Skip to content

Wigner D Matrix appears to be complex conjugated #42

@ariaradick

Description

@ariaradick

The easiest way to see this is to consider the expression

$$D^\ell_{m0}(\alpha,\beta,\gamma) = \sqrt{\frac{4 \pi}{2 \ell + 1}} Y_\ell^{m*}(\beta,\alpha)$$

if we calculate this for a given rotation, say $\alpha = \pi/3$ and $\beta = \pi/5$

using Quaternionic
using SphericalFunctions
θ = π/5
φ = π/3
q = from_euler_angles(φ, θ, 0.0)
[D_matrices(q,1)[WignerDindex(ell,m,0)] for ell in 0:1 for m in -ell:ell]

this returns

1.0 + 0.0im
  0.2078134688887268 - 0.3599434866124088im
  0.8090169943749475 + 0.0im
 -0.2078134688887268 - 0.3599434866124088im

If we use Mathematica to calculate the complex spherical harmonics on the RHS of this equation

Table[N[Sqrt[(4 \[Pi])/(2  ell + 1)]
    Conjugate[SphericalHarmonicY[ell, m, \[Pi]/5, \[Pi]/3]]], {ell, 0,
   1}, {m, -ell, ell}]

we get

1.
0.207813 + 0.359943 I
0.809017
-0.207813 + 0.359943 I

which is the complex conjugate of your D matrix.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions