-
Notifications
You must be signed in to change notification settings - Fork 40
Open
Description
hi vibrantabhi19 :
Thank you for sharing your code! That's very helpful for me to understand All-CNN.
In addition, I've trained it last with your model night with 350 epochs, however found its accuracy (i.e. val_acc) became stable (about 0.81) after epoch 49 and remained the same to the end
Any ideas? :) 👍
The model I used:
`
model = Sequential()
model.add(Conv2D(96, (3, 3), padding="same", input_shape=(32, 32, 3)))
model.add(Activation('relu'))
model.add(Conv2D(96, (3, 3), padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(96, (3, 3), padding="same", strides=2))
model.add(Dropout(0.5))
model.add(Conv2D(192, (3, 3), padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(192, (3, 3), padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(192, (3, 3), padding="same", strides=2))
model.add(Dropout(0.5))
model.add(Conv2D(192, (3, 3), padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(192, (1, 1), padding="valid"))
model.add(Activation('relu'))
model.add(Conv2D(10, (1, 1), padding="valid"))
model.add(GlobalAveragePooling2D())
model.add(Activation('softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])`
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels