A Model Context Protocol (MCP) server for AI video generation using Veo through the AceDataCloud API.
Generate AI videos from text prompts or images directly from Claude, VS Code, or any MCP-compatible client.
- Text to Video - Create AI-generated videos from text descriptions
- Image to Video - Animate images or create transitions between images
- Multi-Image Fusion - Blend elements from multiple images
- 1080p Upscaling - Get high-resolution versions of generated videos
- Task Tracking - Monitor generation progress and retrieve results
- Multiple Models - Choose between quality and speed with various Veo models
Get your API token from AceDataCloud Platform:
- Sign up or log in
- Navigate to Veo Videos API
- Click "Acquire" to get your token
# Clone the repository
git clone https://github.com/AceDataCloud/MCPVeo.git
cd MCPVeo
# Install with pip
pip install -e .
# Or with uv (recommended)
uv pip install -e .# Copy example environment file
cp .env.example .env
# Edit with your API token
echo "ACEDATACLOUD_API_TOKEN=your_token_here" > .env# Run the server
mcp-veo
# Or with Python directly
python main.pyAdd to your Claude Desktop configuration:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"veo": {
"command": "mcp-veo",
"env": {
"ACEDATACLOUD_API_TOKEN": "your_api_token_here"
}
}
}
}Or if using uv:
{
"mcpServers": {
"veo": {
"command": "uv",
"args": ["run", "--directory", "/path/to/MCPVeo", "mcp-veo"],
"env": {
"ACEDATACLOUD_API_TOKEN": "your_api_token_here"
}
}
}
}| Tool | Description |
|---|---|
veo_text_to_video |
Generate video from a text prompt |
veo_image_to_video |
Generate video from reference image(s) |
veo_get_1080p |
Get high-resolution 1080p version |
| Tool | Description |
|---|---|
veo_get_task |
Query a single task status |
veo_get_tasks_batch |
Query multiple tasks at once |
| Tool | Description |
|---|---|
veo_list_models |
List available Veo models |
veo_list_actions |
List available API actions |
veo_get_prompt_guide |
Get video prompt writing guide |
User: Create a video of a sunset over the ocean
Claude: I'll generate a sunset video for you.
[Calls veo_text_to_video with prompt="Cinematic shot of a golden sunset over the ocean, waves gently rolling, warm colors reflecting on the water"]
User: Animate this product image to make it rotate slowly
Claude: I'll create a video from your image.
[Calls veo_image_to_video with image_urls=["product_image.jpg"], prompt="Product slowly rotates 360 degrees, studio lighting"]
User: Create a video that transitions between these two landscape photos
Claude: I'll create a transition video between your images.
[Calls veo_image_to_video with image_urls=["img1.jpg", "img2.jpg"], prompt="Smooth cinematic transition between scenes"]
| Model | Text2Video | Image2Video | Image Input |
|---|---|---|---|
veo2 |
✅ | ✅ | 1 image (first frame) |
veo2-fast |
✅ | ✅ | 1 image (first frame) |
veo3 |
✅ | ✅ | 1-3 images |
veo3-fast |
✅ | ✅ | 1-3 images |
veo31 |
✅ | ✅ | 1-3 images |
veo31-fast |
✅ | ✅ | 1-3 images |
veo31-fast-ingredients |
❌ | ✅ | 1-3 images (fusion) |
Aspect Ratios:
16:9- Landscape/widescreen (default)9:16- Portrait/vertical (social media)4:3- Standard3:4- Portrait standard1:1- Square
| Variable | Description | Default |
|---|---|---|
ACEDATACLOUD_API_TOKEN |
API token from AceDataCloud | Required |
ACEDATACLOUD_API_BASE_URL |
API base URL | https://api.acedata.cloud |
VEO_DEFAULT_MODEL |
Default model for generation | veo2 |
VEO_REQUEST_TIMEOUT |
Request timeout in seconds | 180 |
LOG_LEVEL |
Logging level | INFO |
mcp-veo --help
Options:
--version Show version
--transport Transport mode: stdio (default) or http
--port Port for HTTP transport (default: 8000)# Clone repository
git clone https://github.com/AceDataCloud/MCPVeo.git
cd MCPVeo
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # or `.venv\Scripts\activate` on Windows
# Install with dev dependencies
pip install -e ".[dev,test]"# Run unit tests
pytest
# Run with coverage
pytest --cov=core --cov=tools
# Run integration tests (requires API token)
pytest tests/test_integration.py -m integration# Format code
ruff format .
# Lint code
ruff check .
# Type check
mypy core tools# Install build dependencies
pip install -e ".[release]"
# Build package
python -m build
# Upload to PyPI
twine upload dist/*MCPVeo/
├── core/ # Core modules
│ ├── __init__.py
│ ├── client.py # HTTP client for Veo API
│ ├── config.py # Configuration management
│ ├── exceptions.py # Custom exceptions
│ ├── server.py # MCP server initialization
│ ├── types.py # Type definitions
│ └── utils.py # Utility functions
├── tools/ # MCP tool definitions
│ ├── __init__.py
│ ├── video_tools.py # Video generation tools
│ ├── info_tools.py # Information tools
│ └── task_tools.py # Task query tools
├── prompts/ # MCP prompts
│ └── __init__.py
├── tests/ # Test suite
│ ├── conftest.py
│ ├── test_client.py
│ ├── test_config.py
│ ├── test_integration.py
│ └── test_utils.py
├── .env.example # Environment template
├── .gitignore
├── CHANGELOG.md
├── LICENSE
├── main.py # Entry point
├── pyproject.toml # Project configuration
└── README.md
This server wraps the AceDataCloud Veo API:
- Veo Videos API - Video generation
- Veo Tasks API - Task queries
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing) - Open a Pull Request
MIT License - see LICENSE for details.
Made with love by AceDataCloud