Skip to content

ASCII-LAB/EviSEC

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EviSEC: Evidential Spectrum-Aware Contrastive Learning for Out-of-Distribution Detection in Dynamic Graphs

🔥 Update

  • [2024-5-26]: EviSEC is accepted by ECML 2025! (Acceptance Rate: 24%)
  • [2025-6-10]: Paper of EviSEC online. Check out arXiv: paper for details.

Abstract

In this study, we explore Out-of-Distribution Detection in Dynamic Graphs and analyze it using Evidential Deep Learning. We employ the 6 datasets in three download task and implement our methods for a comprehensive analysis of results. Specifically, we propose EviSEC, an innovative and effective OOD detector via Evidential Spectrum-awarE Contrastive Learning. figure

Dataset

6 datasets were used in the paper:

# Nodes # Edges # Time Splits Task
BC-OTC 5,881 35,588 95 / 14 / 28 Edge Classification
BC-Alpha 3,777 24,173 95 / 13 / 28 Edge Classification
UCI 1,899 59,835 62 / 9 / 17 Link Prediction
AS 6,474 13,895 70 / 10 / 20 Link Prediction
Elliptic 203,769 234,355 31 / 5 / 13 Node Classification
Brain 5,000 1,955,488 10 / 1 / 1 Node Classification

Data Source

Bitcoin OTC: Downloadable from http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

Bitcoin Alpha: Downloadable from http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html

Uc_irvine: Downloadable from http://konect.uni-koblenz.de/networks/opsahl-ucsocial

Autonomous Systems: Downloadable from http://snap.stanford.edu/data/as-733.html

Elliptic: Please see the instruction to manually prepare the preprocessed version or refer to the following repository that originally proposed the usage of the data: https://arxiv.org/abs/1902.10191

Brain: Downloadable from https://www.dropbox.com/sh/33p0gk4etgdjfvz/AACe2INXtp3N0u9xRdszq4vua?dl=0

For downloaded data sets please place them in the 'data' folder. Elliptic can also be easily processed by ell_preprocess.py.

Code Execution Method

To reproduce this study, the following code execution methods were used:

1. Conda Environment Requirements

  • Python version: 3.6.13

  • Dependencies:

    $ conda create --name <env> python=3.6.13 --file environment.txt

    $ pip install -r requestment.txt

2. Data Preprocessing

  • The code performs data preprocessing, including data OOD (SM and FI).

3. Usage (Our model uses ----EDL evisec as part of the command line arguments.)

  • python run_exp.py --config_file ./experiments/EC_BTCAlpha.yaml --OOD FI
    python run_exp.py --config_file ./experiments/EC_BTCAlpha.yaml --OOD SM
    python run_exp.py --config_file ./experiments/EC_BTCAlpha.yaml --EDL evisec --OOD FI
    python run_exp.py --config_file ./experiments/EC_BTCAlpha.yaml --EDL evisec --OOD SM
    

About

EviSEC

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%