File tree Expand file tree Collapse file tree 1 file changed +26
-2
lines changed
Expand file tree Collapse file tree 1 file changed +26
-2
lines changed Original file line number Diff line number Diff line change 107107 </div>
108108</div >
109109
110- <div class =" fragment " data-fragment-index =" 1 " ></div >
111-
112110---
113111
114112## Machine Learning
@@ -225,6 +223,32 @@ The loss function $$\mathcal{L}$$ quantifies the difference between the predicte
225223
226224---
227225
226+ ## Residual Errors
227+
228+ - Data points are generated by a true function $f^* $ plus noise:
229+
230+ <div class =" formula " >
231+ $$
232+ \mathbf{y}_i = f^*(\mathbf{x}_i) + \epsilon_i
233+ $$
234+ </div >
235+
236+ where $\epsilon_i$ represents inherent noise or randomness in the data generation process.
237+
238+ - Residual errors measure the difference between predictions and observations:
239+
240+ <div class =" formula " >
241+ $$
242+ r_i = \mathbf{y}_i - f_{\boldsymbol{\theta}}(\mathbf{x}_i)
243+ $$
244+ </div >
245+
246+ <div class =" highlight " style =" padding : 40px 40px " >
247+ Errors persist due to: (1) inherent noise $\epsilon_i$, and (2) approximation error when $f^* \notin \mathcal{F}_ {\Theta}$
248+ </div >
249+
250+ ---
251+
228252## Example: Linear Regression
229253
230254<div style =" text-align : center ;" >
You can’t perform that action at this time.
0 commit comments