Skip to content

Accuracy is ~80 after 350 epochs  #4

@ChesterAiGo

Description

@ChesterAiGo

hi vibrantabhi19 :

Thank you for sharing your code! That's very helpful for me to understand All-CNN.

In addition, I've trained it last with your model night with 350 epochs, however found its accuracy (i.e. val_acc) became stable (about 0.81) after epoch 49 and remained the same to the end

Any ideas? :) 👍

The model I used:

`
model = Sequential()

model.add(Conv2D(96, (3, 3), padding="same", input_shape=(32, 32, 3)))
model.add(Activation('relu'))
model.add(Conv2D(96, (3, 3), padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(96, (3, 3), padding="same", strides=2))
model.add(Dropout(0.5))

model.add(Conv2D(192, (3, 3), padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(192, (3, 3), padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(192, (3, 3), padding="same", strides=2))
model.add(Dropout(0.5))

model.add(Conv2D(192, (3, 3), padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(192, (1, 1), padding="valid"))
model.add(Activation('relu'))
model.add(Conv2D(10, (1, 1), padding="valid"))

model.add(GlobalAveragePooling2D())
model.add(Activation('softmax'))

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])`

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions