-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Description
The easiest way to see this is to consider the expression
if we calculate this for a given rotation, say
using Quaternionic
using SphericalFunctions
θ = π/5
φ = π/3
q = from_euler_angles(φ, θ, 0.0)
[D_matrices(q,1)[WignerDindex(ell,m,0)] for ell in 0:1 for m in -ell:ell]
this returns
1.0 + 0.0im
0.2078134688887268 - 0.3599434866124088im
0.8090169943749475 + 0.0im
-0.2078134688887268 - 0.3599434866124088im
If we use Mathematica to calculate the complex spherical harmonics on the RHS of this equation
Table[N[Sqrt[(4 \[Pi])/(2 ell + 1)]
Conjugate[SphericalHarmonicY[ell, m, \[Pi]/5, \[Pi]/3]]], {ell, 0,
1}, {m, -ell, ell}]
we get
1.
0.207813 + 0.359943 I
0.809017
-0.207813 + 0.359943 I
which is the complex conjugate of your D matrix.
Metadata
Metadata
Assignees
Labels
No labels