From 734d71b9bc370d1fd812f900f9892db8ffa2e7d1 Mon Sep 17 00:00:00 2001 From: Mohcen23 Date: Sun, 19 Feb 2023 20:37:08 +0100 Subject: [PATCH] updated in a pythonic manner the parts 5.2 and 6.2 --- FaceDetection.ipynb | 68 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 68 insertions(+) diff --git a/FaceDetection.ipynb b/FaceDetection.ipynb index 8fd179ea..412ec8af 100644 --- a/FaceDetection.ipynb +++ b/FaceDetection.ipynb @@ -633,6 +633,41 @@ "val_images = val_images.map(lambda x: x/255)" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### -> An alternative manner to do so :" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "images = list()\n", + "\n", + "for folder in ['train', 'test', 'val']:\n", + " specific_images = tf.data.Dataset.list_files(f'aug_data\\\\{folder}\\\\images\\\\*.jpg', shuffle=False)\n", + " specific_images = specific_images.map(load_image)\n", + " specific_images = specific_images.map(lambda x: tf.image.resize(x, (120,120)))\n", + " specific_images = specific_images.map(lambda x: x/255)\n", + " images.append(specific_images)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_images = images[0]\n", + "test_images = images[1]\n", + "val_images = images[2]" + ] + }, { "cell_type": "code", "execution_count": null, @@ -716,6 +751,39 @@ "val_labels = val_labels.map(lambda x: tf.py_function(load_labels, [x], [tf.uint8, tf.float16]))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### -> An alternative manner to do so:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "labels = list()\n", + "\n", + "for folder in ['train', 'test', 'val']:\n", + " specific_labels = tf.data.Dataset.list_files(f'aug_data\\\\{folder}\\\\labels\\\\*.json', shuffle=False)\n", + " # loading the labels\n", + " specific_labels = specific_labels.map(lambda x: tf.py_function(load_labels, [x], [tf.uint8, tf.float16 ]))\n", + " labels.append(specific_labels)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_labels = labels[0]\n", + "test_labels = labels[1]\n", + "val_labels = labels[2]" + ] + }, { "cell_type": "code", "execution_count": null,