-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
概述
基于001任务完成的VATSM策略核心,实现完整的三层风控体系,包括动态止损、回撤保护和紧急风控机制,确保策略在各种市场环境下的资金安全。
目标
- 实现VATSM三层止损系统
- 集成动态回撤保护机制
- 建立紧急风控和熔断机制
- 提供实时风险监控和报警
技术要求
核心功能
-
三层止损系统
- 固定止损:基于入场价格的固定百分比止损
- 追踪止损:基于最高价格的动态跟踪止损
- ATR止损:基于市场波动率的自适应止损
-
回撤保护机制
- 账户级回撤监控
- 策略级回撤限制
- 动态仓位调整
- 自动暂停交易功能
-
紧急风控
- 市场异常检测
- 流动性风险监控
- 系统性风险熔断
- 强制平仓机制
实现细节
三层止损系统
class ThreeLayerStopLoss:
"""VATSM三层止损系统"""
def __init__(self, config: Dict[str, Any]):
self.fixed_stop_pct = config.get('fixed_stop_pct', 0.02)
self.trailing_stop_pct = config.get('trailing_stop_pct', 0.015)
self.atr_multiplier = config.get('atr_multiplier', 2.0)
def calculate_stop_loss(self, trade: Trade, current_rate: float,
dataframe: DataFrame) -> float:
"""计算三层止损中的最优止损价格"""
# 1. 固定止损
fixed_stop = self.calculate_fixed_stop(trade, current_rate)
# 2. 追踪止损
trailing_stop = self.calculate_trailing_stop(trade, current_rate)
# 3. ATR止损
atr_stop = self.calculate_atr_stop(trade, current_rate, dataframe)
# 选择最保护性的止损
if trade.is_short:
return min(fixed_stop, trailing_stop, atr_stop)
else:
return max(fixed_stop, trailing_stop, atr_stop)
def calculate_fixed_stop(self, trade: Trade, current_rate: float) -> float:
"""固定止损计算"""
if trade.is_short:
return trade.open_rate * (1 + self.fixed_stop_pct)
else:
return trade.open_rate * (1 - self.fixed_stop_pct)
def calculate_trailing_stop(self, trade: Trade, current_rate: float) -> float:
"""追踪止损计算"""
if trade.is_short:
# 短仓:从最低价向上追踪
lowest_price = min(trade.open_rate, trade.min_rate or current_rate)
return lowest_price * (1 + self.trailing_stop_pct)
else:
# 长仓:从最高价向下追踪
highest_price = max(trade.open_rate, trade.max_rate or current_rate)
return highest_price * (1 - self.trailing_stop_pct)
def calculate_atr_stop(self, trade: Trade, current_rate: float,
dataframe: DataFrame) -> float:
"""ATR自适应止损计算"""
if len(dataframe) < 14:
return self.calculate_fixed_stop(trade, current_rate)
current_atr = dataframe['atr'].iloc[-1]
if trade.is_short:
return current_rate + (current_atr * self.atr_multiplier)
else:
return current_rate - (current_atr * self.atr_multiplier)回撤保护机制
class DrawdownProtection:
"""动态回撤保护系统"""
def __init__(self, config: Dict[str, Any]):
self.max_drawdown_pct = config.get('max_drawdown_pct', 0.15)
self.warning_drawdown_pct = config.get('warning_drawdown_pct', 0.10)
self.recovery_threshold = config.get('recovery_threshold', 0.05)
self.position_scaling = config.get('position_scaling', True)
def check_drawdown_status(self, current_balance: float,
peak_balance: float) -> Dict[str, Any]:
"""检查当前回撤状态"""
if peak_balance <= 0:
return {'status': 'normal', 'drawdown_pct': 0.0}
current_drawdown = (peak_balance - current_balance) / peak_balance
if current_drawdown >= self.max_drawdown_pct:
return {
'status': 'critical',
'drawdown_pct': current_drawdown,
'action': 'stop_trading'
}
elif current_drawdown >= self.warning_drawdown_pct:
return {
'status': 'warning',
'drawdown_pct': current_drawdown,
'action': 'reduce_positions'
}
else:
return {
'status': 'normal',
'drawdown_pct': current_drawdown,
'action': 'continue'
}
def calculate_position_scale(self, drawdown_pct: float) -> float:
"""根据回撤调整仓位规模"""
if drawdown_pct >= self.max_drawdown_pct:
return 0.0 # 停止交易
elif drawdown_pct >= self.warning_drawdown_pct:
# 线性缩减仓位
scale_factor = 1 - (drawdown_pct - self.warning_drawdown_pct) / \
(self.max_drawdown_pct - self.warning_drawdown_pct)
return max(0.2, scale_factor) # 最少保持20%仓位
else:
return 1.0 # 正常仓位
def should_resume_trading(self, current_drawdown: float,
previous_drawdown: float) -> bool:
"""判断是否应该恢复交易"""
recovery = previous_drawdown - current_drawdown
return recovery >= self.recovery_threshold紧急风控系统
class EmergencyRiskControl:
"""紧急风控和熔断机制"""
def __init__(self, config: Dict[str, Any]):
self.max_daily_loss = config.get('max_daily_loss', 0.08)
self.max_consecutive_losses = config.get('max_consecutive_losses', 5)
self.volatility_threshold = config.get('volatility_threshold', 3.0)
self.liquidity_threshold = config.get('liquidity_threshold', 0.5)
def check_emergency_conditions(self, trading_stats: Dict[str, Any]) -> Dict[str, Any]:
"""检查紧急风控条件"""
emergency_status = {
'triggered': False,
'reasons': [],
'actions': []
}
# 1. 日损失检查
daily_loss_pct = trading_stats.get('daily_loss_pct', 0.0)
if daily_loss_pct >= self.max_daily_loss:
emergency_status['triggered'] = True
emergency_status['reasons'].append('daily_loss_exceeded')
emergency_status['actions'].append('stop_all_trading')
# 2. 连续亏损检查
consecutive_losses = trading_stats.get('consecutive_losses', 0)
if consecutive_losses >= self.max_consecutive_losses:
emergency_status['triggered'] = True
emergency_status['reasons'].append('consecutive_losses_exceeded')
emergency_status['actions'].append('pause_new_entries')
# 3. 市场波动率检查
current_volatility = trading_stats.get('market_volatility', 1.0)
if current_volatility >= self.volatility_threshold:
emergency_status['triggered'] = True
emergency_status['reasons'].append('high_volatility')
emergency_status['actions'].append('reduce_position_sizes')
# 4. 流动性检查
liquidity_score = trading_stats.get('liquidity_score', 1.0)
if liquidity_score <= self.liquidity_threshold:
emergency_status['triggered'] = True
emergency_status['reasons'].append('low_liquidity')
emergency_status['actions'].append('close_risky_positions')
return emergency_status
def execute_emergency_actions(self, actions: List[str],
trading_engine) -> None:
"""执行紧急风控行动"""
for action in actions:
if action == 'stop_all_trading':
trading_engine.disable_trading()
self.force_close_all_positions(trading_engine)
elif action == 'pause_new_entries':
trading_engine.pause_new_entries()
elif action == 'reduce_position_sizes':
trading_engine.scale_positions(0.5)
elif action == 'close_risky_positions':
self.close_high_risk_positions(trading_engine)集成到Strategy类
def custom_exit(self, pair: str, trade: Trade, current_time: datetime,
current_rate: float, current_profit: float,
**kwargs) -> Optional[Union[str, bool]]:
"""集成三层风控的退出逻辑"""
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
# 1. 三层止损检查
stop_loss_price = self.stop_loss_system.calculate_stop_loss(
trade, current_rate, dataframe
)
if (trade.is_short and current_rate >= stop_loss_price) or \
(not trade.is_short and current_rate <= stop_loss_price):
return 'three_layer_stop_loss'
# 2. 回撤保护检查
current_balance = self.wallets.get_total_stake_amount()
peak_balance = self.get_peak_balance()
drawdown_status = self.drawdown_protection.check_drawdown_status(
current_balance, peak_balance
)
if drawdown_status['status'] == 'critical':
return 'drawdown_protection'
# 3. 紧急风控检查
trading_stats = self.get_current_trading_stats()
emergency_status = self.emergency_risk.check_emergency_conditions(trading_stats)
if emergency_status['triggered']:
self.emergency_risk.execute_emergency_actions(
emergency_status['actions'], self
)
return 'emergency_risk_control'
return None
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: Optional[float], max_stake: float,
leverage: float, entry_tag: Optional[str], side: str,
**kwargs) -> float:
"""集成回撤保护的仓位管理"""
# 获取基础仓位(来自004任务)
base_stake = super().custom_stake_amount(
pair, current_time, current_rate, proposed_stake,
min_stake, max_stake, leverage, entry_tag, side, **kwargs
)
# 应用回撤保护缩放
current_balance = self.wallets.get_total_stake_amount()
peak_balance = self.get_peak_balance()
drawdown_status = self.drawdown_protection.check_drawdown_status(
current_balance, peak_balance
)
position_scale = self.drawdown_protection.calculate_position_scale(
drawdown_status['drawdown_pct']
)
return base_stake * position_scale配置参数
# 三层止损配置
STOP_LOSS_CONFIG = {
'fixed_stop_pct': 0.02, # 固定止损2%
'trailing_stop_pct': 0.015, # 追踪止损1.5%
'atr_multiplier': 2.0, # ATR乘数
'min_profit_to_trail': 0.01 # 开始追踪的最小盈利
}
# 回撤保护配置
DRAWDOWN_CONFIG = {
'max_drawdown_pct': 0.15, # 最大回撤15%
'warning_drawdown_pct': 0.10, # 警告回撤10%
'recovery_threshold': 0.05, # 恢复阈值5%
'position_scaling': True, # 启用仓位缩放
'daily_reset': True # 每日重置峰值
}
# 紧急风控配置
EMERGENCY_CONFIG = {
'max_daily_loss': 0.08, # 最大日损失8%
'max_consecutive_losses': 5, # 最大连续亏损次数
'volatility_threshold': 3.0, # 波动率阈值
'liquidity_threshold': 0.5, # 流动性阈值
'force_close_timeout': 300, # 强制平仓超时(秒)
}验收标准
功能测试
-
止损系统测试
- 固定止损在设定点位准确触发
- 追踪止损正确跟踪最高/最低价
- ATR止损根据波动率动态调整
- 三层止损选择最优保护价位
-
回撤保护测试
- 回撤达到警告线时仓位自动缩减
- 回撤达到最大限制时停止交易
- 回撤恢复后自动恢复交易
- 峰值余额正确更新和跟踪
-
紧急风控测试
- 日损失超标时立即停止交易
- 连续亏损过多时暂停新开仓
- 高波动率时自动缩减仓位
- 低流动性时关闭风险头寸
性能测试
-
风控效果
- 最大回撤控制在设定范围内
- 最大连续亏损次数不超过设定值
- 日损失控制在可接受范围内
-
系统稳定性
- 风控逻辑执行延迟 < 100ms
- 紧急平仓成功率 > 99%
- 系统异常情况下风控正常工作
实现计划
阶段1:三层止损系统 (3小时)
- 实现固定止损逻辑
- 实现追踪止损机制
- 实现ATR自适应止损
- 集成止损选择算法
阶段2:回撤保护机制 (2小时)
- 实现回撤监控系统
- 实现动态仓位缩放
- 集成交易暂停/恢复逻辑
阶段3:紧急风控系统 (2小时)
- 实现紧急条件检测
- 实现自动风控行动
- 添加强制平仓机制
阶段4:集成测试 (1小时)
- 完整风控系统集成测试
- 极端市场条件模拟测试
- 性能和稳定性验证
依赖关系
- 前置依赖: 001 - VATSM策略核心
- 并行任务: 004 - 仓位管理优化(需要协调仓位计算逻辑)
- 后续任务: 007 - 回测验证脚本
风险与缓解
技术风险
-
止损触发延迟
- 风险:网络延迟或系统卡顿导致止损失效
- 缓解:多重检查机制,预设安全边界
-
回撤计算错误
- 风险:峰值余额计算错误导致误判
- 缓解:多数据源验证,历史数据回溯检查
业务风险
-
过度保守
- 风险:风控过于严格影响盈利能力
- 缓解:参数可调,渐进式风控强度
-
紧急情况处理
- 风险:极端市场情况下无法及时平仓
- 缓解:多个交易所同时监控,预设紧急联系机制
成功指标
- 风控触发准确率 > 98%
- 止损执行成功率 > 99%
- 最大回撤控制 < 15%
- 紧急风控响应时间 < 5秒
- 误触发率 < 2%
交付物
-
核心代码
- ThreeLayerStopLoss类实现
- DrawdownProtection类实现
- EmergencyRiskControl类实现
- 策略集成代码
-
配置文件
- 风控参数配置
- 止损阈值设置
- 紧急风控规则
-
测试文件
- 各风控模块单元测试
- 集成测试用例
- 极端情况测试脚本
-
监控工具
- 实时风控状态dashboard
- 风控事件日志系统
- 报警通知机制
-
文档
- 风控系统操作手册
- 紧急情况处理流程
- 参数调优指南
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels