Skip to content

MCP Server for Sora AI Video Generation via AceDataCloud API

License

Notifications You must be signed in to change notification settings

AceDataCloud/MCPSora

Repository files navigation

MCP Sora

Python 3.10+ License: MIT MCP

A Model Context Protocol (MCP) server for AI video generation using Sora through the AceDataCloud API.

Generate AI videos directly from Claude, VS Code, or any MCP-compatible client.

Features

  • Text-to-Video - Generate videos from text descriptions
  • Image-to-Video - Animate images and create videos from reference images
  • Character Videos - Reuse characters across different scenes
  • Async Generation - Webhook callbacks for production workflows
  • Multiple Orientations - Landscape, portrait, and square videos
  • Task Tracking - Monitor generation progress and retrieve results

Quick Start

1. Get API Token

Get your API token from AceDataCloud Platform:

  1. Sign up or log in
  2. Navigate to Sora Videos API
  3. Click "Acquire" to get your token

2. Install

# Clone the repository
git clone https://github.com/AceDataCloud/mcp-sora.git
cd mcp-sora

# Install with pip
pip install -e .

# Or with uv (recommended)
uv pip install -e .

3. Configure

# Copy example environment file
cp .env.example .env

# Edit with your API token
echo "ACEDATACLOUD_API_TOKEN=your_token_here" > .env

4. Run

# Run the server
mcp-sora

# Or with Python directly
python main.py

Claude Desktop Integration

Add to your Claude Desktop configuration:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "sora": {
      "command": "mcp-sora",
      "env": {
        "ACEDATACLOUD_API_TOKEN": "your_api_token_here"
      }
    }
  }
}

Or if using uv:

{
  "mcpServers": {
    "sora": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/mcp-sora", "mcp-sora"],
      "env": {
        "ACEDATACLOUD_API_TOKEN": "your_api_token_here"
      }
    }
  }
}

Available Tools

Video Generation

Tool Description
sora_generate_video Generate video from a text prompt
sora_generate_video_from_image Generate video from reference images
sora_generate_video_with_character Generate video with a character from reference video
sora_generate_video_async Generate video with callback notification

Tasks

Tool Description
sora_get_task Query a single task status
sora_get_tasks_batch Query multiple tasks at once

Information

Tool Description
sora_list_models List available Sora models
sora_list_actions List available API actions

Usage Examples

Generate Video from Prompt

User: Create a video of a sunset over mountains

Claude: I'll generate a sunset video for you.
[Calls sora_generate_video with prompt="A beautiful sunset over mountains..."]

Generate from Image

User: Animate this image of a city skyline

Claude: I'll bring this image to life.
[Calls sora_generate_video_from_image with image_urls and prompt]

Character-based Video

User: Use the robot character in a new scene

Claude: I'll create a new scene with the robot character.
[Calls sora_generate_video_with_character with character_url and prompt]

Available Models

Model Max Duration Quality Features
sora-2 15 seconds Good Standard generation
sora-2-pro 25 seconds Best Higher quality, longer videos

Video Options

Size:

  • small - Lower resolution, faster generation
  • large - Higher resolution (recommended)

Orientation:

  • landscape - 16:9 (YouTube, presentations)
  • portrait - 9:16 (TikTok, Instagram Stories)
  • square - 1:1 (Instagram posts)

Duration:

  • 10 seconds - All models
  • 15 seconds - All models
  • 25 seconds - sora-2-pro only

Configuration

Environment Variables

Variable Description Default
ACEDATACLOUD_API_TOKEN API token from AceDataCloud Required
ACEDATACLOUD_API_BASE_URL API base URL https://api.acedata.cloud
SORA_DEFAULT_MODEL Default model sora-2
SORA_DEFAULT_SIZE Default video size large
SORA_DEFAULT_DURATION Default duration (seconds) 15
SORA_DEFAULT_ORIENTATION Default orientation landscape
SORA_REQUEST_TIMEOUT Request timeout (seconds) 3600
LOG_LEVEL Logging level INFO

Command Line Options

mcp-sora --help

Options:
  --version          Show version
  --transport        Transport mode: stdio (default) or http
  --port             Port for HTTP transport (default: 8000)

Development

Setup Development Environment

# Clone repository
git clone https://github.com/AceDataCloud/mcp-sora.git
cd mcp-sora

# Create virtual environment
python -m venv .venv
source .venv/bin/activate  # or `.venv\Scripts\activate` on Windows

# Install with dev dependencies
pip install -e ".[dev,test]"

Run Tests

# Run unit tests
pytest

# Run with coverage
pytest --cov=core --cov=tools

# Run integration tests (requires API token)
pytest tests/test_integration.py -m integration

Code Quality

# Format code
ruff format .

# Lint code
ruff check .

# Type check
mypy core tools

Build & Publish

# Install build dependencies
pip install -e ".[release]"

# Build package
python -m build

# Upload to PyPI
twine upload dist/*

Project Structure

MCPSora/
├── core/                   # Core modules
│   ├── __init__.py
│   ├── client.py          # HTTP client for Sora API
│   ├── config.py          # Configuration management
│   ├── exceptions.py      # Custom exceptions
│   ├── server.py          # MCP server initialization
│   ├── types.py           # Type definitions
│   └── utils.py           # Utility functions
├── tools/                  # MCP tool definitions
│   ├── __init__.py
│   ├── video_tools.py     # Video generation tools
│   ├── task_tools.py      # Task query tools
│   └── info_tools.py      # Information tools
├── prompts/                # MCP prompt templates
│   └── __init__.py
├── tests/                  # Test suite
│   ├── conftest.py
│   ├── test_client.py
│   ├── test_config.py
│   ├── test_integration.py
│   └── test_utils.py
├── .env.example           # Environment template
├── .gitignore
├── CHANGELOG.md
├── LICENSE
├── main.py                # Entry point
├── pyproject.toml         # Project configuration
└── README.md

API Reference

This server wraps the AceDataCloud Sora API:

Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing)
  5. Open a Pull Request

License

MIT License - see LICENSE for details.

Links


Made with love by AceDataCloud

About

MCP Server for Sora AI Video Generation via AceDataCloud API

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •