Skip to content

Confidence value for relative prediction? #6

@swimmiing

Description

@swimmiing

Based on the provided test code, the confidence value is calculated as the average of the top 25% values of the model output before performing relative prediction. However, if you enable the relative prediction option, you would need to recalculate the prediction values. This is because the range of pixel values in the heatmap may change significantly before and after applying the Min-Max normalization. Could you please clarify if this understanding is correct?

test.py

conf_av = np.sort(scores_av.flatten())[-n//4:].mean()
conf_obj = np.sort(scores_obj.flatten())[-n//4:].mean()
conf_av_obj = np.sort(scores_av_obj.flatten())[-n//4:].mean()

if args.relative_prediction:
    pred_av = utils.normalize_img(scores_av)
    pred_obj = utils.normalize_img(scores_obj)
    pred_av_obj = utils.normalize_img(scores_av_obj)

    thr_av = np.sort(pred_av.flatten())[int(n * args.pred_size)]
    thr_obj = np.sort(pred_obj.flatten())[int(n * args.pred_size)]
    thr_av_obj = np.sort(pred_av_obj.flatten())[int(n * args.pred_size)]
else:
    pred_av = scores_av
    pred_obj = scores_obj
    pred_av_obj = scores_av_obj

    thr_av = thr_obj = thr_av_obj = args.pred_thr

evaluator_av.update(bb, gt_map, conf_av, pred_av, thr_av, name[i])
evaluator_obj.update(bb, gt_map, conf_obj, pred_obj, thr_obj, name[i])
evaluator_av_obj.update(bb, gt_map, conf_av_obj, pred_av_obj, thr_av_obj, name[i])

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions