, 0x05,\ -/* 72 */ 0x05, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x00,\ -/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\ -/* 88 */ 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04, 0x02, 0x00,\ -/* 96 */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,\ -/* 104 */ 0x00, 0x00, 0x01, 0x02, 0x08, 0x11, 0x00, 0x02,\ -/* 112 */ 0x02, 0x15, 0x00, 0x00, 0x10, 0x00, 0x00, 0x02,\ -/* 120 */ 0x00, 0x02, 0x01, 0x11, 0x00, 0x00, 0x05, 0x00,\ -/* 128 */ 0x11, 0x05, 0x02, 0x00, 0x01, 0x00, 0x00, 0x00,\ -/* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04,\ -/* 144 */ 0x04, 0x04,} +#ifndef offsetof +#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) +#endif -/************** End of opcodes.h *********************************************/ -/************** Continuing where we left off in vdbe.h ***********************/ +/* +** Macros to compute minimum and maximum of two numbers. +*/ +#define MIN(A,B) ((A)<(B)?(A):(B)) +#define MAX(A,B) ((A)>(B)?(A):(B)) /* -** Prototypes for the VDBE interface. See comments on the implementation -** for a description of what each of these routines does. +** Check to see if this machine uses EBCDIC. (Yes, believe it or +** not, there are still machines out there that use EBCDIC.) */ -SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*); -SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int); -SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int); -SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int); -SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); -SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); -SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp); -SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1); -SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2); -SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3); -SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5); -SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); -SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N); -SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); -SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); -SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); -SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int); -SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int); -SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*); -#ifdef SQLITE_DEBUG -SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*); +#if 'A' == '\301' +# define SQLITE_EBCDIC 1 +#else +# define SQLITE_ASCII 1 #endif -SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*); -SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); -SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); -SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); -SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); -SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); -SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); -#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT -SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int); +/* +** Integers of known sizes. These typedefs might change for architectures +** where the sizes very. Preprocessor macros are available so that the +** types can be conveniently redefined at compile-type. Like this: +** +** cc '-DUINTPTR_TYPE=long long int' ... +*/ +#ifndef UINT32_TYPE +# ifdef HAVE_UINT32_T +# define UINT32_TYPE uint32_t +# else +# define UINT32_TYPE unsigned int +# endif #endif -SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int); -SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*); -SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); +#ifndef UINT16_TYPE +# ifdef HAVE_UINT16_T +# define UINT16_TYPE uint16_t +# else +# define UINT16_TYPE unsigned short int +# endif +#endif +#ifndef INT16_TYPE +# ifdef HAVE_INT16_T +# define INT16_TYPE int16_t +# else +# define INT16_TYPE short int +# endif +#endif +#ifndef UINT8_TYPE +# ifdef HAVE_UINT8_T +# define UINT8_TYPE uint8_t +# else +# define UINT8_TYPE unsigned char +# endif +#endif +#ifndef INT8_TYPE +# ifdef HAVE_INT8_T +# define INT8_TYPE int8_t +# else +# define INT8_TYPE signed char +# endif +#endif +#ifndef LONGDOUBLE_TYPE +# define LONGDOUBLE_TYPE long double +#endif +typedef sqlite_int64 i64; /* 8-byte signed integer */ +typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ +typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ +typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ +typedef INT16_TYPE i16; /* 2-byte signed integer */ +typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ +typedef INT8_TYPE i8; /* 1-byte signed integer */ +/* +** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value +** that can be stored in a u32 without loss of data. The value +** is 0x00000000ffffffff. But because of quirks of some compilers, we +** have to specify the value in the less intuitive manner shown: +*/ +#define SQLITE_MAX_U32 ((((u64)1)<<32)-1) -#ifndef NDEBUG -SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...); -# define VdbeComment(X) sqlite3VdbeComment X -SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...); -# define VdbeNoopComment(X) sqlite3VdbeNoopComment X +/* +** The datatype used to store estimates of the number of rows in a +** table or index. This is an unsigned integer type. For 99.9% of +** the world, a 32-bit integer is sufficient. But a 64-bit integer +** can be used at compile-time if desired. +*/ +#ifdef SQLITE_64BIT_STATS + typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ #else -# define VdbeComment(X) -# define VdbeNoopComment(X) -#endif - + typedef u32 tRowcnt; /* 32-bit is the default */ #endif -/************** End of vdbe.h ************************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include pager.h in the middle of sqliteInt.h *****************/ -/************** Begin file pager.h *******************************************/ /* -** 2001 September 15 +** Estimated quantities used for query planning are stored as 16-bit +** logarithms. For quantity X, the value stored is 10*log2(X). This +** gives a possible range of values of approximately 1.0e986 to 1e-986. +** But the allowed values are "grainy". Not every value is representable. +** For example, quantities 16 and 17 are both represented by a LogEst +** of 40. However, since LogEst quantatites are suppose to be estimates, +** not exact values, this imprecision is not a problem. ** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: +** "LogEst" is short for "Logarithimic Estimate". ** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. +** Examples: +** 1 -> 0 20 -> 43 10000 -> 132 +** 2 -> 10 25 -> 46 25000 -> 146 +** 3 -> 16 100 -> 66 1000000 -> 199 +** 4 -> 20 1000 -> 99 1048576 -> 200 +** 10 -> 33 1024 -> 100 4294967296 -> 320 ** -************************************************************************* -** This header file defines the interface that the sqlite page cache -** subsystem. The page cache subsystem reads and writes a file a page -** at a time and provides a journal for rollback. +** The LogEst can be negative to indicate fractional values. +** Examples: ** -** @(#) $Id: pager.h,v 1.102 2009/06/18 17:22:39 drh Exp $ +** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 */ - -#ifndef _PAGER_H_ -#define _PAGER_H_ +typedef INT16_TYPE LogEst; /* -** Default maximum size for persistent journal files. A negative -** value means no limit. This value may be overridden using the -** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit". +** Macros to determine whether the machine is big or little endian, +** evaluated at runtime. */ -#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT - #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1 +#ifdef SQLITE_AMALGAMATION +SQLITE_PRIVATE const int sqlite3one = 1; +#else +SQLITE_PRIVATE const int sqlite3one; +#endif +#if defined(i386) || defined(__i386__) || defined(_M_IX86)\ + || defined(__x86_64) || defined(__x86_64__) +# define SQLITE_BIGENDIAN 0 +# define SQLITE_LITTLEENDIAN 1 +# define SQLITE_UTF16NATIVE SQLITE_UTF16LE +#else +# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) +# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) +# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) #endif /* -** The type used to represent a page number. The first page in a file -** is called page 1. 0 is used to represent "not a page". +** Constants for the largest and smallest possible 64-bit signed integers. +** These macros are designed to work correctly on both 32-bit and 64-bit +** compilers. */ -typedef u32 Pgno; +#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) +#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) -/* -** Each open file is managed by a separate instance of the "Pager" structure. +/* +** Round up a number to the next larger multiple of 8. This is used +** to force 8-byte alignment on 64-bit architectures. */ -typedef struct Pager Pager; +#define ROUND8(x) (((x)+7)&~7) /* -** Handle type for pages. +** Round down to the nearest multiple of 8 */ -typedef struct PgHdr DbPage; +#define ROUNDDOWN8(x) ((x)&~7) /* -** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is -** reserved for working around a windows/posix incompatibility). It is -** used in the journal to signify that the remainder of the journal file -** is devoted to storing a master journal name - there are no more pages to -** roll back. See comments for function writeMasterJournal() in pager.c -** for details. +** Assert that the pointer X is aligned to an 8-byte boundary. This +** macro is used only within assert() to verify that the code gets +** all alignment restrictions correct. +** +** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the +** underlying malloc() implemention might return us 4-byte aligned +** pointers. In that case, only verify 4-byte alignment. */ -#define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1)) +#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC +# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) +#else +# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) +#endif /* -** Allowed values for the flags parameter to sqlite3PagerOpen(). -** -** NOTE: These values must match the corresponding BTREE_ values in btree.h. +** Disable MMAP on platforms where it is known to not work */ -#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */ -#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */ +#if defined(__OpenBSD__) || defined(__QNXNTO__) +# undef SQLITE_MAX_MMAP_SIZE +# define SQLITE_MAX_MMAP_SIZE 0 +#endif /* -** Valid values for the second argument to sqlite3PagerLockingMode(). +** Default maximum size of memory used by memory-mapped I/O in the VFS */ -#define PAGER_LOCKINGMODE_QUERY -1 -#define PAGER_LOCKINGMODE_NORMAL 0 -#define PAGER_LOCKINGMODE_EXCLUSIVE 1 +#ifdef __APPLE__ +# include +# if TARGET_OS_IPHONE +# undef SQLITE_MAX_MMAP_SIZE +# define SQLITE_MAX_MMAP_SIZE 0 +# endif +#endif +#ifndef SQLITE_MAX_MMAP_SIZE +# if defined(__linux__) \ + || defined(_WIN32) \ + || (defined(__APPLE__) && defined(__MACH__)) \ + || defined(__sun) +# define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ +# else +# define SQLITE_MAX_MMAP_SIZE 0 +# endif +# define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ +#endif /* -** Valid values for the second argument to sqlite3PagerJournalMode(). +** The default MMAP_SIZE is zero on all platforms. Or, even if a larger +** default MMAP_SIZE is specified at compile-time, make sure that it does +** not exceed the maximum mmap size. */ -#define PAGER_JOURNALMODE_QUERY -1 -#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ -#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ -#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ -#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */ -#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */ +#ifndef SQLITE_DEFAULT_MMAP_SIZE +# define SQLITE_DEFAULT_MMAP_SIZE 0 +# define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ +#endif +#if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE +# undef SQLITE_DEFAULT_MMAP_SIZE +# define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE +#endif /* -** The remainder of this file contains the declarations of the functions -** that make up the Pager sub-system API. See source code comments for -** a detailed description of each routine. +** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. +** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also +** define SQLITE_ENABLE_STAT3_OR_STAT4 */ +#ifdef SQLITE_ENABLE_STAT4 +# undef SQLITE_ENABLE_STAT3 +# define SQLITE_ENABLE_STAT3_OR_STAT4 1 +#elif SQLITE_ENABLE_STAT3 +# define SQLITE_ENABLE_STAT3_OR_STAT4 1 +#elif SQLITE_ENABLE_STAT3_OR_STAT4 +# undef SQLITE_ENABLE_STAT3_OR_STAT4 +#endif -/* Open and close a Pager connection. */ -SQLITE_PRIVATE int sqlite3PagerOpen(sqlite3_vfs *, Pager **ppPager, const char*, int,int,int); -SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager); -SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); +/* +** An instance of the following structure is used to store the busy-handler +** callback for a given sqlite handle. +** +** The sqlite.busyHandler member of the sqlite struct contains the busy +** callback for the database handle. Each pager opened via the sqlite +** handle is passed a pointer to sqlite.busyHandler. The busy-handler +** callback is currently invoked only from within pager.c. +*/ +typedef struct BusyHandler BusyHandler; +struct BusyHandler { + int (*xFunc)(void *,int); /* The busy callback */ + void *pArg; /* First arg to busy callback */ + int nBusy; /* Incremented with each busy call */ +}; -/* Functions used to configure a Pager object. */ -SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *); -SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*)); -SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*, int); -SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int); -SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int); -SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int); -SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int); -SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *, int); -SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64); -SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*); +/* +** Name of the master database table. The master database table +** is a special table that holds the names and attributes of all +** user tables and indices. +*/ +#define MASTER_NAME "sqlite_master" +#define TEMP_MASTER_NAME "sqlite_temp_master" -/* Functions used to obtain and release page references. */ -SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag); -#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0) -SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno); -SQLITE_PRIVATE void sqlite3PagerRef(DbPage*); -SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*); +/* +** The root-page of the master database table. +*/ +#define MASTER_ROOT 1 -/* Operations on page references. */ -SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*); -SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*); -SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int); -SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*); -SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *); -SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *); +/* +** The name of the schema table. +*/ +#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) -/* Functions used to manage pager transactions and savepoints. */ -SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*, int*); -SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int); -SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int); -SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager); -SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*); -SQLITE_PRIVATE