Skip to content

Does not work out of the box #7

@JohnTailor

Description

@JohnTailor

Thanks for the code. Without trying to look for reasons, it seems to fail for newer tensorflow/keras versions - though that could also be specific to my setup.

Anyway, I get:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimension 0 in both shapes must be equal, but are 1 and 3. Shapes are [1] and [3].

Full trace:

Using TensorFlow backend.
C:\Users\Deeplearning.keras\datasets\cifar-10-batches-py
X_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples
(32, 32, 3)
C:/Users/Deeplearning/Desktop/DeepRepo2/greendatamining/DeepLearn/DeepCodeOwnNetwork/simplenet.py:78: UserWarning: Update your Conv2D call to the Keras 2 API: Conv2D(96, (3, 3), input_shape=(3, 32, 32..., padding="same")
model.add(Convolution2D(96, 3, 3, border_mode='same', input_shape=(3, 32, 32)))
C:/Users/Deeplearning/Desktop/DeepRepo2/greendatamining/DeepLearn/DeepCodeOwnNetwork/simplenet.py:80: UserWarning: Update your Conv2D call to the Keras 2 API: Conv2D(96, (3, 3), padding="same")
model.add(Convolution2D(96, 3, 3, border_mode='same'))
C:/Users/Deeplearning/Desktop/DeepRepo2/greendatamining/DeepLearn/DeepCodeOwnNetwork/simplenet.py:82: UserWarning: Update your Conv2D call to the Keras 2 API: Conv2D(96, (3, 3), strides=(2, 2), padding="same")
model.add(Convolution2D(96, 3, 3, border_mode='same', subsample=(2, 2)))
C:/Users/Deeplearning/Desktop/DeepRepo2/greendatamining/DeepLearn/DeepCodeOwnNetwork/simplenet.py:85: UserWarning: Update your Conv2D call to the Keras 2 API: Conv2D(192, (3, 3), padding="same")
model.add(Convolution2D(192, 3, 3, border_mode='same'))
C:/Users/Deeplearning/Desktop/DeepRepo2/greendatamining/DeepLearn/DeepCodeOwnNetwork/simplenet.py:87: UserWarning: Update your Conv2D call to the Keras 2 API: Conv2D(192, (3, 3), padding="same")
model.add(Convolution2D(192, 3, 3, border_mode='same'))
C:/Users/Deeplearning/Desktop/DeepRepo2/greendatamining/DeepLearn/DeepCodeOwnNetwork/simplenet.py:89: UserWarning: Update your Conv2D call to the Keras 2 API: Conv2D(192, (3, 3), strides=(2, 2), padding="same")
model.add(Convolution2D(192, 3, 3, border_mode='same', subsample=(2, 2)))
C:/Users/Deeplearning/Desktop/DeepRepo2/greendatamining/DeepLearn/DeepCodeOwnNetwork/simplenet.py:92: UserWarning: Update your Conv2D call to the Keras 2 API: Conv2D(192, (3, 3), padding="same")
model.add(Convolution2D(192, 3, 3, border_mode='same'))
C:/Users/Deeplearning/Desktop/DeepRepo2/greendatamining/DeepLearn/DeepCodeOwnNetwork/simplenet.py:94: UserWarning: Update your Conv2D call to the Keras 2 API: Conv2D(192, (1, 1), padding="valid")
model.add(Convolution2D(192, 1, 1, border_mode='valid'))
C:/Users/Deeplearning/Desktop/DeepRepo2/greendatamining/DeepLearn/DeepCodeOwnNetwork/simplenet.py:96: UserWarning: Update your Conv2D call to the Keras 2 API: Conv2D(10, (1, 1), padding="valid")
model.add(Convolution2D(10, 1, 1, border_mode='valid'))
Traceback (most recent call last):
File "C:\Users\Deeplearning\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1576, in _create_c_op
c_op = c_api.TF_FinishOperation(op_desc)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimension 0 in both shapes must be equal, but are 1 and 3. Shapes are [1] and [3].
From merging shape 0 with other shapes. for 'tower_0/lambda_1/concat/concat_dim' (op: 'Pack') with input shapes: [1], [3].

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions