-
Notifications
You must be signed in to change notification settings - Fork 12
Description
作者您好,我按照您的代码运行了一下,下载了各种大模型和您的模型
但是运行起来有如下错误。我不知道是怎么回事,看上去是模型的encode部分出现了哪些错误。如果您知道,请指教,谢谢
sampling 50 steps using ddpm sampler
Traceback (most recent call last):
File "inference_partition.py", line 160, in
main()
File "inference_partition.py", line 141, in main
preds, bpp = process(
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "inference_partition.py", line 56, in process
"c_crossattn": [model.get_learned_conditioning([""] * n_samples)]
File "/root/autodl-tmp/DiffEIC/ldm/models/diffusion/ddpm.py", line 677, in get_learned_conditioning
c = self.cond_stage_model.encode(c)
File "/root/autodl-tmp/DiffEIC/ldm/modules/encoders/modules.py", line 236, in encode
return self(text)
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/root/autodl-tmp/DiffEIC/ldm/modules/encoders/modules.py", line 213, in forward
z = self.encode_with_transformer(tokens.to(next(self.model.parameters()).device))
File "/root/autodl-tmp/DiffEIC/ldm/modules/encoders/modules.py", line 220, in encode_with_transformer
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
File "/root/autodl-tmp/DiffEIC/ldm/modules/encoders/modules.py", line 232, in text_transformer_forward
x = r(x, attn_mask=attn_mask)
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/open_clip/transformer.py", line 263, in forward
x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask))
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/open_clip/transformer.py", line 250, in attention
return self.attn(
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/nn/modules/activation.py", line 1275, in forward
attn_output, attn_output_weights = F.multi_head_attention_forward(
File "/root/miniconda3/envs/mfr/lib/python3.8/site-packages/torch/nn/functional.py", line 5438, in multi_head_attention_forward
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
RuntimeError: The shape of the 2D attn_mask is torch.Size([77, 77]), but should be (1, 1).