int sqlite3PagerRollback(Pager*); -SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n); -SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); +/* +** A convenience macro that returns the number of elements in +** an array. +*/ +#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) -/* Functions used to query pager state and configuration. */ -SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*); -SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*); -SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*); -SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*); -SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*); -SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*); -SQLITE_PRIVATE int sqlite3PagerNosync(Pager*); -SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*); -SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*); +/* +** Determine if the argument is a power of two +*/ +#define IsPowerOfTwo(X) (((X)&((X)-1))==0) -/* Functions used to truncate the database file. */ -SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno); +/* +** The following value as a destructor means to use sqlite3DbFree(). +** The sqlite3DbFree() routine requires two parameters instead of the +** one parameter that destructors normally want. So we have to introduce +** this magic value that the code knows to handle differently. Any +** pointer will work here as long as it is distinct from SQLITE_STATIC +** and SQLITE_TRANSIENT. +*/ +#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) -/* Functions to support testing and debugging. */ -#if !defined(NDEBUG) || defined(SQLITE_TEST) -SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*); -SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*); -#endif -#ifdef SQLITE_TEST -SQLITE_PRIVATE int *sqlite3PagerStats(Pager*); -SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*); - void disable_simulated_io_errors(void); - void enable_simulated_io_errors(void); +/* +** When SQLITE_OMIT_WSD is defined, it means that the target platform does +** not support Writable Static Data (WSD) such as global and static variables. +** All variables must either be on the stack or dynamically allocated from +** the heap. When WSD is unsupported, the variable declarations scattered +** throughout the SQLite code must become constants instead. The SQLITE_WSD +** macro is used for this purpose. And instead of referencing the variable +** directly, we use its constant as a key to lookup the run-time allocated +** buffer that holds real variable. The constant is also the initializer +** for the run-time allocated buffer. +** +** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL +** macros become no-ops and have zero performance impact. +*/ +#ifdef SQLITE_OMIT_WSD + #define SQLITE_WSD const + #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) + #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) +SQLITE_API int sqlite3_wsd_init(int N, int J); +SQLITE_API void *sqlite3_wsd_find(void *K, int L); #else -# define disable_simulated_io_errors() -# define enable_simulated_io_errors() + #define SQLITE_WSD + #define GLOBAL(t,v) v + #define sqlite3GlobalConfig sqlite3Config #endif -#endif /* _PAGER_H_ */ - -/************** End of pager.h ***********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include pcache.h in the middle of sqliteInt.h ****************/ -/************** Begin file pcache.h ******************************************/ /* -** 2008 August 05 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This header file defines the interface that the sqlite page cache -** subsystem. +** The following macros are used to suppress compiler warnings and to +** make it clear to human readers when a function parameter is deliberately +** left unused within the body of a function. This usually happens when +** a function is called via a function pointer. For example the +** implementation of an SQL aggregate step callback may not use the +** parameter indicating the number of arguments passed to the aggregate, +** if it knows that this is enforced elsewhere. ** -** @(#) $Id: pcache.h,v 1.19 2009/01/20 17:06:27 danielk1977 Exp $ +** When a function parameter is not used at all within the body of a function, +** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. +** However, these macros may also be used to suppress warnings related to +** parameters that may or may not be used depending on compilation options. +** For example those parameters only used in assert() statements. In these +** cases the parameters are named as per the usual conventions. */ - -#ifndef _PCACHE_H_ - -typedef struct PgHdr PgHdr; -typedef struct PCache PCache; +#define UNUSED_PARAMETER(x) (void)(x) +#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) /* -** Every page in the cache is controlled by an instance of the following -** structure. +** Forward references to structures */ -struct PgHdr { - void *pData; /* Content of this page */ - void *pExtra; /* Extra content */ - PgHdr *pDirty; /* Transient list of dirty pages */ - Pgno pgno; /* Page number for this page */ - Pager *pPager; /* The pager this page is part of */ -#ifdef SQLITE_CHECK_PAGES - u32 pageHash; /* Hash of page content */ -#endif - u16 flags; /* PGHDR flags defined below */ +typedef struct AggInfo AggInfo; +typedef struct AuthContext AuthContext; +typedef struct AutoincInfo AutoincInfo; +typedef struct Bitvec Bitvec; +typedef struct CollSeq CollSeq; +typedef struct Column Column; +typedef struct Db Db; +typedef struct Schema Schema; +typedef struct Expr Expr; +typedef struct ExprList ExprList; +typedef struct ExprSpan ExprSpan; +typedef struct FKey FKey; +typedef struct FuncDestructor FuncDestructor; +typedef struct FuncDef FuncDef; +typedef struct FuncDefHash FuncDefHash; +typedef struct IdList IdList; +typedef struct Index Index; +typedef struct IndexSample IndexSample; +typedef struct KeyClass KeyClass; +typedef struct KeyInfo KeyInfo; +typedef struct Lookaside Lookaside; +typedef struct LookasideSlot LookasideSlot; +typedef struct Module Module; +typedef struct NameContext NameContext; +typedef struct Parse Parse; +typedef struct PrintfArguments PrintfArguments; +typedef struct RowSet RowSet; +typedef struct Savepoint Savepoint; +typedef struct Select Select; +typedef struct SelectDest SelectDest; +typedef struct SrcList SrcList; +typedef struct StrAccum StrAccum; +typedef struct Table Table; +typedef struct TableLock TableLock; +typedef struct Token Token; +typedef struct Trigger Trigger; +typedef struct TriggerPrg TriggerPrg; +typedef struct TriggerStep TriggerStep; +typedef struct UnpackedRecord UnpackedRecord; +typedef struct VTable VTable; +typedef struct VtabCtx VtabCtx; +typedef struct Walker Walker; +typedef struct WhereInfo WhereInfo; +typedef struct With With; - /********************************************************************** - ** Elements above are public. All that follows is private to pcache.c - ** and should not be accessed by other modules. - */ - i16 nRef; /* Number of users of this page */ - PCache *pCache; /* Cache that owns this page */ +/* +** Defer sourcing vdbe.h and btree.h until after the "u8" and +** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque +** pointer types (i.e. FuncDef) defined above. +*/ +/************** Include btree.h in the middle of sqliteInt.h *****************/ +/************** Begin file btree.h *******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite B-Tree file +** subsystem. See comments in the source code for a detailed description +** of what each interface routine does. +*/ +#ifndef _BTREE_H_ +#define _BTREE_H_ - PgHdr *pDirtyNext; /* Next element in list of dirty pages */ - PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ -}; +/* TODO: This definition is just included so other modules compile. It +** needs to be revisited. +*/ +#define SQLITE_N_BTREE_META 10 -/* Bit values for PgHdr.flags */ -#define PGHDR_DIRTY 0x002 /* Page has changed */ -#define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before - ** writing this page to the database */ -#define PGHDR_NEED_READ 0x008 /* Content is unread */ -#define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */ -#define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */ +/* +** If defined as non-zero, auto-vacuum is enabled by default. Otherwise +** it must be turned on for each database using "PRAGMA auto_vacuum = 1". +*/ +#ifndef SQLITE_DEFAULT_AUTOVACUUM + #define SQLITE_DEFAULT_AUTOVACUUM 0 +#endif -/* Initialize and shutdown the page cache subsystem */ -SQLITE_PRIVATE int sqlite3PcacheInitialize(void); -SQLITE_PRIVATE void sqlite3PcacheShutdown(void); +#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */ +#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */ +#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ -/* Page cache buffer management: -** These routines implement SQLITE_CONFIG_PAGECACHE. +/* +** Forward declarations of structure */ -SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n); +typedef struct Btree Btree; +typedef struct BtCursor BtCursor; +typedef struct BtShared BtShared; -/* Create a new pager cache. -** Under memory stress, invoke xStress to try to make pages clean. -** Only clean and unpinned pages can be reclaimed. -*/ -SQLITE_PRIVATE void sqlite3PcacheOpen( - int szPage, /* Size of every page */ - int szExtra, /* Extra space associated with each page */ - int bPurgeable, /* True if pages are on backing store */ - int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */ - void *pStress, /* Argument to xStress */ - PCache *pToInit /* Preallocated space for the PCache */ -); -/* Modify the page-size after the cache has been created. */ -SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *, int); +SQLITE_PRIVATE int sqlite3BtreeOpen( + sqlite3_vfs *pVfs, /* VFS to use with this b-tree */ + const char *zFilename, /* Name of database file to open */ + sqlite3 *db, /* Associated database connection */ + Btree **ppBtree, /* Return open Btree* here */ + int flags, /* Flags */ + int vfsFlags /* Flags passed through to VFS open */ +); -/* Return the size in bytes of a PCache object. Used to preallocate -** storage space. +/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the +** following values. +** +** NOTE: These values must match the corresponding PAGER_ values in +** pager.h. */ -SQLITE_PRIVATE int sqlite3PcacheSize(void); +#define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */ +#define BTREE_MEMORY 2 /* This is an in-memory DB */ +#define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */ +#define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */ -/* One release per successful fetch. Page is pinned until released. -** Reference counted. +SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); +SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64); +SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned); +SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*); +SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix); +SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*); +SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int); +SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree*); +SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*); +#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG) +SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p); +#endif +SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); +SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); +SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); +SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int); +SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*); +SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags); +SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*); +SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*); +SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*); +SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); +SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree); +SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock); +SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int); + +SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *); +SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *); +SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *); + +SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *); + +/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR +** of the flags shown below. +** +** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set. +** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data +** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With +** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored +** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL +** indices.) */ -SQLITE_PRIVATE int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**); -SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*); +#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ +#define BTREE_BLOBKEY 2 /* Table has keys only - no data */ -SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */ -SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */ -SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */ -SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */ +SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*); +SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, int*); +SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int); -/* Change a page number. Used by incr-vacuum. */ -SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno); +SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue); +SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); -/* Remove all pages with pgno>x. Reset the cache if x==0 */ -SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x); +SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p); -/* Get a list of all dirty pages in the cache, sorted by page number */ -SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*); +/* +** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta +** should be one of the following values. The integer values are assigned +** to constants so that the offset of the corresponding field in an +** SQLite database header may be found using the following formula: +** +** offset = 36 + (idx * 4) +** +** For example, the free-page-count field is located at byte offset 36 of +** the database file header. The incr-vacuum-flag field is located at +** byte offset 64 (== 36+4*7). +*/ +#define BTREE_FREE_PAGE_COUNT 0 +#define BTREE_SCHEMA_VERSION 1 +#define BTREE_FILE_FORMAT 2 +#define BTREE_DEFAULT_CACHE_SIZE 3 +#define BTREE_LARGEST_ROOT_PAGE 4 +#define BTREE_TEXT_ENCODING 5 +#define BTREE_USER_VERSION 6 +#define BTREE_INCR_VACUUM 7 +#define BTREE_APPLICATION_ID 8 -/* Reset and close the cache object */ -SQLITE_PRIVATE void sqlite3PcacheClose(PCache*); +/* +** Values that may be OR'd together to form the second argument of an +** sqlite3BtreeCursorHints() call. +*/ +#define BTREE_BULKLOAD 0x00000001 -/* Clear flags from pages of the page cache */ -SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *); +SQLITE_PRIVATE int sqlite3BtreeCursor( + Btree*, /* BTree containing table to open */ + int iTable, /* Index of root page */ + int wrFlag, /* 1 for writing. 0 for read-only */ + struct KeyInfo*, /* First argument to compare function */ + BtCursor *pCursor /* Space to write cursor structure */ +); +SQLITE_PRIVATE int sqlite3BtreeCursorSize(void); +SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*); -/* Discard the contents of the cache */ -SQLITE_PRIVATE void sqlite3PcacheClear(PCache*); +SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked( + BtCursor*, + UnpackedRecord *pUnKey, + i64 intKey, + int bias, + int *pRes +); +SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*, int*); +SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey, + const void *pData, int nData, + int nZero, int bias, int seekResult); +SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); +SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); +SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, u32 *pAmt); +SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, u32 *pAmt); +SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); +SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); +SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64); +SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*); -/* Return the total number of outstanding page references */ -SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache*); +SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); +SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); -/* Increment the reference count of an existing page */ -SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*); +SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); +SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *); +SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); +SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); +SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask); -SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr*); +#ifndef NDEBUG +SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*); +#endif -/* Return the total number of pages stored in the cache */ -SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*); +#ifndef SQLITE_OMIT_BTREECOUNT +SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *); +#endif -#ifdef SQLITE_CHECK_PAGES -/* Iterate through all dirty pages currently stored in the cache. This -** interface is only available if SQLITE_CHECK_PAGES is defined when the -** library is built. -*/ -SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)); +#ifdef SQLITE_TEST +SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); +SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); #endif -/* Set and get the suggested cache-size for the specified pager-cache. -** -** If no global maximum is configured, then the system attempts to limit -** the total number of pages cached by purgeable pager-caches to the sum -** of the suggested cache-sizes. +#ifndef SQLITE_OMIT_WAL +SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); +#endif + +/* +** If we are not using shared cache, then there is no need to +** use mutexes to access the BtShared structures. So make the +** Enter and Leave procedures no-ops. */ -SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int); -#ifdef SQLITE_TEST -SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *); +#ifndef SQLITE_OMIT_SHARED_CACHE +SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*); +SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*); +#else +# define sqlite3BtreeEnter(X) +# define sqlite3BtreeEnterAll(X) #endif -#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT -/* Try to return memory used by the pcache module to the main memory heap */ -SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int); +#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE +SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*); +SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*); +SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*); +SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*); +SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*); +#ifndef NDEBUG + /* These routines are used inside assert() statements only. */ +SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*); +SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); +SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*); #endif +#else -#ifdef SQLITE_TEST -SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*); +# define sqlite3BtreeSharable(X) 0 +# define sqlite3BtreeLeave(X) +# define sqlite3BtreeEnterCursor(X) +# define sqlite3BtreeLeaveCursor(X) +# define sqlite3BtreeLeaveAll(X) + +# define sqlite3BtreeHoldsMutex(X) 1 +# define sqlite3BtreeHoldsAllMutexes(X) 1 +# define sqlite3SchemaMutexHeld(X,Y,Z) 1 #endif -SQLITE_PRIVATE void sqlite3PCacheSetDefault(void); -#endif /* _PCACHE_H_ */ +#endif /* _BTREE_H_ */ -/************** End of pcache.h **********************************************/ +/************** End of btree.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ - -/************** Include os.h in the middle of sqliteInt.h ********************/ -/************** Begin file os.h **********************************************/ +/************** Include vdbe.h in the middle of sqliteInt.h ******************/ +/************** Begin file vdbe.h ********************************************/ /* -** 2001 September 16 +** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: @@ -7721,271 +8927,436 @@ SQLITE_PRIVATE void sqlite3PCacheSetDefault(void); ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** -****************************************************************************** -** -** This header file (together with is companion C source-code file -** "os.c") attempt to abstract the underlying operating system so that -** the SQLite library will work on both POSIX and windows systems. -** -** This header file is #include-ed by sqliteInt.h and thus ends up -** being included by every source file. +************************************************************************* +** Header file for the Virtual DataBase Engine (VDBE) ** -** $Id: os.h,v 1.108 2009/02/05 16:31:46 drh Exp $ +** This header defines the interface to the virtual database engine +** or VDBE. The VDBE implements an abstract machine that runs a +** simple program to access and modify the underlying database. */ -#ifndef _SQLITE_OS_H_ -#define _SQLITE_OS_H_ +#ifndef _SQLITE_VDBE_H_ +#define _SQLITE_VDBE_H_ +/* #include */ /* -** Figure out if we are dealing with Unix, Windows, or some other -** operating system. After the following block of preprocess macros, -** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER -** will defined to either 1 or 0. One of the four will be 1. The other -** three will be 0. +** A single VDBE is an opaque structure named "Vdbe". Only routines +** in the source file sqliteVdbe.c are allowed to see the insides +** of this structure. */ -#if defined(SQLITE_OS_OTHER) -# if SQLITE_OS_OTHER==1 -# undef SQLITE_OS_UNIX -# define SQLITE_OS_UNIX 0 -# undef SQLITE_OS_WIN -# define SQLITE_OS_WIN 0 -# undef SQLITE_OS_OS2 -# define SQLITE_OS_OS2 0 -# else -# undef SQLITE_OS_OTHER -# endif -#endif -#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER) -# define SQLITE_OS_OTHER 0 -# ifndef SQLITE_OS_WIN -# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) -# define SQLITE_OS_WIN 1 -# define SQLITE_OS_UNIX 0 -# define SQLITE_OS_OS2 0 -# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__) -# define SQLITE_OS_WIN 0 -# define SQLITE_OS_UNIX 0 -# define SQLITE_OS_OS2 1 -# else -# define SQLITE_OS_WIN 0 -# define SQLITE_OS_UNIX 1 -# define SQLITE_OS_OS2 0 -# endif -# else -# define SQLITE_OS_UNIX 0 -# define SQLITE_OS_OS2 0 -# endif -#else -# ifndef SQLITE_OS_WIN -# define SQLITE_OS_WIN 0 -# endif -#endif +typedef struct Vdbe Vdbe; /* -** Determine if we are dealing with WindowsCE - which has a much -** reduced API. +** The names of the following types declared in vdbeInt.h are required +** for the VdbeOp definition. */ -#if defined(_WIN32_WCE) -# define SQLITE_OS_WINCE 1 -#else -# define SQLITE_OS_WINCE 0 -#endif - +typedef struct Mem Mem; +typedef struct SubProgram SubProgram; /* -** Define the maximum size of a temporary filename +** A single instruction of the virtual machine has an opcode +** and as many as three operands. The instruction is recorded +** as an instance of the following structure: */ -#if SQLITE_OS_WIN -# include -# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50) -#elif SQLITE_OS_OS2 -# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY) -# include /* has to be included before os2.h for linking to work */ -# endif -# define INCL_DOSDATETIME -# define INCL_DOSFILEMGR -# define INCL_DOSERRORS -# define INCL_DOSMISC -# define INCL_DOSPROCESS -# define INCL_DOSMODULEMGR -# define INCL_DOSSEMAPHORES -# include -# include -# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP) -#else -# define SQLITE_TEMPNAME_SIZE 200 +struct VdbeOp { + u8 opcode; /* What operation to perform */ + signed char p4type; /* One of the P4_xxx constants for p4 */ + u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */ + u8 p5; /* Fifth parameter is an unsigned character */ + int p1; /* First operand */ + int p2; /* Second parameter (often the jump destination) */ + int p3; /* The third parameter */ + union { /* fourth parameter */ + int i; /* Integer value if p4type==P4_INT32 */ + void *p; /* Generic pointer */ + char *z; /* Pointer to data for string (char array) types */ + i64 *pI64; /* Used when p4type is P4_INT64 */ + double *pReal; /* Used when p4type is P4_REAL */ + FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ + CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ + Mem *pMem; /* Used when p4type is P4_MEM */ + VTable *pVtab; /* Used when p4type is P4_VTAB */ + KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ + int *ai; /* Used when p4type is P4_INTARRAY */ + SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ + int (*xAdvance)(BtCursor *, int *); + } p4; +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS + char *zComment; /* Comment to improve readability */ +#endif +#ifdef VDBE_PROFILE + int cnt; /* Number of times this instruction was executed */ + u64 cycles; /* Total time spent executing this instruction */ #endif +}; +typedef struct VdbeOp VdbeOp; -/* If the SET_FULLSYNC macro is not defined above, then make it -** a no-op + +/* +** A sub-routine used to implement a trigger program. */ -#ifndef SET_FULLSYNC -# define SET_FULLSYNC(x,y) -#endif +struct SubProgram { + VdbeOp *aOp; /* Array of opcodes for sub-program */ + int nOp; /* Elements in aOp[] */ + int nMem; /* Number of memory cells required */ + int nCsr; /* Number of cursors required */ + int nOnce; /* Number of OP_Once instructions */ + void *token; /* id that may be used to recursive triggers */ + SubProgram *pNext; /* Next sub-program already visited */ +}; /* -** The default size of a disk sector +** A smaller version of VdbeOp used for the VdbeAddOpList() function because +** it takes up less space. */ -#ifndef SQLITE_DEFAULT_SECTOR_SIZE -# define SQLITE_DEFAULT_SECTOR_SIZE 512 -#endif +struct VdbeOpList { + u8 opcode; /* What operation to perform */ + signed char p1; /* First operand */ + signed char p2; /* Second parameter (often the jump destination) */ + signed char p3; /* Third parameter */ +}; +typedef struct VdbeOpList VdbeOpList; /* -** Temporary files are named starting with this prefix followed by 16 random -** alphanumeric characters, and no file extension. They are stored in the -** OS's standard temporary file directory, and are deleted prior to exit. -** If sqlite is being embedded in another program, you may wish to change the -** prefix to reflect your program's name, so that if your program exits -** prematurely, old temporary files can be easily identified. This can be done -** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line. -** -** 2006-10-31: The default prefix used to be "sqlite_". But then -** Mcafee started using SQLite in their anti-virus product and it -** started putting files with the "sqlite" name in the c:/temp folder. -** This annoyed many windows users. Those users would then do a -** Google search for "sqlite", find the telephone numbers of the -** developers and call to wake them up at night and complain. -** For this reason, the default name prefix is changed to be "sqlite" -** spelled backwards. So the temp files are still identified, but -** anybody smart enough to figure out the code is also likely smart -** enough to know that calling the developer will not help get rid -** of the file. +** Allowed values of VdbeOp.p4type */ -#ifndef SQLITE_TEMP_FILE_PREFIX -# define SQLITE_TEMP_FILE_PREFIX "etilqs_" -#endif +#define P4_NOTUSED 0 /* The P4 parameter is not used */ +#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ +#define P4_STATIC (-2) /* Pointer to a static string */ +#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ +#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ +#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ +#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ +#define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */ +#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */ +#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ +#define P4_REAL (-12) /* P4 is a 64-bit floating point value */ +#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ +#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ +#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ +#define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ +#define P4_ADVANCE (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */ + +/* Error message codes for OP_Halt */ +#define P5_ConstraintNotNull 1 +#define P5_ConstraintUnique 2 +#define P5_ConstraintCheck 3 +#define P5_ConstraintFK 4 /* -** The following values may be passed as the second argument to -** sqlite3OsLock(). The various locks exhibit the following semantics: -** -** SHARED: Any number of processes may hold a SHARED lock simultaneously. -** RESERVED: A single process may hold a RESERVED lock on a file at -** any time. Other processes may hold and obtain new SHARED locks. -** PENDING: A single process may hold a PENDING lock on a file at -** any one time. Existing SHARED locks may persist, but no new -** SHARED locks may be obtained by other processes. -** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks. -** -** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a -** process that requests an EXCLUSIVE lock may actually obtain a PENDING -** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to -** sqlite3OsLock(). +** The Vdbe.aColName array contains 5n Mem structures, where n is the +** number of columns of data returned by the statement. */ -#define NO_LOCK 0 -#define SHARED_LOCK 1 -#define RESERVED_LOCK 2 -#define PENDING_LOCK 3 -#define EXCLUSIVE_LOCK 4 +#define COLNAME_NAME 0 +#define COLNAME_DECLTYPE 1 +#define COLNAME_DATABASE 2 +#define COLNAME_TABLE 3 +#define COLNAME_COLUMN 4 +#ifdef SQLITE_ENABLE_COLUMN_METADATA +# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */ +#else +# ifdef SQLITE_OMIT_DECLTYPE +# define COLNAME_N 1 /* Store only the name */ +# else +# define COLNAME_N 2 /* Store the name and decltype */ +# endif +#endif /* -** File Locking Notes: (Mostly about windows but also some info for Unix) -** -** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because -** those functions are not available. So we use only LockFile() and -** UnlockFile(). -** -** LockFile() prevents not just writing but also reading by other processes. -** A SHARED_LOCK is obtained by locking a single randomly-chosen -** byte out of a specific range of bytes. The lock byte is obtained at -** random so two separate readers can probably access the file at the -** same time, unless they are unlucky and choose the same lock byte. -** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range. -** There can only be one writer. A RESERVED_LOCK is obtained by locking -** a single byte of the file that is designated as the reserved lock byte. -** A PENDING_LOCK is obtained by locking a designated byte different from -** the RESERVED_LOCK byte. -** -** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, -** which means we can use reader/writer locks. When reader/writer locks -** are used, the lock is placed on the same range of bytes that is used -** for probabilistic locking in Win95/98/ME. Hence, the locking scheme -** will support two or more Win95 readers or two or more WinNT readers. -** But a single Win95 reader will lock out all WinNT readers and a single -** WinNT reader will lock out all other Win95 readers. -** -** The following #defines specify the range of bytes used for locking. -** SHARED_SIZE is the number of bytes available in the pool from which -** a random byte is selected for a shared lock. The pool of bytes for -** shared locks begins at SHARED_FIRST. -** -** The same locking strategy and -** byte ranges are used for Unix. This leaves open the possiblity of having -** clients on win95, winNT, and unix all talking to the same shared file -** and all locking correctly. To do so would require that samba (or whatever -** tool is being used for file sharing) implements locks correctly between -** windows and unix. I'm guessing that isn't likely to happen, but by -** using the same locking range we are at least open to the possibility. -** -** Locking in windows is manditory. For this reason, we cannot store -** actual data in the bytes used for locking. The pager never allocates -** the pages involved in locking therefore. SHARED_SIZE is selected so -** that all locks will fit on a single page even at the minimum page size. -** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE -** is set high so that we don't have to allocate an unused page except -** for very large databases. But one should test the page skipping logic -** by setting PENDING_BYTE low and running the entire regression suite. -** -** Changing the value of PENDING_BYTE results in a subtly incompatible -** file format. Depending on how it is changed, you might not notice -** the incompatibility right away, even running a full regression test. -** The default location of PENDING_BYTE is the first byte past the -** 1GB boundary. -** +** The following macro converts a relative address in the p2 field +** of a VdbeOp structure into a negative number so that +** sqlite3VdbeAddOpList() knows that the address is relative. Calling +** the macro again restores the address. */ -#define PENDING_BYTE sqlite3PendingByte -#define RESERVED_BYTE (PENDING_BYTE+1) -#define SHARED_FIRST (PENDING_BYTE+2) -#define SHARED_SIZE 510 +#define ADDR(X) (-1-(X)) -/* -** Functions for accessing sqlite3_file methods +/* +** The makefile scans the vdbe.c source file and creates the "opcodes.h" +** header file that defines a number for each opcode used by the VDBE. */ -SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*); -SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset); -SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset); -SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size); -SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int); -SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize); -SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int); -SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int); -SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut); -SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*); -#define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0 -SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id); -SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id); +/************** Include opcodes.h in the middle of vdbe.h ********************/ +/************** Begin file opcodes.h *****************************************/ +/* Automatically generated. Do not edit */ +/* See the mkopcodeh.awk script for details */ +#define OP_Function 1 /* synopsis: r[P3]=func(r[P2@P5]) */ +#define OP_Savepoint 2 +#define OP_AutoCommit 3 +#define OP_Transaction 4 +#define OP_SorterNext 5 +#define OP_PrevIfOpen 6 +#define OP_NextIfOpen 7 +#define OP_Prev 8 +#define OP_Next 9 +#define OP_AggStep 10 /* synopsis: accum=r[P3] step(r[P2@P5]) */ +#define OP_Checkpoint 11 +#define OP_JournalMode 12 +#define OP_Vacuum 13 +#define OP_VFilter 14 /* synopsis: iPlan=r[P3] zPlan='P4' */ +#define OP_VUpdate 15 /* synopsis: data=r[P3@P2] */ +#define OP_Goto 16 +#define OP_Gosub 17 +#define OP_Return 18 +#define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */ +#define OP_Yield 20 +#define OP_HaltIfNull 21 /* synopsis: if r[P3] null then halt */ +#define OP_Halt 22 +#define OP_Integer 23 /* synopsis: r[P2]=P1 */ +#define OP_Int64 24 /* synopsis: r[P2]=P4 */ +#define OP_String 25 /* synopsis: r[P2]='P4' (len=P1) */ +#define OP_Null 26 /* synopsis: r[P2..P3]=NULL */ +#define OP_Blob 27 /* synopsis: r[P2]=P4 (len=P1) */ +#define OP_Variable 28 /* synopsis: r[P2]=parameter(P1,P4) */ +#define OP_Move 29 /* synopsis: r[P2@P3]=r[P1@P3] */ +#define OP_Copy 30 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */ +#define OP_SCopy 31 /* synopsis: r[P2]=r[P1] */ +#define OP_ResultRow 32 /* synopsis: output=r[P1@P2] */ +#define OP_CollSeq 33 +#define OP_AddImm 34 /* synopsis: r[P1]=r[P1]+P2 */ +#define OP_MustBeInt 35 +#define OP_RealAffinity 36 +#define OP_Permutation 37 +#define OP_Compare 38 +#define OP_Jump 39 +#define OP_Once 40 +#define OP_If 41 +#define OP_IfNot 42 +#define OP_Column 43 /* synopsis: r[P3]=PX */ +#define OP_Affinity 44 /* synopsis: affinity(r[P1@P2]) */ +#define OP_MakeRecord 45 /* synopsis: r[P3]=mkrec(r[P1@P2]) */ +#define OP_Count 46 /* synopsis: r[P2]=count() */ +#define OP_ReadCookie 47 +#define OP_SetCookie 48 +#define OP_VerifyCookie 49 +#define OP_OpenRead 50 /* synopsis: root=P2 iDb=P3 */ +#define OP_OpenWrite 51 /* synopsis: root=P2 iDb=P3 */ +#define OP_OpenAutoindex 52 /* synopsis: nColumn=P2 */ +#define OP_OpenEphemeral 53 /* synopsis: nColumn=P2 */ +#define OP_SorterOpen 54 +#define OP_OpenPseudo 55 /* synopsis: content in r[P2@P3] */ +#define OP_Close 56 +#define OP_SeekLt 57 /* synopsis: key=r[P3@P4] */ +#define OP_SeekLe 58 /* synopsis: key=r[P3@P4] */ +#define OP_SeekGe 59 /* synopsis: key=r[P3@P4] */ +#define OP_SeekGt 60 /* synopsis: key=r[P3@P4] */ +#define OP_Seek 61 /* synopsis: intkey=r[P2] */ +#define OP_NoConflict 62 /* synopsis: key=r[P3@P4] */ +#define OP_NotFound 63 /* synopsis: key=r[P3@P4] */ +#define OP_Found 64 /* synopsis: key=r[P3@P4] */ +#define OP_NotExists 65 /* synopsis: intkey=r[P3] */ +#define OP_Sequence 66 /* synopsis: r[P2]=rowid */ +#define OP_NewRowid 67 /* synopsis: r[P2]=rowid */ +#define OP_Insert 68 /* synopsis: intkey=r[P3] data=r[P2] */ +#define OP_InsertInt 69 /* synopsis: intkey=P3 data=r[P2] */ +#define OP_Delete 70 +#define OP_Or 71 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */ +#define OP_And 72 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */ +#define OP_ResetCount 73 +#define OP_SorterCompare 74 /* synopsis: if key(P1)!=rtrim(r[P3],P4) goto P2 */ +#define OP_SorterData 75 /* synopsis: r[P2]=data */ +#define OP_IsNull 76 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */ +#define OP_NotNull 77 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */ +#define OP_Ne 78 /* same as TK_NE, synopsis: if r[P1]!=r[P3] goto P2 */ +#define OP_Eq 79 /* same as TK_EQ, synopsis: if r[P1]==r[P3] goto P2 */ +#define OP_Gt 80 /* same as TK_GT, synopsis: if r[P1]>r[P3] goto P2 */ +#define OP_Le 81 /* same as TK_LE, synopsis: if r[P1]<=r[P3] goto P2 */ +#define OP_Lt 82 /* same as TK_LT, synopsis: if r[P1]=r[P3] goto P2 */ +#define OP_RowKey 84 /* synopsis: r[P2]=key */ +#define OP_BitAnd 85 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */ +#define OP_BitOr 86 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */ +#define OP_ShiftLeft 87 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<>r[P1] */ +#define OP_Add 89 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */ +#define OP_Subtract 90 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */ +#define OP_Multiply 91 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */ +#define OP_Divide 92 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */ +#define OP_Remainder 93 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */ +#define OP_Concat 94 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */ +#define OP_RowData 95 /* synopsis: r[P2]=data */ +#define OP_BitNot 96 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */ +#define OP_String8 97 /* same as TK_STRING, synopsis: r[P2]='P4' */ +#define OP_Rowid 98 /* synopsis: r[P2]=rowid */ +#define OP_NullRow 99 +#define OP_Last 100 +#define OP_SorterSort 101 +#define OP_Sort 102 +#define OP_Rewind 103 +#define OP_SorterInsert 104 +#define OP_IdxInsert 105 /* synopsis: key=r[P2] */ +#define OP_IdxDelete 106 /* synopsis: key=r[P2@P3] */ +#define OP_IdxRowid 107 /* synopsis: r[P2]=rowid */ +#define OP_IdxLT 108 /* synopsis: key=r[P3@P4] */ +#define OP_IdxGE 109 /* synopsis: key=r[P3@P4] */ +#define OP_Destroy 110 +#define OP_Clear 111 +#define OP_CreateIndex 112 /* synopsis: r[P2]=root iDb=P1 */ +#define OP_CreateTable 113 /* synopsis: r[P2]=root iDb=P1 */ +#define OP_ParseSchema 114 +#define OP_LoadAnalysis 115 +#define OP_DropTable 116 +#define OP_DropIndex 117 +#define OP_DropTrigger 118 +#define OP_IntegrityCk 119 +#define OP_RowSetAdd 120 /* synopsis: rowset(P1)=r[P2] */ +#define OP_RowSetRead 121 /* synopsis: r[P3]=rowset(P1) */ +#define OP_RowSetTest 122 /* synopsis: if r[P3] in rowset(P1) goto P2 */ +#define OP_Program 123 +#define OP_Param 124 +#define OP_FkCounter 125 /* synopsis: fkctr[P1]+=P2 */ +#define OP_FkIfZero 126 /* synopsis: if fkctr[P1]==0 goto P2 */ +#define OP_MemMax 127 /* synopsis: r[P1]=max(r[P1],r[P2]) */ +#define OP_IfPos 128 /* synopsis: if r[P1]>0 goto P2 */ +#define OP_IfNeg 129 /* synopsis: if r[P1]<0 goto P2 */ +#define OP_IfZero 130 /* synopsis: r[P1]+=P3, if r[P1]==0 goto P2 */ +#define OP_AggFinal 131 /* synopsis: accum=r[P1] N=P2 */ +#define OP_IncrVacuum 132 +#define OP_Real 133 /* same as TK_FLOAT, synopsis: r[P2]=P4 */ +#define OP_Expire 134 +#define OP_TableLock 135 /* synopsis: iDb=P1 root=P2 write=P3 */ +#define OP_VBegin 136 +#define OP_VCreate 137 +#define OP_VDestroy 138 +#define OP_VOpen 139 +#define OP_VColumn 140 /* synopsis: r[P3]=vcolumn(P2) */ +#define OP_VNext 141 +#define OP_VRename 142 +#define OP_ToText 143 /* same as TK_TO_TEXT */ +#define OP_ToBlob 144 /* same as TK_TO_BLOB */ +#define OP_ToNumeric 145 /* same as TK_TO_NUMERIC */ +#define OP_ToInt 146 /* same as TK_TO_INT */ +#define OP_ToReal 147 /* same as TK_TO_REAL */ +#define OP_Pagecount 148 +#define OP_MaxPgcnt 149 +#define OP_Trace 150 +#define OP_Noop 151 +#define OP_Explain 152 -/* -** Functions for accessing sqlite3_vfs methods + +/* Properties such as "out2" or "jump" that are specified in +** comments following the "case" for each opcode in the vdbe.c +** are encoded into bitvectors as follows: */ -SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *); -SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int); -SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut); -SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *); -#ifndef SQLITE_OMIT_LOAD_EXTENSION -SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *); -SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *); -SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void); -SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *); -#endif /* SQLITE_OMIT_LOAD_EXTENSION */ -SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *); -SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int); -SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double*); +#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */ +#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */ +#define OPFLG_IN1 0x0004 /* in1: P1 is an input */ +#define OPFLG_IN2 0x0008 /* in2: P2 is an input */ +#define OPFLG_IN3 0x0010 /* in3: P3 is an input */ +#define OPFLG_OUT2 0x0020 /* out2: P2 is an output */ +#define OPFLG_OUT3 0x0040 /* out3: P3 is an output */ +#define OPFLG_INITIALIZER {\ +/* 0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01,\ +/* 8 */ 0x01, 0x01, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00,\ +/* 16 */ 0x01, 0x01, 0x04, 0x24, 0x04, 0x10, 0x00, 0x02,\ +/* 24 */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0x20,\ +/* 32 */ 0x00, 0x00, 0x04, 0x05, 0x04, 0x00, 0x00, 0x01,\ +/* 40 */ 0x01, 0x05, 0x05, 0x00, 0x00, 0x00, 0x02, 0x02,\ +/* 48 */ 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ +/* 56 */ 0x00, 0x11, 0x11, 0x11, 0x11, 0x08, 0x11, 0x11,\ +/* 64 */ 0x11, 0x11, 0x02, 0x02, 0x00, 0x00, 0x00, 0x4c,\ +/* 72 */ 0x4c, 0x00, 0x00, 0x00, 0x05, 0x05, 0x15, 0x15,\ +/* 80 */ 0x15, 0x15, 0x15, 0x15, 0x00, 0x4c, 0x4c, 0x4c,\ +/* 88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x00,\ +/* 96 */ 0x24, 0x02, 0x02, 0x00, 0x01, 0x01, 0x01, 0x01,\ +/* 104 */ 0x08, 0x08, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00,\ +/* 112 */ 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ +/* 120 */ 0x0c, 0x45, 0x15, 0x01, 0x02, 0x00, 0x01, 0x08,\ +/* 128 */ 0x05, 0x05, 0x05, 0x00, 0x01, 0x02, 0x00, 0x00,\ +/* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x04,\ +/* 144 */ 0x04, 0x04, 0x04, 0x04, 0x02, 0x02, 0x00, 0x00,\ +/* 152 */ 0x00,} + +/************** End of opcodes.h *********************************************/ +/************** Continuing where we left off in vdbe.h ***********************/ /* -** Convenience functions for opening and closing files using -** sqlite3_malloc() to obtain space for the file-handle structure. +** Prototypes for the VDBE interface. See comments on the implementation +** for a description of what each of these routines does. */ -SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*); -SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *); +SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*); +SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp); +SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*); +SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1); +SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2); +SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3); +SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5); +SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); +SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr); +SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op); +SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); +SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*); +SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); +SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); +SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeClearObject(sqlite3*,Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,Parse*); +SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int); +SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*); +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int); +#endif +SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe*); +SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); +SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); +SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); +SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); +SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); +SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); +SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8); +SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int); +#ifndef SQLITE_OMIT_TRACE +SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*); +#endif -#endif /* _SQLITE_OS_H_ */ +SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); +SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); +SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **); -/************** End of os.h **************************************************/ +#ifndef SQLITE_OMIT_TRIGGER +SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); +#endif + +/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on +** each VDBE opcode. +** +** Use the SQLITE_ENABLE_MODULE_COMMENTS macro to see some extra no-op +** comments in VDBE programs that show key decision points in the code +** generator. +*/ +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS +SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...); +# define VdbeComment(X) sqlite3VdbeComment X +SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...); +# define VdbeNoopComment(X) sqlite3VdbeNoopComment X +# ifdef SQLITE_ENABLE_MODULE_COMMENTS +# define VdbeModuleComment(X) sqlite3VdbeNoopComment X +# else +# define VdbeModuleComment(X) +# endif +#else +# define VdbeComment(X) +# define VdbeNoopComment(X) +# define VdbeModuleComment(X) +#endif + +#endif + +/************** End of vdbe.h ************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ -/************** Include mutex.h in the middle of sqliteInt.h *****************/ -/************** Begin file mutex.h *******************************************/ +/************** Include pager.h in the middle of sqliteInt.h *****************/ +/************** Begin file pager.h *******************************************/ /* -** 2007 August 28 +** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: @@ -7995,4082 +9366,3544 @@ SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *); ** May you share freely, never taking more than you give. ** ************************************************************************* -** -** This file contains the common header for all mutex implementations. -** The sqliteInt.h header #includes this file so that it is available -** to all source files. We break it out in an effort to keep the code -** better organized. -** -** NOTE: source files should *not* #include this header file directly. -** Source files should #include the sqliteInt.h file and let that file -** include this one indirectly. -** -** $Id: mutex.h,v 1.9 2008/10/07 15:25:48 drh Exp $ +** This header file defines the interface that the sqlite page cache +** subsystem. The page cache subsystem reads and writes a file a page +** at a time and provides a journal for rollback. */ +#ifndef _PAGER_H_ +#define _PAGER_H_ /* -** Figure out what version of the code to use. The choices are -** -** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The -** mutexes implemention cannot be overridden -** at start-time. -** -** SQLITE_MUTEX_NOOP For single-threaded applications. No -** mutual exclusion is provided. But this -** implementation can be overridden at -** start-time. -** -** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix. -** -** SQLITE_MUTEX_W32 For multi-threaded applications on Win32. -** -** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2. +** Default maximum size for persistent journal files. A negative +** value means no limit. This value may be overridden using the +** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit". */ -#if !SQLITE_THREADSAFE -# define SQLITE_MUTEX_OMIT -#endif -#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP) -# if SQLITE_OS_UNIX -# define SQLITE_MUTEX_PTHREADS -# elif SQLITE_OS_WIN -# define SQLITE_MUTEX_W32 -# elif SQLITE_OS_OS2 -# define SQLITE_MUTEX_OS2 -# else -# define SQLITE_MUTEX_NOOP -# endif +#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT + #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1 #endif -#ifdef SQLITE_MUTEX_OMIT /* -** If this is a no-op implementation, implement everything as macros. +** The type used to represent a page number. The first page in a file +** is called page 1. 0 is used to represent "not a page". */ -#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8) -#define sqlite3_mutex_free(X) -#define sqlite3_mutex_enter(X) -#define sqlite3_mutex_try(X) SQLITE_OK -#define sqlite3_mutex_leave(X) -#define sqlite3_mutex_held(X) 1 -#define sqlite3_mutex_notheld(X) 1 -#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8) -#define sqlite3MutexInit() SQLITE_OK -#define sqlite3MutexEnd() -#endif /* defined(SQLITE_OMIT_MUTEX) */ - -/************** End of mutex.h ***********************************************/ -/************** Continuing where we left off in sqliteInt.h ******************/ - +typedef u32 Pgno; /* -** Each database file to be accessed by the system is an instance -** of the following structure. There are normally two of these structures -** in the sqlite.aDb[] array. aDb[0] is the main database file and -** aDb[1] is the database file used to hold temporary tables. Additional -** databases may be attached. +** Each open file is managed by a separate instance of the "Pager" structure. */ -struct Db { - char *zName; /* Name of this database */ - Btree *pBt; /* The B*Tree structure for this database file */ - u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ - u8 safety_level; /* How aggressive at syncing data to disk */ - Schema *pSchema; /* Pointer to database schema (possibly shared) */ -}; +typedef struct Pager Pager; /* -** An instance of the following structure stores a database schema. -** -** If there are no virtual tables configured in this schema, the -** Schema.db variable is set to NULL. After the first virtual table -** has been added, it is set to point to the database connection -** used to create the connection. Once a virtual table has been -** added to the Schema structure and the Schema.db variable populated, -** only that database connection may use the Schema to prepare -** statements. +** Handle type for pages. */ -struct Schema { - int schema_cookie; /* Database schema version number for this file */ - Hash tblHash; /* All tables indexed by name */ - Hash idxHash; /* All (named) indices indexed by name */ - Hash trigHash; /* All triggers indexed by name */ - Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ - u8 file_format; /* Schema format version for this file */ - u8 enc; /* Text encoding used by this database */ - u16 flags; /* Flags associated with this schema */ - int cache_size; /* Number of pages to use in the cache */ -#ifndef SQLITE_OMIT_VIRTUALTABLE - sqlite3 *db; /* "Owner" connection. See comment above */ -#endif -}; +typedef struct PgHdr DbPage; /* -** These macros can be used to test, set, or clear bits in the -** Db.flags field. +** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is +** reserved for working around a windows/posix incompatibility). It is +** used in the journal to signify that the remainder of the journal file +** is devoted to storing a master journal name - there are no more pages to +** roll back. See comments for function writeMasterJournal() in pager.c +** for details. */ -#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) -#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) -#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) -#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) +#define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1)) /* -** Allowed values for the DB.flags field. -** -** The DB_SchemaLoaded flag is set after the database schema has been -** read into internal hash tables. +** Allowed values for the flags parameter to sqlite3PagerOpen(). ** -** DB_UnresetViews means that one or more views have column names that -** have been filled out. If the schema changes, these column names might -** changes and so the view will need to be reset. +** NOTE: These values must match the corresponding BTREE_ values in btree.h. */ -#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ -#define DB_UnresetViews 0x0002 /* Some views have defined column names */ -#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ +#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */ +#define PAGER_MEMORY 0x0002 /* In-memory database */ /* -** The number of different kinds of things that can be limited -** using the sqlite3_limit() interface. +** Valid values for the second argument to sqlite3PagerLockingMode(). */ -#define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1) +#define PAGER_LOCKINGMODE_QUERY -1 +#define PAGER_LOCKINGMODE_NORMAL 0 +#define PAGER_LOCKINGMODE_EXCLUSIVE 1 /* -** Lookaside malloc is a set of fixed-size buffers that can be used -** to satisfy small transient memory allocation requests for objects -** associated with a particular database connection. The use of -** lookaside malloc provides a significant performance enhancement -** (approx 10%) by avoiding numerous malloc/free requests while parsing -** SQL statements. -** -** The Lookaside structure holds configuration information about the -** lookaside malloc subsystem. Each available memory allocation in -** the lookaside subsystem is stored on a linked list of LookasideSlot -** objects. -** -** Lookaside allocations are only allowed for objects that are associated -** with a particular database connection. Hence, schema information cannot -** be stored in lookaside because in shared cache mode the schema information -** is shared by multiple database connections. Therefore, while parsing -** schema information, the Lookaside.bEnabled flag is cleared so that -** lookaside allocations are not used to construct the schema objects. +** Numeric constants that encode the journalmode. */ -struct Lookaside { - u16 sz; /* Size of each buffer in bytes */ - u8 bEnabled; /* False to disable new lookaside allocations */ - u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ - int nOut; /* Number of buffers currently checked out */ - int mxOut; /* Highwater mark for nOut */ - LookasideSlot *pFree; /* List of available buffers */ - void *pStart; /* First byte of available memory space */ - void *pEnd; /* First byte past end of available space */ -}; -struct LookasideSlot { - LookasideSlot *pNext; /* Next buffer in the list of free buffers */ -}; +#define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */ +#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ +#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ +#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ +#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */ +#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */ +#define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */ /* -** A hash table for function definitions. -** -** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. -** Collisions are on the FuncDef.pHash chain. +** Flags that make up the mask passed to sqlite3PagerAcquire(). */ -struct FuncDefHash { - FuncDef *a[23]; /* Hash table for functions */ -}; +#define PAGER_GET_NOCONTENT 0x01 /* Do not load data from disk */ +#define PAGER_GET_READONLY 0x02 /* Read-only page is acceptable */ /* -** Each database is an instance of the following structure. -** -** The sqlite.lastRowid records the last insert rowid generated by an -** insert statement. Inserts on views do not affect its value. Each -** trigger has its own context, so that lastRowid can be updated inside -** triggers as usual. The previous value will be restored once the trigger -** exits. Upon entering a before or instead of trigger, lastRowid is no -** longer (since after version 2.8.12) reset to -1. -** -** The sqlite.nChange does not count changes within triggers and keeps no -** context. It is reset at start of sqlite3_exec. -** The sqlite.lsChange represents the number of changes made by the last -** insert, update, or delete statement. It remains constant throughout the -** length of a statement and is then updated by OP_SetCounts. It keeps a -** context stack just like lastRowid so that the count of changes -** within a trigger is not seen outside the trigger. Changes to views do not -** affect the value of lsChange. -** The sqlite.csChange keeps track of the number of current changes (since -** the last statement) and is used to update sqlite_lsChange. -** -** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 -** store the most recent error code and, if applicable, string. The -** internal function sqlite3Error() is used to set these variables -** consistently. +** Flags for sqlite3PagerSetFlags() */ -struct sqlite3 { - sqlite3_vfs *pVfs; /* OS Interface */ - int nDb; /* Number of backends currently in use */ - Db *aDb; /* All backends */ - int flags; /* Miscellaneous flags. See below */ - int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ - int errCode; /* Most recent error code (SQLITE_*) */ - int errMask; /* & result codes with this before returning */ - u8 autoCommit; /* The auto-commit flag. */ - u8 temp_store; /* 1: file 2: memory 0: default */ - u8 mallocFailed; /* True if we have seen a malloc failure */ - u8 dfltLockMode; /* Default locking-mode for attached dbs */ - u8 dfltJournalMode; /* Default journal mode for attached dbs */ - signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ - int nextPagesize; /* Pagesize after VACUUM if >0 */ - int nTable; /* Number of tables in the database */ - CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ - i64 lastRowid; /* ROWID of most recent insert (see above) */ - u32 magic; /* Magic number for detect library misuse */ - int nChange; /* Value returned by sqlite3_changes() */ - int nTotalChange; /* Value returned by sqlite3_total_changes() */ - sqlite3_mutex *mutex; /* Connection mutex */ - int aLimit[SQLITE_N_LIMIT]; /* Limits */ - struct sqlite3InitInfo { /* Information used during initialization */ - int iDb; /* When back is being initialized */ - int newTnum; /* Rootpage of table being initialized */ - u8 busy; /* TRUE if currently initializing */ - } init; - int nExtension; /* Number of loaded extensions */ - void **aExtension; /* Array of shared library handles */ - struct Vdbe *pVdbe; /* List of active virtual machines */ - int activeVdbeCnt; /* Number of VDBEs currently executing */ - int writeVdbeCnt; /* Number of active VDBEs that are writing */ - void (*xTrace)(void*,const char*); /* Trace function */ - void *pTraceArg; /* Argument to the trace function */ - void (*xProfile)(void*,const char*,u64); /* Profiling function */ - void *pProfileArg; /* Argument to profile function */ - void *pCommitArg; /* Argument to xCommitCallback() */ - int (*xCommitCallback)(void*); /* Invoked at every commit. */ - void *pRollbackArg; /* Argument to xRollbackCallback() */ - void (*xRollbackCallback)(void*); /* Invoked at every commit. */ - void *pUpdateArg; - void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); - void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); - void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); - void *pCollNeededArg; - sqlite3_value *pErr; /* Most recent error message */ - char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ - char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ - union { - volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ - double notUsed1; /* Spacer */ - } u1; - Lookaside lookaside; /* Lookaside malloc configuration */ -#ifndef SQLITE_OMIT_AUTHORIZATION - int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); - /* Access authorization function */ - void *pAuthArg; /* 1st argument to the access auth function */ +#define PAGER_SYNCHRONOUS_OFF 0x01 /* PRAGMA synchronous=OFF */ +#define PAGER_SYNCHRONOUS_NORMAL 0x02 /* PRAGMA synchronous=NORMAL */ +#define PAGER_SYNCHRONOUS_FULL 0x03 /* PRAGMA synchronous=FULL */ +#define PAGER_SYNCHRONOUS_MASK 0x03 /* Mask for three values above */ +#define PAGER_FULLFSYNC 0x04 /* PRAGMA fullfsync=ON */ +#define PAGER_CKPT_FULLFSYNC 0x08 /* PRAGMA checkpoint_fullfsync=ON */ +#define PAGER_CACHESPILL 0x10 /* PRAGMA cache_spill=ON */ +#define PAGER_FLAGS_MASK 0x1c /* All above except SYNCHRONOUS */ + +/* +** The remainder of this file contains the declarations of the functions +** that make up the Pager sub-system API. See source code comments for +** a detailed description of each routine. +*/ + +/* Open and close a Pager connection. */ +SQLITE_PRIVATE int sqlite3PagerOpen( + sqlite3_vfs*, + Pager **ppPager, + const char*, + int, + int, + int, + void(*)(DbPage*) +); +SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager); +SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); + +/* Functions used to configure a Pager object. */ +SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *); +SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int); +SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int); +SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int); +SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64); +SQLITE_PRIVATE void sqlite3PagerShrink(Pager*); +SQLITE_PRIVATE void sqlite3PagerSetFlags(Pager*,unsigned); +SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int); +SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int); +SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*); +SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*); +SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64); +SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*); + +/* Functions used to obtain and release page references. */ +SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag); +#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0) +SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno); +SQLITE_PRIVATE void sqlite3PagerRef(DbPage*); +SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*); +SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage*); + +/* Operations on page references. */ +SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*); +SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*); +SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int); +SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*); +SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *); +SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *); + +/* Functions used to manage pager transactions and savepoints. */ +SQLITE_PRIVATE void sqlite3PagerPagecount(Pager*, int*); +SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int); +SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int); +SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager*); +SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zMaster); +SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*); +SQLITE_PRIVATE int sqlite3PagerRollback(Pager*); +SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n); +SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); +SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager); + +#ifndef SQLITE_OMIT_WAL +SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int, int*, int*); +SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager); +SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager); +SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); +SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager); #endif -#ifndef SQLITE_OMIT_PROGRESS_CALLBACK - int (*xProgress)(void *); /* The progress callback */ - void *pProgressArg; /* Argument to the progress callback */ - int nProgressOps; /* Number of opcodes for progress callback */ + +#ifdef SQLITE_ENABLE_ZIPVFS +SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager); #endif -#ifndef SQLITE_OMIT_VIRTUALTABLE - Hash aModule; /* populated by sqlite3_create_module() */ - Table *pVTab; /* vtab with active Connect/Create method */ - sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ - int nVTrans; /* Allocated size of aVTrans */ + +/* Functions used to query pager state and configuration. */ +SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*); +SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*); +SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*); +SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*, int); +SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*); +SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*); +SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*); +SQLITE_PRIVATE int sqlite3PagerNosync(Pager*); +SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*); +SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*); +SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *); +SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *); +SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *); + +/* Functions used to truncate the database file. */ +SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno); + +#if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL) +SQLITE_PRIVATE void *sqlite3PagerCodec(DbPage *); #endif - FuncDefHash aFunc; /* Hash table of connection functions */ - Hash aCollSeq; /* All collating sequences */ - BusyHandler busyHandler; /* Busy callback */ - int busyTimeout; /* Busy handler timeout, in msec */ - Db aDbStatic[2]; /* Static space for the 2 default backends */ - Savepoint *pSavepoint; /* List of active savepoints */ - int nSavepoint; /* Number of non-transaction savepoints */ - int nStatement; /* Number of nested statement-transactions */ - u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ -#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY - /* The following variables are all protected by the STATIC_MASTER - ** mutex, not by sqlite3.mutex. They are used by code in notify.c. - ** - ** When X.pUnlockConnection==Y, that means that X is waiting for Y to - ** unlock so that it can proceed. - ** - ** When X.pBlockingConnection==Y, that means that something that X tried - ** tried to do recently failed with an SQLITE_LOCKED error due to locks - ** held by Y. - */ - sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ - sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ - void *pUnlockArg; /* Argument to xUnlockNotify */ - void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ - sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ +/* Functions to support testing and debugging. */ +#if !defined(NDEBUG) || defined(SQLITE_TEST) +SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*); +SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*); +#endif +#ifdef SQLITE_TEST +SQLITE_PRIVATE int *sqlite3PagerStats(Pager*); +SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*); + void disable_simulated_io_errors(void); + void enable_simulated_io_errors(void); +#else +# define disable_simulated_io_errors() +# define enable_simulated_io_errors() #endif -}; -/* -** A macro to discover the encoding of a database. -*/ -#define ENC(db) ((db)->aDb[0].pSchema->enc) +#endif /* _PAGER_H_ */ +/************** End of pager.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include pcache.h in the middle of sqliteInt.h ****************/ +/************** Begin file pcache.h ******************************************/ /* -** Possible values for the sqlite.flags and or Db.flags fields. +** 2008 August 05 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. ** -** On sqlite.flags, the SQLITE_InTrans value means that we have -** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement -** transaction is active on that particular database file. +************************************************************************* +** This header file defines the interface that the sqlite page cache +** subsystem. */ -#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ -#define SQLITE_InTrans 0x00000008 /* True if in a transaction */ -#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ -#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ -#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ -#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ - /* DELETE, or UPDATE and return */ - /* the count using a callback. */ -#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ - /* result set is empty */ -#define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ -#define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ -#define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ -#define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when - ** accessing read-only databases */ -#define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ -#define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ -#define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ -#define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ -#define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ -#define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ -#define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ -#define SQLITE_CommitBusy 0x00200000 /* In the process of committing */ -#define SQLITE_ReverseOrder 0x00400000 /* Reverse unordered SELECTs */ +#ifndef _PCACHE_H_ -/* -** Possible values for the sqlite.magic field. -** The numbers are obtained at random and have no special meaning, other -** than being distinct from one another. -*/ -#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ -#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ -#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ -#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ -#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ +typedef struct PgHdr PgHdr; +typedef struct PCache PCache; /* -** Each SQL function is defined by an instance of the following -** structure. A pointer to this structure is stored in the sqlite.aFunc -** hash table. When multiple functions have the same name, the hash table -** points to a linked list of these structures. +** Every page in the cache is controlled by an instance of the following +** structure. */ -struct FuncDef { - i16 nArg; /* Number of arguments. -1 means unlimited */ - u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ - u8 flags; /* Some combination of SQLITE_FUNC_* */ - void *pUserData; /* User data parameter */ - FuncDef *pNext; /* Next function with same name */ - void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ - void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ - void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ - char *zName; /* SQL name of the function. */ - FuncDef *pHash; /* Next with a different name but the same hash */ +struct PgHdr { + sqlite3_pcache_page *pPage; /* Pcache object page handle */ + void *pData; /* Page data */ + void *pExtra; /* Extra content */ + PgHdr *pDirty; /* Transient list of dirty pages */ + Pager *pPager; /* The pager this page is part of */ + Pgno pgno; /* Page number for this page */ +#ifdef SQLITE_CHECK_PAGES + u32 pageHash; /* Hash of page content */ +#endif + u16 flags; /* PGHDR flags defined below */ + + /********************************************************************** + ** Elements above are public. All that follows is private to pcache.c + ** and should not be accessed by other modules. + */ + i16 nRef; /* Number of users of this page */ + PCache *pCache; /* Cache that owns this page */ + + PgHdr *pDirtyNext; /* Next element in list of dirty pages */ + PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ }; -/* -** Possible values for FuncDef.flags +/* Bit values for PgHdr.flags */ +#define PGHDR_DIRTY 0x002 /* Page has changed */ +#define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before + ** writing this page to the database */ +#define PGHDR_NEED_READ 0x008 /* Content is unread */ +#define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */ +#define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */ + +#define PGHDR_MMAP 0x040 /* This is an mmap page object */ + +/* Initialize and shutdown the page cache subsystem */ +SQLITE_PRIVATE int sqlite3PcacheInitialize(void); +SQLITE_PRIVATE void sqlite3PcacheShutdown(void); + +/* Page cache buffer management: +** These routines implement SQLITE_CONFIG_PAGECACHE. */ -#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ -#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ -#define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ -#define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ -#define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ -#define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ +SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n); -/* -** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are -** used to create the initializers for the FuncDef structures. -** -** FUNCTION(zName, nArg, iArg, bNC, xFunc) -** Used to create a scalar function definition of a function zName -** implemented by C function xFunc that accepts nArg arguments. The -** value passed as iArg is cast to a (void*) and made available -** as the user-data (sqlite3_user_data()) for the function. If -** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. -** -** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) -** Used to create an aggregate function definition implemented by -** the C functions xStep and xFinal. The first four parameters -** are interpreted in the same way as the first 4 parameters to -** FUNCTION(). -** -** LIKEFUNC(zName, nArg, pArg, flags) -** Used to create a scalar function definition of a function zName -** that accepts nArg arguments and is implemented by a call to C -** function likeFunc. Argument pArg is cast to a (void *) and made -** available as the function user-data (sqlite3_user_data()). The -** FuncDef.flags variable is set to the value passed as the flags -** parameter. +/* Create a new pager cache. +** Under memory stress, invoke xStress to try to make pages clean. +** Only clean and unpinned pages can be reclaimed. */ -#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ - {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ - SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0} -#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ - {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ - pArg, 0, xFunc, 0, 0, #zName, 0} -#define LIKEFUNC(zName, nArg, arg, flags) \ - {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0} -#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ - {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ - SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0} +SQLITE_PRIVATE void sqlite3PcacheOpen( + int szPage, /* Size of every page */ + int szExtra, /* Extra space associated with each page */ + int bPurgeable, /* True if pages are on backing store */ + int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */ + void *pStress, /* Argument to xStress */ + PCache *pToInit /* Preallocated space for the PCache */ +); -/* -** All current savepoints are stored in a linked list starting at -** sqlite3.pSavepoint. The first element in the list is the most recently -** opened savepoint. Savepoints are added to the list by the vdbe -** OP_Savepoint instruction. +/* Modify the page-size after the cache has been created. */ +SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *, int); + +/* Return the size in bytes of a PCache object. Used to preallocate +** storage space. */ -struct Savepoint { - char *zName; /* Savepoint name (nul-terminated) */ - Savepoint *pNext; /* Parent savepoint (if any) */ -}; +SQLITE_PRIVATE int sqlite3PcacheSize(void); -/* -** The following are used as the second parameter to sqlite3Savepoint(), -** and as the P1 argument to the OP_Savepoint instruction. +/* One release per successful fetch. Page is pinned until released. +** Reference counted. */ -#define SAVEPOINT_BEGIN 0 -#define SAVEPOINT_RELEASE 1 -#define SAVEPOINT_ROLLBACK 2 +SQLITE_PRIVATE int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**); +SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*); +SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */ +SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */ +SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */ +SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */ -/* -** Each SQLite module (virtual table definition) is defined by an -** instance of the following structure, stored in the sqlite3.aModule -** hash table. -*/ -struct Module { - const sqlite3_module *pModule; /* Callback pointers */ - const char *zName; /* Name passed to create_module() */ - void *pAux; /* pAux passed to create_module() */ - void (*xDestroy)(void *); /* Module destructor function */ -}; +/* Change a page number. Used by incr-vacuum. */ +SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno); -/* -** information about each column of an SQL table is held in an instance -** of this structure. +/* Remove all pages with pgno>x. Reset the cache if x==0 */ +SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x); + +/* Get a list of all dirty pages in the cache, sorted by page number */ +SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*); + +/* Reset and close the cache object */ +SQLITE_PRIVATE void sqlite3PcacheClose(PCache*); + +/* Clear flags from pages of the page cache */ +SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *); + +/* Discard the contents of the cache */ +SQLITE_PRIVATE void sqlite3PcacheClear(PCache*); + +/* Return the total number of outstanding page references */ +SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache*); + +/* Increment the reference count of an existing page */ +SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*); + +SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr*); + +/* Return the total number of pages stored in the cache */ +SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*); + +#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) +/* Iterate through all dirty pages currently stored in the cache. This +** interface is only available if SQLITE_CHECK_PAGES is defined when the +** library is built. */ -struct Column { - char *zName; /* Name of this column */ - Expr *pDflt; /* Default value of this column */ - char *zDflt; /* Original text of the default value */ - char *zType; /* Data type for this column */ - char *zColl; /* Collating sequence. If NULL, use the default */ - u8 notNull; /* True if there is a NOT NULL constraint */ - u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ - char affinity; /* One of the SQLITE_AFF_... values */ -#ifndef SQLITE_OMIT_VIRTUALTABLE - u8 isHidden; /* True if this column is 'hidden' */ +SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)); #endif -}; -/* -** A "Collating Sequence" is defined by an instance of the following -** structure. Conceptually, a collating sequence consists of a name and -** a comparison routine that defines the order of that sequence. -** -** There may two separate implementations of the collation function, one -** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that -** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine -** native byte order. When a collation sequence is invoked, SQLite selects -** the version that will require the least expensive encoding -** translations, if any. -** -** The CollSeq.pUser member variable is an extra parameter that passed in -** as the first argument to the UTF-8 comparison function, xCmp. -** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, -** xCmp16. +/* Set and get the suggested cache-size for the specified pager-cache. ** -** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the -** collating sequence is undefined. Indices built on an undefined -** collating sequence may not be read or written. +** If no global maximum is configured, then the system attempts to limit +** the total number of pages cached by purgeable pager-caches to the sum +** of the suggested cache-sizes. */ -struct CollSeq { - char *zName; /* Name of the collating sequence, UTF-8 encoded */ - u8 enc; /* Text encoding handled by xCmp() */ - u8 type; /* One of the SQLITE_COLL_... values below */ - void *pUser; /* First argument to xCmp() */ - int (*xCmp)(void*,int, const void*, int, const void*); - void (*xDel)(void*); /* Destructor for pUser */ -}; +SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int); +#ifdef SQLITE_TEST +SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *); +#endif -/* -** Allowed values of CollSeq.type: -*/ -#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ -#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ -#define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ -#define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ +/* Free up as much memory as possible from the page cache */ +SQLITE_PRIVATE void sqlite3PcacheShrink(PCache*); -/* -** A sort order can be either ASC or DESC. -*/ -#define SQLITE_SO_ASC 0 /* Sort in ascending order */ -#define SQLITE_SO_DESC 1 /* Sort in ascending order */ +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +/* Try to return memory used by the pcache module to the main memory heap */ +SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int); +#endif -/* -** Column affinity types. -** -** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and -** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve -** the speed a little by numbering the values consecutively. -** -** But rather than start with 0 or 1, we begin with 'a'. That way, -** when multiple affinity types are concatenated into a string and -** used as the P4 operand, they will be more readable. -** -** Note also that the numeric types are grouped together so that testing -** for a numeric type is a single comparison. -*/ -#define SQLITE_AFF_TEXT 'a' -#define SQLITE_AFF_NONE 'b' -#define SQLITE_AFF_NUMERIC 'c' -#define SQLITE_AFF_INTEGER 'd' -#define SQLITE_AFF_REAL 'e' +#ifdef SQLITE_TEST +SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*); +#endif -#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) +SQLITE_PRIVATE void sqlite3PCacheSetDefault(void); -/* -** The SQLITE_AFF_MASK values masks off the significant bits of an -** affinity value. -*/ -#define SQLITE_AFF_MASK 0x67 +#endif /* _PCACHE_H_ */ -/* -** Additional bit values that can be ORed with an affinity without -** changing the affinity. -*/ -#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ -#define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ +/************** End of pcache.h **********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include os.h in the middle of sqliteInt.h ********************/ +/************** Begin file os.h **********************************************/ /* -** Each SQL table is represented in memory by an instance of the -** following structure. +** 2001 September 16 ** -** Table.zName is the name of the table. The case of the original -** CREATE TABLE statement is stored, but case is not significant for -** comparisons. +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: ** -** Table.nCol is the number of columns in this table. Table.aCol is a -** pointer to an array of Column structures, one for each column. +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. ** -** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of -** the column that is that key. Otherwise Table.iPKey is negative. Note -** that the datatype of the PRIMARY KEY must be INTEGER for this field to -** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of -** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid -** is generated for each row of the table. TF_HasPrimaryKey is set if -** the table has any PRIMARY KEY, INTEGER or otherwise. +****************************************************************************** ** -** Table.tnum is the page number for the root BTree page of the table in the -** database file. If Table.iDb is the index of the database table backend -** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that -** holds temporary tables and indices. If TF_Ephemeral is set -** then the table is stored in a file that is automatically deleted -** when the VDBE cursor to the table is closed. In this case Table.tnum -** refers VDBE cursor number that holds the table open, not to the root -** page number. Transient tables are used to hold the results of a -** sub-query that appears instead of a real table name in the FROM clause -** of a SELECT statement. -*/ -struct Table { - sqlite3 *dbMem; /* DB connection used for lookaside allocations. */ - char *zName; /* Name of the table or view */ - int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ - int nCol; /* Number of columns in this table */ - Column *aCol; /* Information about each column */ - Index *pIndex; /* List of SQL indexes on this table. */ - int tnum; /* Root BTree node for this table (see note above) */ - Select *pSelect; /* NULL for tables. Points to definition if a view. */ - u16 nRef; /* Number of pointers to this Table */ - u8 tabFlags; /* Mask of TF_* values */ - u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ - FKey *pFKey; /* Linked list of all foreign keys in this table */ - char *zColAff; /* String defining the affinity of each column */ -#ifndef SQLITE_OMIT_CHECK - Expr *pCheck; /* The AND of all CHECK constraints */ -#endif -#ifndef SQLITE_OMIT_ALTERTABLE - int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ -#endif -#ifndef SQLITE_OMIT_VIRTUALTABLE - Module *pMod; /* Pointer to the implementation of the module */ - sqlite3_vtab *pVtab; /* Pointer to the module instance */ - int nModuleArg; /* Number of arguments to the module */ - char **azModuleArg; /* Text of all module args. [0] is module name */ -#endif - Trigger *pTrigger; /* List of triggers stored in pSchema */ - Schema *pSchema; /* Schema that contains this table */ - Table *pNextZombie; /* Next on the Parse.pZombieTab list */ -}; - -/* -** Allowed values for Tabe.tabFlags. +** This header file (together with is companion C source-code file +** "os.c") attempt to abstract the underlying operating system so that +** the SQLite library will work on both POSIX and windows systems. +** +** This header file is #include-ed by sqliteInt.h and thus ends up +** being included by every source file. */ -#define TF_Readonly 0x01 /* Read-only system table */ -#define TF_Ephemeral 0x02 /* An ephemeral table */ -#define TF_HasPrimaryKey 0x04 /* Table has a primary key */ -#define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ -#define TF_Virtual 0x10 /* Is a virtual table */ -#define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ - - +#ifndef _SQLITE_OS_H_ +#define _SQLITE_OS_H_ /* -** Test to see whether or not a table is a virtual table. This is -** done as a macro so that it will be optimized out when virtual -** table support is omitted from the build. +** Figure out if we are dealing with Unix, Windows, or some other +** operating system. After the following block of preprocess macros, +** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, and SQLITE_OS_OTHER +** will defined to either 1 or 0. One of the four will be 1. The other +** three will be 0. */ -#ifndef SQLITE_OMIT_VIRTUALTABLE -# define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) -# define IsHiddenColumn(X) ((X)->isHidden) +#if defined(SQLITE_OS_OTHER) +# if SQLITE_OS_OTHER==1 +# undef SQLITE_OS_UNIX +# define SQLITE_OS_UNIX 0 +# undef SQLITE_OS_WIN +# define SQLITE_OS_WIN 0 +# else +# undef SQLITE_OS_OTHER +# endif +#endif +#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER) +# define SQLITE_OS_OTHER 0 +# ifndef SQLITE_OS_WIN +# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) +# define SQLITE_OS_WIN 1 +# define SQLITE_OS_UNIX 0 +# else +# define SQLITE_OS_WIN 0 +# define SQLITE_OS_UNIX 1 +# endif +# else +# define SQLITE_OS_UNIX 0 +# endif #else -# define IsVirtual(X) 0 -# define IsHiddenColumn(X) 0 +# ifndef SQLITE_OS_WIN +# define SQLITE_OS_WIN 0 +# endif +#endif + +#if SQLITE_OS_WIN +# include #endif /* -** Each foreign key constraint is an instance of the following structure. -** -** A foreign key is associated with two tables. The "from" table is -** the table that contains the REFERENCES clause that creates the foreign -** key. The "to" table is the table that is named in the REFERENCES clause. -** Consider this example: +** Determine if we are dealing with Windows NT. ** -** CREATE TABLE ex1( -** a INTEGER PRIMARY KEY, -** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) -** ); +** We ought to be able to determine if we are compiling for win98 or winNT +** using the _WIN32_WINNT macro as follows: ** -** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". +** #if defined(_WIN32_WINNT) +** # define SQLITE_OS_WINNT 1 +** #else +** # define SQLITE_OS_WINNT 0 +** #endif ** -** Each REFERENCES clause generates an instance of the following structure -** which is attached to the from-table. The to-table need not exist when -** the from-table is created. The existence of the to-table is not checked. +** However, vs2005 does not set _WIN32_WINNT by default, as it ought to, +** so the above test does not work. We'll just assume that everything is +** winNT unless the programmer explicitly says otherwise by setting +** SQLITE_OS_WINNT to 0. */ -struct FKey { - Table *pFrom; /* The table that contains the REFERENCES clause */ - FKey *pNextFrom; /* Next foreign key in pFrom */ - char *zTo; /* Name of table that the key points to */ - int nCol; /* Number of columns in this key */ - u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ - u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ - u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ - u8 insertConf; /* How to resolve conflicts that occur on INSERT */ - struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ - int iFrom; /* Index of column in pFrom */ - char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ - } aCol[1]; /* One entry for each of nCol column s */ -}; +#if SQLITE_OS_WIN && !defined(SQLITE_OS_WINNT) +# define SQLITE_OS_WINNT 1 +#endif /* -** SQLite supports many different ways to resolve a constraint -** error. ROLLBACK processing means that a constraint violation -** causes the operation in process to fail and for the current transaction -** to be rolled back. ABORT processing means the operation in process -** fails and any prior changes from that one operation are backed out, -** but the transaction is not rolled back. FAIL processing means that -** the operation in progress stops and returns an error code. But prior -** changes due to the same operation are not backed out and no rollback -** occurs. IGNORE means that the particular row that caused the constraint -** error is not inserted or updated. Processing continues and no error -** is returned. REPLACE means that preexisting database rows that caused -** a UNIQUE constraint violation are removed so that the new insert or -** update can proceed. Processing continues and no error is reported. -** -** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. -** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the -** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign -** key is set to NULL. CASCADE means that a DELETE or UPDATE of the -** referenced table row is propagated into the row that holds the -** foreign key. -** -** The following symbolic values are used to record which type -** of action to take. +** Determine if we are dealing with WindowsCE - which has a much +** reduced API. */ -#define OE_None 0 /* There is no constraint to check */ -#define OE_Rollback 1 /* Fail the operation and rollback the transaction */ -#define OE_Abort 2 /* Back out changes but do no rollback transaction */ -#define OE_Fail 3 /* Stop the operation but leave all prior changes */ -#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ -#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ - -#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ -#define OE_SetNull 7 /* Set the foreign key value to NULL */ -#define OE_SetDflt 8 /* Set the foreign key value to its default */ -#define OE_Cascade 9 /* Cascade the changes */ - -#define OE_Default 99 /* Do whatever the default action is */ - +#if defined(_WIN32_WCE) +# define SQLITE_OS_WINCE 1 +#else +# define SQLITE_OS_WINCE 0 +#endif /* -** An instance of the following structure is passed as the first -** argument to sqlite3VdbeKeyCompare and is used to control the -** comparison of the two index keys. +** Determine if we are dealing with WinRT, which provides only a subset of +** the full Win32 API. */ -struct KeyInfo { - sqlite3 *db; /* The database connection */ - u8 enc; /* Text encoding - one of the TEXT_Utf* values */ - u16 nField; /* Number of entries in aColl[] */ - u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ - CollSeq *aColl[1]; /* Collating sequence for each term of the key */ -}; +#if !defined(SQLITE_OS_WINRT) +# define SQLITE_OS_WINRT 0 +#endif + +/* If the SET_FULLSYNC macro is not defined above, then make it +** a no-op +*/ +#ifndef SET_FULLSYNC +# define SET_FULLSYNC(x,y) +#endif /* -** An instance of the following structure holds information about a -** single index record that has already been parsed out into individual -** values. -** -** A record is an object that contains one or more fields of data. -** Records are used to store the content of a table row and to store -** the key of an index. A blob encoding of a record is created by -** the OP_MakeRecord opcode of the VDBE and is disassembled by the -** OP_Column opcode. -** -** This structure holds a record that has already been disassembled -** into its constituent fields. +** The default size of a disk sector */ -struct UnpackedRecord { - KeyInfo *pKeyInfo; /* Collation and sort-order information */ - u16 nField; /* Number of entries in apMem[] */ - u16 flags; /* Boolean settings. UNPACKED_... below */ - i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ - Mem *aMem; /* Values */ -}; +#ifndef SQLITE_DEFAULT_SECTOR_SIZE +# define SQLITE_DEFAULT_SECTOR_SIZE 4096 +#endif /* -** Allowed values of UnpackedRecord.flags +** Temporary files are named starting with this prefix followed by 16 random +** alphanumeric characters, and no file extension. They are stored in the +** OS's standard temporary file directory, and are deleted prior to exit. +** If sqlite is being embedded in another program, you may wish to change the +** prefix to reflect your program's name, so that if your program exits +** prematurely, old temporary files can be easily identified. This can be done +** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line. +** +** 2006-10-31: The default prefix used to be "sqlite_". But then +** Mcafee started using SQLite in their anti-virus product and it +** started putting files with the "sqlite" name in the c:/temp folder. +** This annoyed many windows users. Those users would then do a +** Google search for "sqlite", find the telephone numbers of the +** developers and call to wake them up at night and complain. +** For this reason, the default name prefix is changed to be "sqlite" +** spelled backwards. So the temp files are still identified, but +** anybody smart enough to figure out the code is also likely smart +** enough to know that calling the developer will not help get rid +** of the file. */ -#define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ -#define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ -#define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ -#define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ -#define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ -#define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */ +#ifndef SQLITE_TEMP_FILE_PREFIX +# define SQLITE_TEMP_FILE_PREFIX "etilqs_" +#endif /* -** Each SQL index is represented in memory by an -** instance of the following structure. +** The following values may be passed as the second argument to +** sqlite3OsLock(). The various locks exhibit the following semantics: ** -** The columns of the table that are to be indexed are described -** by the aiColumn[] field of this structure. For example, suppose -** we have the following table and index: -** -** CREATE TABLE Ex1(c1 int, c2 int, c3 text); -** CREATE INDEX Ex2 ON Ex1(c3,c1); -** -** In the Table structure describing Ex1, nCol==3 because there are -** three columns in the table. In the Index structure describing -** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. -** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the -** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. -** The second column to be indexed (c1) has an index of 0 in -** Ex1.aCol[], hence Ex2.aiColumn[1]==0. -** -** The Index.onError field determines whether or not the indexed columns -** must be unique and what to do if they are not. When Index.onError=OE_None, -** it means this is not a unique index. Otherwise it is a unique index -** and the value of Index.onError indicate the which conflict resolution -** algorithm to employ whenever an attempt is made to insert a non-unique -** element. -*/ -struct Index { - char *zName; /* Name of this index */ - int nColumn; /* Number of columns in the table used by this index */ - int *aiColumn; /* Which columns are used by this index. 1st is 0 */ - unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ - Table *pTable; /* The SQL table being indexed */ - int tnum; /* Page containing root of this index in database file */ - u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ - u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ - char *zColAff; /* String defining the affinity of each column */ - Index *pNext; /* The next index associated with the same table */ - Schema *pSchema; /* Schema containing this index */ - u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ - char **azColl; /* Array of collation sequence names for index */ -}; - -/* -** Each token coming out of the lexer is an instance of -** this structure. Tokens are also used as part of an expression. -** -** Note if Token.z==0 then Token.dyn and Token.n are undefined and -** may contain random values. Do not make any assumptions about Token.dyn -** and Token.n when Token.z==0. -*/ -struct Token { - const char *z; /* Text of the token. Not NULL-terminated! */ - unsigned int n; /* Number of characters in this token */ -}; - -/* -** An instance of this structure contains information needed to generate -** code for a SELECT that contains aggregate functions. -** -** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a -** pointer to this structure. The Expr.iColumn field is the index in -** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate -** code for that node. +** SHARED: Any number of processes may hold a SHARED lock simultaneously. +** RESERVED: A single process may hold a RESERVED lock on a file at +** any time. Other processes may hold and obtain new SHARED locks. +** PENDING: A single process may hold a PENDING lock on a file at +** any one time. Existing SHARED locks may persist, but no new +** SHARED locks may be obtained by other processes. +** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks. ** -** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the -** original Select structure that describes the SELECT statement. These -** fields do not need to be freed when deallocating the AggInfo structure. +** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a +** process that requests an EXCLUSIVE lock may actually obtain a PENDING +** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to +** sqlite3OsLock(). */ -struct AggInfo { - u8 directMode; /* Direct rendering mode means take data directly - ** from source tables rather than from accumulators */ - u8 useSortingIdx; /* In direct mode, reference the sorting index rather - ** than the source table */ - int sortingIdx; /* Cursor number of the sorting index */ - ExprList *pGroupBy; /* The group by clause */ - int nSortingColumn; /* Number of columns in the sorting index */ - struct AggInfo_col { /* For each column used in source tables */ - Table *pTab; /* Source table */ - int iTable; /* Cursor number of the source table */ - int iColumn; /* Column number within the source table */ - int iSorterColumn; /* Column number in the sorting index */ - int iMem; /* Memory location that acts as accumulator */ - Expr *pExpr; /* The original expression */ - } *aCol; - int nColumn; /* Number of used entries in aCol[] */ - int nColumnAlloc; /* Number of slots allocated for aCol[] */ - int nAccumulator; /* Number of columns that show through to the output. - ** Additional columns are used only as parameters to - ** aggregate functions */ - struct AggInfo_func { /* For each aggregate function */ - Expr *pExpr; /* Expression encoding the function */ - FuncDef *pFunc; /* The aggregate function implementation */ - int iMem; /* Memory location that acts as accumulator */ - int iDistinct; /* Ephemeral table used to enforce DISTINCT */ - } *aFunc; - int nFunc; /* Number of entries in aFunc[] */ - int nFuncAlloc; /* Number of slots allocated for aFunc[] */ -}; +#define NO_LOCK 0 +#define SHARED_LOCK 1 +#define RESERVED_LOCK 2 +#define PENDING_LOCK 3 +#define EXCLUSIVE_LOCK 4 /* -** Each node of an expression in the parse tree is an instance -** of this structure. -** -** Expr.op is the opcode. The integer parser token codes are reused -** as opcodes here. For example, the parser defines TK_GE to be an integer -** code representing the ">=" operator. This same integer code is reused -** to represent the greater-than-or-equal-to operator in the expression -** tree. -** -** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, -** or TK_STRING), then Expr.token contains the text of the SQL literal. If -** the expression is a variable (TK_VARIABLE), then Expr.token contains the -** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), -** then Expr.token contains the name of the function. -** -** Expr.pRight and Expr.pLeft are the left and right subexpressions of a -** binary operator. Either or both may be NULL. +** File Locking Notes: (Mostly about windows but also some info for Unix) ** -** Expr.x.pList is a list of arguments if the expression is an SQL function, -** a CASE expression or an IN expression of the form " IN (, ...)". -** Expr.x.pSelect is used if the expression is a sub-select or an expression of -** the form " IN (SELECT ...)". If the EP_xIsSelect bit is set in the -** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is -** valid. +** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because +** those functions are not available. So we use only LockFile() and +** UnlockFile(). ** -** An expression of the form ID or ID.ID refers to a column in a table. -** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is -** the integer cursor number of a VDBE cursor pointing to that table and -** Expr.iColumn is the column number for the specific column. If the -** expression is used as a result in an aggregate SELECT, then the -** value is also stored in the Expr.iAgg column in the aggregate so that -** it can be accessed after all aggregates are computed. +** LockFile() prevents not just writing but also reading by other processes. +** A SHARED_LOCK is obtained by locking a single randomly-chosen +** byte out of a specific range of bytes. The lock byte is obtained at +** random so two separate readers can probably access the file at the +** same time, unless they are unlucky and choose the same lock byte. +** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range. +** There can only be one writer. A RESERVED_LOCK is obtained by locking +** a single byte of the file that is designated as the reserved lock byte. +** A PENDING_LOCK is obtained by locking a designated byte different from +** the RESERVED_LOCK byte. ** -** If the expression is an unbound variable marker (a question mark -** character '?' in the original SQL) then the Expr.iTable holds the index -** number for that variable. +** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, +** which means we can use reader/writer locks. When reader/writer locks +** are used, the lock is placed on the same range of bytes that is used +** for probabilistic locking in Win95/98/ME. Hence, the locking scheme +** will support two or more Win95 readers or two or more WinNT readers. +** But a single Win95 reader will lock out all WinNT readers and a single +** WinNT reader will lock out all other Win95 readers. ** -** If the expression is a subquery then Expr.iColumn holds an integer -** register number containing the result of the subquery. If the -** subquery gives a constant result, then iTable is -1. If the subquery -** gives a different answer at different times during statement processing -** then iTable is the address of a subroutine that computes the subquery. +** The following #defines specify the range of bytes used for locking. +** SHARED_SIZE is the number of bytes available in the pool from which +** a random byte is selected for a shared lock. The pool of bytes for +** shared locks begins at SHARED_FIRST. ** -** If the Expr is of type OP_Column, and the table it is selecting from -** is a disk table or the "old.*" pseudo-table, then pTab points to the -** corresponding table definition. +** The same locking strategy and +** byte ranges are used for Unix. This leaves open the possiblity of having +** clients on win95, winNT, and unix all talking to the same shared file +** and all locking correctly. To do so would require that samba (or whatever +** tool is being used for file sharing) implements locks correctly between +** windows and unix. I'm guessing that isn't likely to happen, but by +** using the same locking range we are at least open to the possibility. ** -** ALLOCATION NOTES: +** Locking in windows is manditory. For this reason, we cannot store +** actual data in the bytes used for locking. The pager never allocates +** the pages involved in locking therefore. SHARED_SIZE is selected so +** that all locks will fit on a single page even at the minimum page size. +** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE +** is set high so that we don't have to allocate an unused page except +** for very large databases. But one should test the page skipping logic +** by setting PENDING_BYTE low and running the entire regression suite. ** -** Expr objects can use a lot of memory space in database schema. To -** help reduce memory requirements, sometimes an Expr object will be -** truncated. And to reduce the number of memory allocations, sometimes -** two or more Expr objects will be stored in a single memory allocation, -** together with Expr.zToken strings. +** Changing the value of PENDING_BYTE results in a subtly incompatible +** file format. Depending on how it is changed, you might not notice +** the incompatibility right away, even running a full regression test. +** The default location of PENDING_BYTE is the first byte past the +** 1GB boundary. ** -** If the EP_Reduced and EP_TokenOnly flags are set when -** an Expr object is truncated. When EP_Reduced is set, then all -** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees -** are contained within the same memory allocation. Note, however, that -** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately -** allocated, regardless of whether or not EP_Reduced is set. */ -struct Expr { - u8 op; /* Operation performed by this node */ - char affinity; /* The affinity of the column or 0 if not a column */ - u16 flags; /* Various flags. EP_* See below */ - union { - char *zToken; /* Token value. Zero terminated and dequoted */ - int iValue; /* Integer value if EP_IntValue */ - } u; +#ifdef SQLITE_OMIT_WSD +# define PENDING_BYTE (0x40000000) +#else +# define PENDING_BYTE sqlite3PendingByte +#endif +#define RESERVED_BYTE (PENDING_BYTE+1) +#define SHARED_FIRST (PENDING_BYTE+2) +#define SHARED_SIZE 510 - /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no - ** space is allocated for the fields below this point. An attempt to - ** access them will result in a segfault or malfunction. - *********************************************************************/ +/* +** Wrapper around OS specific sqlite3_os_init() function. +*/ +SQLITE_PRIVATE int sqlite3OsInit(void); - Expr *pLeft; /* Left subnode */ - Expr *pRight; /* Right subnode */ - union { - ExprList *pList; /* Function arguments or in " IN ( IN (