Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion cebra/integrations/sklearn/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,6 +155,8 @@ def align_embeddings(
quantized_sample / np.linalg.norm(quantized_sample, axis=0)
for quantized_sample in quantized_embedding
]
quantized_embeddings.append(quantized_embedding_norm)
else:
quantized_embeddings.append(quantized_embedding)

quantized_embeddings.append(quantized_embedding_norm)
return quantized_embeddings
31 changes: 31 additions & 0 deletions tests/test_sklearn_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@

import cebra
import cebra.integrations.sklearn.cebra as cebra_sklearn_cebra
import cebra.integrations.sklearn.helpers as cebra_sklearn_helpers
import cebra.integrations.sklearn.metrics as cebra_sklearn_metrics


Expand Down Expand Up @@ -385,6 +386,36 @@ def test_sklearn_runs_consistency():
invalid_embeddings_runs, between="runs")


def test_align_embeddings():
# Example data
np.random.seed(42)
embedding1 = np.random.uniform(0, 1, (10000, 4))
embedding2 = np.random.uniform(0, 1, (10000, 10))
embedding3 = np.random.uniform(0, 1, (8000, 6))
embeddings_datasets = [embedding1, embedding2, embedding3]

labels1 = np.random.uniform(0, 1, (10000,))
labels2 = np.random.uniform(0, 1, (10000,))
labels3 = np.random.uniform(0, 1, (8000,))
labels_datasets = [labels1, labels2, labels3]

embeddings = cebra_sklearn_helpers.align_embeddings(
embeddings=embeddings_datasets,
labels=labels_datasets,
normalize=False,
n_bins=100)

normalized_embeddings = cebra_sklearn_helpers.align_embeddings(
embeddings=embeddings_datasets,
labels=labels_datasets,
normalize=True,
n_bins=100)

assert len(embeddings) == len(embeddings_datasets)
assert len(normalized_embeddings) == len(embeddings_datasets)
assert len(embeddings) == len(normalized_embeddings)


@pytest.mark.parametrize("seed", [42, 24, 10])
def test_goodness_of_fit_score(seed):
"""
Expand Down