-
Notifications
You must be signed in to change notification settings - Fork 0
Albert-2002/Computer-Vision-Notebooks
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"collapsed_sections": [
"NLcetolTz6ol"
]
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "hPakBhFYpTrh",
"outputId": "d99f7dc5-35cc-4ec0-8036-4d52c63d7d2f"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import torch\n",
"import torchvision\n",
"import torch.nn as nn\n",
"import torchvision.models as models\n",
"import torch.optim as optim\n",
"import torch.nn.functional as F\n",
"from torchvision import transforms\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from torchvision.models.detection.faster_rcnn import FastRCNNPredictor\n",
"from PIL import Image\n",
"import tensorflow as tf\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.patches as patches\n",
"import cv2\n",
"import os"
],
"metadata": {
"id": "OzC-C8kcpYlO"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Extracting files"
],
"metadata": {
"id": "NLcetolTz6ol"
}
},
{
"cell_type": "code",
"source": [
"import zipfile\n",
"import os\n",
"\n",
"zip_file_path = '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT-20240622T111748Z-001.zip'\n",
"\n",
"extract_to = '/content/drive/MyDrive'\n",
"os.makedirs(extract_to, exist_ok=True)\n",
"\n",
"with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:\n",
" zip_ref.extractall(extract_to)\n",
"\n",
"print(f'Files extracted to {extract_to}')"
],
"metadata": {
"id": "EhddFHV-pYzF",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "6a44807a-b17a-4a6b-84c0-72c200eaaee1"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Files extracted to /content/drive/MyDrive\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"zip_file_path = '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/Licplatesdetection_train.zip'\n",
"\n",
"extract_to = '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT'\n",
"os.makedirs(extract_to, exist_ok=True)\n",
"\n",
"with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:\n",
" zip_ref.extractall(extract_to)\n",
"\n",
"print(f'Files extracted to {extract_to}')"
],
"metadata": {
"id": "nMOiE-ukpY4D",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "a65cd5a6-79a4-4228-8989-e57798bae4b7"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Files extracted to /content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"zip_file_path = '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/Licplatesrecognition_train.zip'\n",
"\n",
"extract_to = '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT'\n",
"os.makedirs(extract_to, exist_ok=True)\n",
"\n",
"with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:\n",
" zip_ref.extractall(extract_to)\n",
"\n",
"print(f'Files extracted to {extract_to}')"
],
"metadata": {
"id": "3fvRUqsfpY8w",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "19ad2aaa-ed20-4254-c25b-0c82bf628272"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Files extracted to /content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"zip_file_path = '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/test.zip'\n",
"\n",
"extract_to = '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT'\n",
"os.makedirs(extract_to, exist_ok=True)\n",
"\n",
"with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:\n",
" zip_ref.extractall(extract_to)\n",
"\n",
"print(f'Files extracted to {extract_to}')"
],
"metadata": {
"id": "u0Asyv1LsSdZ",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "dd71100d-7afe-43d7-9cd5-487e21f05871"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Files extracted to /content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"## Exploring the .csv files"
],
"metadata": {
"id": "CQeMhWfm1MLU"
}
},
{
"cell_type": "code",
"source": [
"annotations = pd.read_csv('/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/Licplatesdetection_train.csv')\n",
"annotations.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "l-3SLpnl1Mop",
"outputId": "381fb930-f929-4967-b618-03604a3799dd"
},
"execution_count": 4,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" img_id ymin xmin ymax xmax\n",
"0 1.jpg 276 94 326 169\n",
"1 10.jpg 311 395 344 444\n",
"2 100.jpg 406 263 450 434\n",
"3 101.jpg 283 363 315 494\n",
"4 102.jpg 139 42 280 222"
],
"text/html": [
"\n",
" <div id=\"df-567c75b7-c104-4798-ba78-7af848325ac2\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>img_id</th>\n",
" <th>ymin</th>\n",
" <th>xmin</th>\n",
" <th>ymax</th>\n",
" <th>xmax</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.jpg</td>\n",
" <td>276</td>\n",
" <td>94</td>\n",
" <td>326</td>\n",
" <td>169</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10.jpg</td>\n",
" <td>311</td>\n",
" <td>395</td>\n",
" <td>344</td>\n",
" <td>444</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>100.jpg</td>\n",
" <td>406</td>\n",
" <td>263</td>\n",
" <td>450</td>\n",
" <td>434</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>101.jpg</td>\n",
" <td>283</td>\n",
" <td>363</td>\n",
" <td>315</td>\n",
" <td>494</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>102.jpg</td>\n",
" <td>139</td>\n",
" <td>42</td>\n",
" <td>280</td>\n",
" <td>222</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-567c75b7-c104-4798-ba78-7af848325ac2')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-567c75b7-c104-4798-ba78-7af848325ac2 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-567c75b7-c104-4798-ba78-7af848325ac2');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-063939da-c3ad-4629-9acf-7c9411d07aab\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-063939da-c3ad-4629-9acf-7c9411d07aab')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-063939da-c3ad-4629-9acf-7c9411d07aab button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "annotations",
"summary": "{\n \"name\": \"annotations\",\n \"rows\": 900,\n \"fields\": [\n {\n \"column\": \"img_id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 900,\n \"samples\": [\n \"162.jpg\",\n \"844.jpg\",\n \"307.jpg\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ymin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 75,\n \"min\": 14,\n \"max\": 525,\n \"num_unique_values\": 293,\n \"samples\": [\n 396,\n 358,\n 261\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"xmin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 142,\n \"min\": 1,\n \"max\": 698,\n \"num_unique_values\": 412,\n \"samples\": [\n 542,\n 316,\n 608\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ymax\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 71,\n \"min\": 121,\n \"max\": 547,\n \"num_unique_values\": 286,\n \"samples\": [\n 425,\n 287,\n 273\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"xmax\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 149,\n \"min\": 84,\n \"max\": 823,\n \"num_unique_values\": 413,\n \"samples\": [\n 136,\n 525,\n 718\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 4
}
]
},
{
"cell_type": "code",
"source": [
"characters = pd.read_csv('/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/Licplatesrecognition_train.csv')\n",
"characters.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "k0vrT94g1NEa",
"outputId": "d5c0d38e-58b8-429c-ebd2-1a918599729a"
},
"execution_count": 5,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" img_id text\n",
"0 0.jpg 117T3989\n",
"1 1.jpg 128T8086\n",
"2 10.jpg 94T3458\n",
"3 100.jpg 133T6719\n",
"4 101.jpg 68T5979"
],
"text/html": [
"\n",
" <div id=\"df-252d5256-cc9d-41c7-97df-ceedab05bbdb\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>img_id</th>\n",
" <th>text</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.jpg</td>\n",
" <td>117T3989</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1.jpg</td>\n",
" <td>128T8086</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>10.jpg</td>\n",
" <td>94T3458</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>100.jpg</td>\n",
" <td>133T6719</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>101.jpg</td>\n",
" <td>68T5979</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-252d5256-cc9d-41c7-97df-ceedab05bbdb')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-252d5256-cc9d-41c7-97df-ceedab05bbdb button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-252d5256-cc9d-41c7-97df-ceedab05bbdb');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-86ab27f2-d9ed-405e-8c49-28127e069384\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-86ab27f2-d9ed-405e-8c49-28127e069384')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-86ab27f2-d9ed-405e-8c49-28127e069384 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "characters",
"summary": "{\n \"name\": \"characters\",\n \"rows\": 900,\n \"fields\": [\n {\n \"column\": \"img_id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 900,\n \"samples\": [\n \"162.jpg\",\n \"852.jpg\",\n \"308.jpg\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"text\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 596,\n \"samples\": [\n \"119T6926\",\n \"105T9699\",\n \"63T5091\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 5
}
]
},
{
"cell_type": "code",
"source": [
"example = pd.read_csv('/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/SampleSubmission.csv')\n",
"example.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "c3wDQp-B1WS4",
"outputId": "6b394f44-d64a-4a91-daa7-e91f1c94e120"
},
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" id 0 1 2 3 4 5 6 7 8 9\n",
"0 img_901_1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
"1 img_901_2 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0\n",
"2 img_901_3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN\n",
"3 img_901_4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN\n",
"4 img_901_5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN"
],
"text/html": [
"\n",
" <div id=\"df-e3a63d64-b7af-487a-aaaf-f52b3f95a387\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" <th>6</th>\n",
" <th>7</th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>img_901_1</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>img_901_2</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>img_901_3</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>img_901_4</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>img_901_5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e3a63d64-b7af-487a-aaaf-f52b3f95a387')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-e3a63d64-b7af-487a-aaaf-f52b3f95a387 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-e3a63d64-b7af-487a-aaaf-f52b3f95a387');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-48b90b13-fab2-4aff-a045-39417a09a214\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-48b90b13-fab2-4aff-a045-39417a09a214')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-48b90b13-fab2-4aff-a045-39417a09a214 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "example",
"summary": "{\n \"name\": \"example\",\n \"rows\": 1470,\n \"fields\": [\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1470,\n \"samples\": [\n \"img_1051_6\",\n \"img_928_3\",\n \"img_1077_5\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"0\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7071067811865476,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"3\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"4\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"5\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"6\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7071067811865476,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"7\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"8\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"9\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "markdown",
"source": [
"## Exploring the images"
],
"metadata": {
"id": "w1yRSF_F1WsJ"
}
},
{
"cell_type": "code",
"source": [
"cv_img = cv2.imread(r\"/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/license_plates_detection_train/1.jpg\")\n",
"print(\"Image Shape: \",cv_img.shape)\n",
"plt.imshow(cv_img[:, :, ::-1])"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 380
},
"id": "WwsmjB-L4F-C",
"outputId": "040541b6-cbd3-4f64-e75f-73beb9577fef"
},
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Image Shape: (477, 850, 3)\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x79a12f3cd000>"
]
},
"metadata": {},
"execution_count": 7
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFHCAYAAACLR7eXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ybNt23XeB/5msapdnfLe+94tXgmABAFQlCWCDjvsDMmy1XXPTYf7coctq2OHW+66IUfkX+AMZyPDkXJkOJyhVkqkKIiqSBD1q2916l2uahbZGHOtve8DSJGyLOBJZyIO7rvnnrOrteaYY3zj+76hYoyR+3W/7tf9ul/3637dr1+hpX/ZL+B+3a/7db/u1/26X/fry+s+Qblf9+t+3a/7db/u16/cuk9Q7tf9ul/3637dr/v1K7fuE5T7db/u1/26X/frfv3KrfsE5X7dr/t1v+7X/bpfv3LrPkG5X/frft2v+3W/7tev3LpPUO7X/bpf9+t+3a/79Su37hOU+3W/7tf9ul/36379yq37BOV+3a/7db/u1/26X79y6z5BuV/3637dr/t1v+7Xr9z6pSYo/9P/9D/x3nvvUZYlv/M7v8M/+kf/6Jf5cu7X/bpf9+t+3a/79SuyfmkJyv/yv/wv/O7v/i7/3X/33/FP/sk/4S/9pb/E3/ybf5OLi4tf1ku6X/frft2v+3W/7tevyFK/rGGBv/M7v8Nv//Zv83f+zt8BIITAs2fP+K//6/+a/+a/+W9+GS/pft2v+3W/7tf9ul+/Isv+Mp606zr+8A//kL/9t//2+D2tNX/jb/wNfv/3f//nfr5tW9q2Hf8eQuDm5oazszOUUv9GXvP9ul/3637dr/t1v/7PrRgj6/Wax48fo/Wf3cT5pSQoV1dXeO959OjRG99/9OgRP/zhD3/u5/+H/+F/4L//7//7f1Mv737dr/t1v+7X/bpf/xeuzz//nKdPn/6ZP/NLSVD+outv/+2/ze/+7u+Of18ul7zzzjv8jb/x12nblt1uR9d1hBCw1qKUIsZA7zp65/DO4XxP8AGlFMYYtNL44AkhEGMcv4A3/owxYowmNxqtNUopgg947/A+AKA1GGPIigKUwnuHcz2+d8QYOT075dHDBxib0TQ72nrL2dkZs9mUm9sbri4vMdZyenZGcJ5dXbNcr8iLAgX0vaPru/E1hRCIIeCdRwHWGiZVxdn5GUWRE6OnKDIm0ymgWK83bLc7jDIopbm5vmW5WhNCRBmNUjCpCvI8Yzab8eDBA4y1zGczzs7OKMqSpq7ZbGpiVGhtMMbQNi2gsDbnyZPHPHz0FvPpApuVxCifNSoSfM9ut+MHP/g+v/d7v88Xzz+HqAH9xmfvvSfGiFIKrfeft0r/bbTBGE0Icn1CCLi+QxHIjCEzFmMUeWaZlCXWWqLr6VxPEzw2swQfmFQVi6Mj2rZhu93R9R3OeTrXEZUCBednD3j48JwnT56iteH169dcXV2xqze4vsH5dO+ESN87mrqjaTq8D2hjaDtFiAGtwGjQCqaTkpOTY6q8kOtIT5Yb2rZlfbckhsBsPmcxm/HwwQM+eO99HI6Luyv63nFyfEqel8SoeOfZOzx7+g51XfPy1QVgmc3nTCdTnj59RpZlXF1fcXV5xWw2ZTKZkMWITp91CJ5AIBLY7ba0TU2WZWRZDjGC0sQQiUrLVwTnAiHCx598zPe+94/54vPP5d4pC9555xmPzh9QVSWXF6+5vLjAZnK9urZlNp/x5MlTTk5OMMaMyGcIkTBcc2XQRmGNxWq5V0MMeO8xeclkMuHy6oqf/PindF3Pu+++y3vvvcfV1QXeB2bTKdZm2DwjryaUkwn/4X/0H1NNp4QQ6bqe3//9f8jv/f4/HO837z3GGKy1aK3HeKBVhrGWzGbjv0ns0Djnqeua7W5FXW9xztE0ci/d3d3x9OlTPvjgA6bTKc45rq+v+eKLLyiKAq01n332GRcXFzjnsNby+PFjPvjga5ycnGKNJcSINUb2u4oQIyEGlEL2vfe8fv2a73//+6xWK46Pj3n8+Cmr1ZKuc/z2b/8OT54+Jc/lWnZ9T1PvaNqOzFqyPENrM+4xrTXGaIqiwBiLUqCUxmgre2S3ZbPecHV9yccf/4yr60tiDDjXcXN9QwyyF8fPTmustRhj8N7jnBs/P5BYCcjeTl8hBMo85/xUUPGrqyuapnkDIbfWopVGAWVR4FyPVvC1D9/nP/nrf413njzBWIPNDE4pbm5vyfKCxeKI6XRONZ0xXxxRTSaEKI9njR5jSQiBLMv+jaLyv4hh8a/r+f+8j/2vyvL48mP9eZ9vtVrxzjvvMJ/P/6XP8UtJUM7PzzFGgv7hev36NW+99dbP/XxRFBRF8Qsfy6eDou97nHPj35VWoAKoCBpU1MIIjulDU4zw0nDoD/89bDJJdIYNJxtDKUVmc5QqJEkJTn43Rrxr5RAMHVVZEDNL13U0uy23N4Y8L9AqMpsWPHn8QJKUaYbRjvVqg8ER8UyqDGsXVJOK3W5H20aI7BMwLM45glHkec7p6QlFUbA4mrFYzOj6lr7vKAtNOZlydHzEZrNhdbfm4vUlm+0GozUwHFaw2a4xjcYHhzaKoijY7Tbs6i3T6ZTZbM5iMcf7CMjn8uDBA05PTplUM4q8oCxLimKC0hlay+frgyPGDK0VWZZhrKIsCsAS03sarhvI34egNSQr1khCpLWmbduDA0VBNBBBa0WIjuAiBMfJ0YxHDx5gtOL69hqvFGVV0fc92+2W25tL2rZlMpkwm87Z7nb4dUvXd2RZRugb3n/vGX/pL/0mfd/zs4ml79a0zR29b7Fa4WMgaog6UhYaozNc7/EeTGnxMUDwKBWxWpHpiI4908kMYyw+9EBgNqk4mlbc3d7KtdcOQs1ue8PZwzNMfspuV6NwdPWKGBQ/+eH3+fEP/gStDcFH0BlPnjzj5MMPyS3MZxVdU+KaCbP5jCLPydCSfBBlXxAJ0TOZFLi+p25qml0t97nW9J0noqhmc4zNiBHW6y2r1Yrtbo02oGKk61u6rqWqCmazis06J8sNZZ4xnVSsVp6qzKkKS55pJlVJXhRy2IaI1hKGTDrYtJJ7xVrLp59+yj/4vd/n5m6NNhalNcu7JcZY/uT7f0xZlnz44Qd85zvfYTabUhQleVFSzWZoa5jOpkxnc2IEnwqU4RAak/0UWIeDVSlFkU/Q2oz/Nhyifd/TNDXb7Ya2a/DeMZtNKcuSruuZzWbkeT4WQkOMWi6XbLdbrLW0bYu1+9AbY0ShISqUNuTGUJYlAF3fstls6DpJxCHSdR2r1Yquk6Ll7OwMaw2gaJqO9W7HcrXm6dOnTKdTYoxst1u6rhuTLa01zjn6vpf4pTQhKozS6PS6JXGUGFlNKrJVhveetm2p6y1KgTYalRK74UtrTVVVZFlG3/d478fPu+s6tNZjXD0+PibGSNu2ZNrw6NEjjo6OiDHy6tWr8ffeuD5RErXMGJSKBO/RSlOWJWWRozQEayUxa1q6tkUpw2q15vr6huPTU05Oznjw4Bx9cIAeXutfpfWr+rr+Vddf5P38UhKUPM/5K3/lr/D3/t7f4z//z/9zQA6mv/f3/h5/62/9rT/347RtOwacIdC0bTtWiNpqtNknGRFF/DJiEveJypCkHGb78nMB7yTZUWigB6UwWsshicL7IEG4qgi+kMSk7cgySwiR5d2SqppwfnbC8WLK0WJBVeScHB/TtjW5tWhl6JoWHyNnZ6cAuL7n9uZmPMA9w+uN5HmGVlDvtjx7+pinT59we3eDwnNytGAyqfBeUXeRaaXIdMl203J9tRT0ZEQpNM4F+t6zWm1oW8dsOuX45BitarTOqMoAuaYocpTS9L3D9ZHVcotWOWUxxZh8DG4gAb2pa5q25u7uhuVyOV47HwIhpCrWuTeQrOE6wP5gGK7PYfLivSek31FIkkIIqNzSBY/OLWVZMulbtM14+vQps9mM3W5HCIGu6/joo49YLpc0TYN3nhgiGsV2s+Gf/9N/yk9/9EO6rmW9WeO9o6pKzp88pigKVqsV19e3Yx7sncdoQQB0lqdAHHBdS3A94On7Fte1TI4KsmxKlmcJZWhYTKdoDUVu6LqWi8uXVJOccjqlOsoBhTU5fe/JshKtDW3bkeUFNqtQSrO6u2U5naBiJHpPkWcYhfypLcFJAu+9fOY+BnwEkxeovme52fDyxSuKouBrX/86VTWld56oFDrLMIXDZDmdD9R9R5FJxb9rG1RusWVBOZsxWcyo8pyz02MmiylKaU4fnDGbzbHWYPRwn0hip7UW5MQYSU4yy3Qype893/zmt3h+ecXnnz/n5cuXZFnBk3ee8tf++l/js88+o8gLZkcn2PSZG6Mx1hCVpmsairIiy3JCKk6GYmdIjk1KgA8rwOE+7Puevu+Hb6KNoShyJpMHGKvpe+HG3d3dvXH4A6zXa66urkbEpK7rN2LM8Bzr9YaXr16xXK7pnCQ57733HrPZDN/U9L0b42YInvV6PSYoMUaur68FCex6XHD89KOPuby+xWQ5T58+xVqL85EQFWiDMoYIGJtjrCRT2miKvMBmFmsskYiOElucl/f/8OFDbm+vefHyizHOZpkl+j0aMsRO59zP7eX5fJ4SvIamaQC4ublJ18wQlONHP/oRxhj6vh8LlMMVYwSlwCiUBoXibr3i1eUrHjw8xWQnmJSIN01DXTfkRYnWmnKSk2UlRht2ux3ee/RBovh/dQLwr5poDPHuF30e/7avX1qL53d/93f5L//L/5K/+lf/Kt/97nf5H//H/5Htdst/9V/9V3/uxzAHBJsQPF3X4nqHzTK5yV1HdOmmQG7m8QLHISGJaGVQqDFoDBtr/F7weNkTBAIhQcMAeZ6R5zllmXN+fsJ8JnByXdc45wkhstnsWK82ABwdHTGfTbi9vuX5F8/puhbvPN5FXOjpu55qMuG9997DGsvF5QV3d3c0dTPC3fLciuPFEY8ePmQymTCfH3Fze8fNzQ2r1ZKz01Pef+9dJvMZ9dWGV69f0DYdfRcxpiDGQIwQPUQCxmTgtCAArqWpe9brmqOjI/o+YnRBWSyYzGeUZUVRlEwmM2azOWVZoZVJCQcYMyRtjq7v2Ww23N0tpXI0OXleUrc9Pnhcauswwr1ytYaAB1LJxYRSjYH94AuticYQVCSqSB8jq13N3XaHV4rGBwoDURnKyYzZ4hitNXmesTg+5Xvf+x6r9Q6FJfpA3zmyzHJ7fceLL54TgidGjzYa18+YTWeownB8dEJmc+pdm1qNDU3dEgKYzNI7RwyOssgwkwJiIM+sfC5NC9GgyZifzJiVU16/fs52t8VlGmsEoXFdT3EkSYlznl27BhR3zZLjk1MePXqL7a4Grel6x4sXLwghUBTFWM0OFaxSBmUNKgSMsWgCsW/p2ojzkW3Tc3mz5KPPvuD4+ITThxtObIkxGRFF7yKdh6ANOsvpA8Teo7WiDwGMoZrNWThPHzwKj60KTudTjLWYIqeYVCmxT60FZbG6QGlBxbJ0YFSTSl5jVvDr3/oO3yxK/uAf/WNeX9/Rec/PPv2M1f/2/6EoS548fszDx0+Y5wVagTKGPM9xAarpdGw1eB8kEADGWLJMUxSCEih10D6NQJQDe1JVmPR4QxKjlMZmFm0U260kC33v6Xs3vi/vPdvtlhcvXvDq1avxQB7uX+/9mMg0TSOP4fyYMHkfyLKcPCtodi0heIgFm82S58+fc3l5mRKE7I12Vd87Xr56zfXtkidPn/H4yTOyrMDmPQG5B0JQKJ2+JBTiAzRdj/UBpXpCjHS7HfV2za7eEWJgUpW89dZbPHv6DheXF2w2K0lUwh6JGv7s+17a3ikWD4XGUGQMr3sfvwNKG3wINE0jiJFSgjQphR6KkhgELU2JKApc9Cw3a+7WS8ppSVWVuC6w29V4HyiLgulsSucCaIXznrw06DFJ/uWvw+bIL0pBJBbGL/30v/3Jyi8tQfkv/ov/gsvLS/7b//a/5dWrV/zWb/0W//v//r//HHH2z1q3t9fSR7SWqiywRloATVPTdT2eBN+mzFOhJACmjTRuKh/QietgtMCsQUlwF3TG0bsWjLSJQnpMTarig8MYy6QsODs+oqwqrq9vaLqe2WxB1zqurq+5vLzmsy++oN4dcXR8lCoN2O1a2q4jRk/vPW8dHye+Qc5yucKajLZdYYyhKAryPCfGSF03KKV59NbbtG1Du+to6h5rcsBwdX3HdnfB6+s1l5dX+N7jeo/zoLTFp352iJ4sKFDp4EiJQVN39N0Nrg/kWcWkmnG0OKEoSspyQgyw2zbEYDCperVGH7TLpM87nx8BsFyuyPMXqbUTUyU/8E5AIcFngHJRhtQQF3A7BWKrFCoE2aZaSwvPGKxVxGgJMbDrOjZNgzKWvJowmcxYnJxydHoGKYBe3d5ycX2DyXKysqTfbFHa4HxA6Yh2nuPjUxYLaW8BNE3NerXi7nZFVVV0XU9d1+R5wWJ+RJn17Oqa1vf0riU4Rz6pqKoSawzBO5quTf3vgk2zguA5OTliMV+wXS3xylLkJUbDZrUlhGt224am70i3Hnlegl4RIuRFRcBRFCUxRu7u7ri7u2M+n7Ner7HWMp3OIJckLWpFyvewxQSLoms7bF7x9tN3OXv4mCzLqaoJAYvWGaDo+47rmzs+/vgz1pstLl1DYxSmyJkuFpycnTM/OuL45IS22dK2O6aTSWoTzqT1ofQebcCQmXK85tIGtNhMnlOZjL/7v/5dfvb5c1wItM5Jeygqnr++IIbIbHFM5z0R0MakL4tSYc8TMwarNNZmVNWEAeEbEhJpZcTxILAmG9tMWZZRlCVKa0DQhsxmQKBrW7wPtK3wj6zNRnSuaRp2u92YdAzxZki89zwcT9t1aCO8G2szoo/43kNUGJOx29WsVne8vngxigyGBFSeq6VtO/JyQiSyrXdc396wXK/IikJ4RChilOeU1lr6by+FlDGazsl+9M6hvLT4MpuzXi9Z3t5ydHLMd7/773N5ecEnn3zMj3/8IzrXvpGcHC6lVEqcpJWU5zmTyYTNZoNz7o1WWAheYpC16Cj8Lp/QUYbCMgSiUqjgUNpilMZkFptbvAKvIn0MxCDJnzESQ1zvMFZahM7J64khwL/BJOUQ/YjEN7KSCGO+ocZ/0PvPc7hnCPK76H8H0pNfMkn2b/2tv/UXaul8eZVlmYiOmxHuHPqckpDIjTC2bFJLwWhJNCQ5cQQiGINVFqMMkYCKXtr0waVHSUHOGIGPvcf1HX3fstt2eNfRncpBPJtOyfOc1WrNzz7+lLbzZDbj5PSEvu+4Wa7ofWQ+X6BNSaCjaWuadoe1GpNlbDY7yjLQNB15XlIUFbPZjMViQVVVUqW5nuV6Tdt1LBZH1Lua7XYnGx1FXbc0nWe9qanbjr7tiFERCNICIBCVBIKucyM8HlLQyDLZIJtNzUcffcKrVy95/sXnZHlBUVTkeUmWF5ydPeL07JyTkzOOjmYUduCMCPGxrlc4F7A2x5hsPBz73qWqU6G1IgbPsGuViiijiKkHHkMgpirXBU+WZYlKodLvS2VrjMHoVHGh8ECZ58JDQHN5ec3LV6/45JOPubtbjpCz3D8BZbSQ/pTCRViutyxXG/L8kuPjY46Pj3j69BmPHj3i0aNHLO/u+JPv/4CLi0vWu1WqZCPaKnKVo8s8tfk8Td9LWzKC0RZrG4wyrFY3rFY3WKtS1ZiRWakwI4amC2TlhD4qgfu1Ytc1LF9v+PFHP5XDNJ9SVRNijFhrefHyFVVVcXZ2xnvvvYc2FrQQjH0IuFSte+/o+46+71HKcnR8RkQLGTEdYNbm7HY7Ll9fc/HqkuAjfddjlCbLhBvUt471ck3+fsbJ8REPzk5p6g0QsMYI5B8Cuc3wzuMSYdMWGVpHbCZ7SxlJOI215EXJh1//Ot/993+HT1/9XYzS5EWFUpDnBW3b0nUdznuMyciyQvJVY1OyDVmegRJEQmvhgR0idIetXLnv9q2KfXIc6byjzCqyPE/Jj0LFIOiEySFq8lyS9L53LJdLbm9vR+7HIXpwyKsAEq+jwfeOsqxwqaUUQmC3bfAusFlvub275G55N7acnHNUVcV0OsV7IQE3TU2wOc576qahcz0hHfZyvElcdL1D6xQbEcTOWkue51hriBEKo+ibHdvtlrre8tOf/ozzB+f8+q/9Gu88fZeu6fnsk8/ou54BzD5MVMbWTSpEuk74XYvFgsViwc3NDU3TjD8bgN714+fuo0dFQXpihBhScpdQoBAkTmx3NbfLVULxLBiL60QgYRIiF2IgOkdeWLQxRJUKzV/CGq594EvJl/wjMUr81kqP/za8UinLAipqIv/2t3y+EiqeP23lmcXqijzLJFi1Lc57CIHeOZRWhN7T+16CobWkuxo9VOVBiIIxKWNitAecFE/fCyyotBFlA0JMLYscgqfvO7q2Zjqd8PTJE54+eUKe59zc3fHq4jXr9ZoQFeXJhMXREZvNmna3TcqaJh3UPSGIKqgsC2KEru9pu5au7zHWUlYV773/Pm+9/RbWWlarFcE5uk564MZa5osFNstYLXdkWU6MiqaTNosEbkXXuzFQSovE46NHp2zdeQ/smfeiYpIDZrddsdutyfOS+XzBfH7E8ekDdKaIBJzv0OaAZJcqbK0Mm/WWtunIshxrM9x2Nz62MRolqaQkCVqSJ6XiCA3/IpWVQMU5WglPKI7tIoOxdiQB7nY7urqn63oePHjAZCIVtBCQ2z1BFwhRVB0YQ1Aa5zoU0GxqOhdFwbErCQFmswVVOeHhw4e0bcft7S1t29F2La4ThVRurRD1ug6CIHVVWSXSZo+x6R7qOqw1FOleNkozn8955933seWE5y9f0qxWaKNpmoa71VJUF7ml7XoMEZNZjLXUux2vry6pypK8LDCZlWB4yL1Ky/sgWwJNTOoNPRhMBwURnO+ptzWXry/46Gc/4/WrlxJYIwQn98vN1RUXry8IzmNQogYpS6xV1LsdMXhUkIJgWlbYofLfbojKcHx8QlYV2DzD2lzIv8Hx+fPP+ZMffJ+2qVFaiLrOOVoje6dtW0QPJpW6TeoUQFq3SqeEw6T7GUgJWIiMB8RhmJcjIFWqWhEiECLKCFJI4oDhGdFA5xx5VqJ0pK53XF5e8PLlS3a7LaBGnstwWB8qWQDatkHlJbPZjJPjY46OjphMpgRPQkt3XF69HImxw2NsNhvqukZrScI6J7HP+4j3fUqIBvKvRid1lLHu53gjA2JsjCGGQPAOrSQGTKdzHj16xM9+9jMuLy5HcuvZ2TnrzfKNPTmooQbk5PB97nY7vvjiixH5PkRdhlbvIXclxJA+5yiFkzaC8EZJrBTynrrO4R04FylKjU9CCWMMSqd7O13/IXH6ZUAQEcZCa/i7UA8Y0f7DdISoRnQlIjes/GpEfUUxlL9IUvWVTlAm1YTZbMp0OkUpRd/3o9JjuVxyd7ekrhucE9lv23Uoo1M/U4KyNlqSFoRY61zcB7hB5qoSU917iI4iKzBabngVNZkpeXh+KuS56YT5bM62rgleeDGT6QxUwAdHlhlCntF1ju16Q9d7ur6TAK6FhLde72i6T4jR03U9xiqM1bRdw24nssaXL1+Q2YwPv/Y12rbl+uaWrus4Ojnl4uqa+uqayXSK1hk+Eda00ZgghF7ZCyk5i4EEkMvmtVYOpr6XpE5Lt0UA7oD3HevVkhhhOj+m71qpcoisVit0DKNaynvH3d0dL18KI//k+JST41uWq1VCOnTq7XuCMvgoG1EUMBHUm8mJ935scRljmM+mGD202iTRiCFgtMY7x2a1IssyHj54xLvP3uHJk8e8evWao8Ux11c3NHUDQQJhHxzaGrQyxAA+emIEY80YqI2xfPDehxij+einH9HUQvjbbLYopSjLAqVh09S4vif0Dp8gZaM0ZV6gVSacnd7Re4HajVbstlt8nsv9bAxKG7bbmna55fnnz3n+8gWz+YyyEjn7cr3m6PiY49NT1suaq+vrsQ02fF42yyQopv8NbKw4RkqNQoJ1amCMLb6YflxraWloBX3XCgfLCbkZrYgq4nqF9z3aaKpJBURU51FEkav6Ftd2FHnBtt+kQ0aSDaWlvVDkmbze1BaYzmZ8/cMP+Q/+g/+Qf/LPvk+z26G1wWYZfSckSpPItcbIIRxSjI+RVJ9Ka3dgoimtYTgHhu+xR1EG5NVYTSRQ1zVKa6qJSPYluAr3QeTjGtc7SPej0lDXNXd3d9T1brwOzrnx/j0kPI6E/aBQhWYyEdSrqkqs1UymJUrDcnk3osPD7w6JtTy2F1WN1sJz0vLZqBgSMhlQxCR7Vyibj3tlOBgjka4Vro7rO3zXQpAEP8bA8fEx8/mcH/3oR6NAQULlLz5wDtGiIabu21ph/EwO39ehenJIUg4VfelsJrpATNwh33uCk3steI8KEHpPYXLKaiJ2A1ESdHk8MKnV+K9nHSYVh9/dN2sk15WUath6wz5UcZ9qxBhwvsVoSzQKEH5kyt32n2H8aiYnf9H1lU5QiiIfYdUY4yhX1VokZ2dnlr7vaZuGpm2pdzuatpXqIAgyIt4g+97w4KEyEDblK/WdM9HNF3mG1ZoQHHlmOD095+njJzx4cMZsOpUgFMSX4fHjt8mLCT54uraWZCEEjDWpOkskPaOIUWDZy8srjk7mnJ+fMZ2qpDIRpKTrpNp2zrNeb/E//slIwLu+vsY5x2w24/j4OP2cHIB93+GdED2NUak3P0CMEszEY0G+L1DsTA5oYzg9FfWRUTCbL9Da0vtI37d8/NHH3N4uefL0Hc5OTphPJqNSQmSFhqIoef78Obe3t8SomE2mbLYhETiFtBgjqHDYc00bfwigcd+3HYiLZVmSGUYUIoTALnnjHKp9dsstykfauma93rBermh2NVZbOWC9B6XIcpG5CoIkZL6iyDHa4Pqe5XLFz376U/G2efSIqqx4/uI5m+2GPnnVFEVB3bV4l6BuFJnJyG0mai0gegmwPgiB1RrLbCoKo7u7Zar4DR999BFN57hbrthutrRty3Q+4+z8nK4P3Nzc4b0kGl0nh8ZA6Bwq9iwTIrfzUTgIkXQo67HyJqZqemipxS/Dx7K/6nrHbrtNLYs4JvvOe66vb7i5ueFBkr1qbbFG4XJP7jw6Jk8bpchtNipkqirDWoO1RoibypAXgiT95Kc/5ff+we8LYmDNyCkZDrChLTHwKdLNwz6ZSJs4HU5v/tyb67D10ncdXd9T72qqyYTJZJqSKkEmnAuErmW72VLvtsQQyYoMH3rxLeo6jNFUVYn3A2nejTLmX7TkcBK0U5INlXhnOecPznn77be5W16x2+1GBGb4LCCitaijXIgYrSjznCLLyLTG+Q7f+9GbadgrA7k2ppZvCCH5RjlU8GRmQESk/Xp+fs7V1SW3t5KAdb3HmP298mUl1NjOCGF8zUOsHtCW4TUcuop+uQ22f7w9GVfQF/HraduWvuvJjSG49D6Dx/c9vu/JskxQlRTzrLFvPN+//qUO/v/n0xc18IEkQ5HvxEDT7vjii5/x6NFjFkdnKXFUB/Fw//BfVQTlL7K+0gnKEIQHM6Cu68YKe2Dcxxhw1mCcMO+N6wUtSBnp0IYAxqr8MNs3RhKJGANd3+G9IjMapyJVkVOVOQrIsoyyLFEx0jYNxMjp6Sknp+c4H7i9uyM0DQGYTidUEwnErl/hepf6jvJamqYm2xputJBi5UZWogZab2mbhrZtKauSm5sbjo+PmUwm5HnO5eUldV3vK2grMlajFS4G4TBEsFan9oscGAbhpgBk1pAZjdWK6XRKZjMmRU5VFDx6cMY3fu3XmB+dorSlrjvu7tZs64Yit9KmSERepRRd17HdbsdrlmUZTVNLW8vvJYgxtZ2sTtW8VoQ4SIyHWiRikplNUWTkWUbwDh8PEzc3ShQXi0VSIfXcXt5ycXHB6ekZm82G3WbLg/MzvPfc3tzSd63wWGIAREJeVRWT6YS+6+m6NlXngbrZEcIRbVtTFBknJ8fU9S4pqFY0bTO+bmMMJtOQ5MuEgHc9wWg84q/jQxADuemU05NTttstfdez29VEoQ5TTSc8sIZtvUOhWSyO+ff+yneZL45o2pYXX7xgtdqIeZU2KAWLhbQJ2rbDuYBS9ucOkuGQ+LIE8rD67fue5XLJixcvuL6+HjlOYpolP68xrJZrPv3oUx4/fJvz8zNsOSUqj2o7UeTkYIwWOTeS/OVFkRQloLQSoqjWwg9QCm0NLga+85vfoe8Dn372GbvtDuedfGaTCaenp6Mp2YCAHK44MhCFE/VnrYEkG73Hdy23t9e8fv2Km5tbZvMFRVGJvV2ATGuic2y2O0nWtKZpezFp9G5UDqmDpG9ACQ49mCSRjITouL6+5ObmmqPjY8qyHCW3s9lE0L/XX7DdbsffG1oo4zUMnizLxSvl9oaXz7+gb7pEDHVJcRPH+OiDJ/iQlHxijDegn0SfuB7ifSJkX9kXr1+/Tu9h2MM/jyC8QQpNScUhaXaIr0M7eW8aZ8akZUCJDtWXkYBLbTcbITMZl5cX/OD732dS5Dx98iS1tyReSF4ZUq0j73NIAv/1r5QUw5fuQzmLJLqo8cllnwlbLuLIC83TZ0/JskFpqeTeskY4JyNF9t+N9ZVOUNabjfSdrX3jpj+EQIc5PkPyMlQNe2MhPz7e0CYqioLJZIJSisViQVmWHJ0d0XYt11dX1Ns10WsenJ2wmE85OTqmqirKPJc+f3B415MZg81zsrwgyywXV5eYaUXbNrhOnleSLItzYAxUZcXp6QmnZyfUdSOy46oiO3/IZrPh9vaOx4/f5u23H6ONjA2o61p8PFIlVNd1UpbkFEVJVpRYo+k1I7/Ae09urShWYhCvjCxnNpsyn8/58P0PKMuSPM9ZLBbSPlOi2Fgt74gRjo7POFrMOD09xflI78QwaQgmh46St7e33N3dJdJgSk4S7KlS4IhKCGJS+CakIQo3SDNIihWEnqbe0rU19VYRgiN4CbRjspng3vlsTmYts2JOnufiFdE7HpyfY4ySA9c7TOLkaKWTfF14SrPJFF94bm4cXV9TZpYQxc8kTx4mIfjxnprNZszmM5Zrea9DgNUo9PB+QwQfEhE3jIz+ZtdwfnrO0yfPuLm55fXrV2x2O3ok/JssI0bFbtfwxefPyWzJ+x98jcXimLcfafLsBucc8/kcYwxVVfHuO+9yenKOxoraJ0Q6uoRE7PfOIZw+mHgNrbSu69hsNiPi0bYNGPHtkXNJfILurpf89Ccf8Y2v/xqnx6fkpST3k8l0RKB0BCypXdShlCYv8nTYDaoS4Q8oo+j6ntu7WzabRsiRMeJiIC8KfEIqNusl9W7HtBDlk1TWIqUWJ710wCWOzZfbB3sZtkq+PD3BNSxvb2g2G0KE7WpJkeVkxiZ/JZNakInXldAH+YzcGI+GdipIcj7svcP2hk5+Sut1h3Mdf/z9f8HFxQXf+Mavs1gcjZ/JcC8Nv/flwztGSWeD6ymslUKqa2mbHTEI347Bsyc4afgphTWSxHnX7x8//U8hvjFZlrFcLqnrnbS3jJGYk8wGD9GRw/bVYazNsoyu6yiKAqWUxMyyfCPhGjhnQyw7TFzG96n2rZrBfmB5dcPrsmLz4Yf0p+c0ux0+eFoVWd5BUU7oQ6SaTKmbmsViMZ4d/+fX/sz5039CEVU4+Ft6L0FiXtts2G5v2W5XdL6nKCa89dYzEU0Yw2GZNlzzewTlV3wVeTEiHodGS4PMb4CAB0+IgVh2eDN5z8F/+/FQnUwmCd4veOedpyxOxCFyvXrE61cvWN7estusOJ5NCb6nyjOsAu87cmuYzyYYa6iblsV8ymw2pe9bbm6u6PsdbedH+2phPglMD4ZJNRM0RsN2u2W9WQFgrOJb3/4m7777LlVV8eLFi/HwUErRNDXA6OAoAbNL1YPHaphO5bDoum7kJMxnc3zfURUljx49ZLfbMZnk/OZ3vs2jR4/GZMf1HcvlLZvNlhg9y9tr5kenTGcWqzUYTZ6VaL0nv1lrmc1mo+X3crkc+8EmbVQVU+9YRcoipygLjDU4J54IDqlCPZ6oJAj7viUO5nte5MlGmGTEGCnynFk1ZVZNUBFqatq6Sb4mgfNzgU/r7Y56K+0gZRSaiElti+g8t1fXZIWgZFrZRCCM7HYNXeeYTFSSgK7ZbLbkeZYS3VT9+UiMcviKQVniQIR9T30g7vkQubq+GR1TF0fH9DHiuoa+d9SbltPTcx49esz773/IN3/j2zx5+gzn5HkuLi5Yr9ecn59zfn6+TzRMjtE2tUCHPVGhlKKua8qyHPfHgEANBMbVasXr16/58Y9/zE9+8mOWy1uRwcYIUSc7f433kR7H1eU16+U6qWYKqQptjsoV2OKNRK3Leoy2oPx+H6shIItfhdXC2/nk5jlNK+iQSETlOk2nUyaTaSJdGowW/sjgwTEgIgOKIYqQfevhsJUwfi9xghSB6Pt0TEeyzIhDdNo5Pooiqu+7MfFxzkk79HjB8+dfcHV1Deyl84ftiSEZ1FqhjSQhXddwdXWJUopHbz2iqiqstWy3G169esV2uxtJqMPrP3ztMQr6szg5YTadkA/CgJjehZI/lVZjIjfw0Q59oGJCK53vqIxY9F9eveaHP/oTttsdvWsI0aXf348QOXwtQyw+RKiVUjx79ozz83PW6zV3d3dorVmtVqMc+1AJdDhm4PBxR5wigG97zk/O+Navf4uzxSmh62mbLSEGHj16l8fvvEtRllSTKdP5EdpYymoij/EllOcXrZ977oO/HxbEX/4dedDhj+H398yo4e+ubdiubrlbXXF1/RK04sGDt4B+LFyVtgxSgj2x9quZoPw7Q5Ity2K0Lh+SlH1rR6DpAfaXnxfIdPiec06qbxH24L2nqipOTk5Gq+bb21tu7+7QxjOpSsrccn5ywtliwW675ngx5fbmhth37DZzPvjgfZTWrDcrZlNpEcynM9HgE9lsbrlb1zStxzs1ViNEUYysVzuub+8wuQLCqDKZTCYcHx/z6NEjFotFQoYatts119eX4yZp2w7pR+tEvgSNeLZkRnNydMTbbz/GOcfr169pmobjowXPnrw19oO/+c1fI4bI9fUFVZXz6NFbdF3LfDbn7HTBxeU1FxeXRCXETq3lwOs7x27XoJUcbmVZjtfl4cOHNE3DRx99xIsXz4nOSWspbXCrDWVZUJTiIuqCR4MkPjGVeIkLdMgpIAq6Er0ENDMy9RVFZqmKXIiMM493Qao1H/C9Z7Pd0LYdWsv8kUgguIRoJELb08dPiDFKi66/k3acC7TtFV3XMZlMRqVQ8JGm6XBOkAajM2ldREFQ1FAFjofAQMAGlVQmPsDtcsVAIC2Kimo2RRvDW4+fMJ8dMZsf8+u//i3ef/9rFNWEtmm5vrxMyhcJX0VRpj6/HqstYyxayyHatrs3ev9D0MjznPl8Ph623ntRDd3d0XU9RVHJ98MAVkv7M6RkrK4btruGEKI4kkZF27eE3o+ImWTlw2wlQ1QKo63I/40knYRIVZRkxtLsajbLFXlZiQeOsehRAi+oIjCOPzAmEy+UoY2CJIQyGmEfP8bD+KCwkX1jqNuGrm64vb2m6XqOjk85Oj4iLhaCNngR7Hovh3SWJT+mqhqRtboW2X9dN288z2GLRz57aFspLjrfYrMMpYTr0vUNUNJ1zcizOmzrfHlch8QB0tiBCVluSBAlw5uPBGIYErVEQgepzxMxOjW66LqWuztpmW63G25vb0ZnWzWMSxgUNwd/HrYIDw+kASWpqorlcsnLly8P4nk5/veXhQr760WanyNoEApigMVswcPTc3zX88Wnn9PHhmo2ochzisxiEBGE73vx93E9Niv+TOTjEAn609af9W9vrD0L9o3kxfeSlFmjefzoAc+ePcDmhoDGmJjCXhyTqRD/3fA/GdZXOkGBwf45JOi5HWVyQ/AVn4AJMfEUZLBg+waRLQTZgGVZjq2d7VZm0BhjuLu7w/dbHj4448mTJ0zLEkWka494+uQJN9dXdG3LzfUVP/pRx+nZGbPpHJPl+BCTosRzdnLGh+9/jc51vNheimGaUlirIQaslSF769WWLAObpTkYVUVVycEw8BwuLy+5vLxks9kQAsm1NoyzTBjIiy7Ni4lyKDgnSqKHD885OpontUHNbDblaDFPqFHJw4cPKIqC7WbLcnXDyfEJBFFulGXObDbj5nZF1wV6F5jNIl3vuL6+4e7ujt2uxlpDluXsdluur2/Ybjc418lAwxR4XN/he0eWiyGWNRaNRqvAAGjrhG6oIMPaiHF0l5U5SEk2SqAqJyOEPKhxMJJsmCzHl3Lg3t6K6kkSuqRsIqJVQCe3Skzk7PQUrRVd27C6S/WLlsB0fX3NZrMRAp6XzxUFMXoKlUvS26VZJNqMgUWppCZhCHB7T46mbTEJ9Wt34mlT6ZInT5/yG9/8Fl/7xq9zfPoAYwtCVPTOU7c9UQtfw2QZQUHvRWbfJs5VVhQ4L8RWGfiox6p+aN0MBPHtVg5ASUxusdYkU7puJD1LW0SSYB8k+GMUreto+46Q3qzRMsQx6CSxjXHkrYr5nkJpi9KZVInKoq3FJ+MzYzKePXuKzUtubu+4ur4hzzNRmrhE6laKLCtQxgBxFDjIFd1zJA6J7wNqMLQhDlHUGD0+eOq2EdO9rkMby2a75cQ7jM7EdC/EMXGoqkpk/F1HCMKpaJr2DTLocOgO6OYeBYEQ5dA3xqYhfS2ffvopu13N48dPmS9mvPveO6zWdyOHa3//7O8reQyVYlklxGMVQcuBPhx4MYSRIK/GxCWO5EtBATvatuX29oYXL17w+vXrkdR+2BYc+SwH39srIPfH6ZBAffbZZzx//nzkCw7Ky8NW27B+ETcqIsqXwzaXcNq82Ef4wGq9YnFyxOXlBZ9//jnaWpSxvPPeB/zV7/5OQn3efI4vrz8rcfmXrTd+RjGiUgnkRQ1sFA31bsf11RVHixJlA9FGlM4wpmcyOcJmuVydkB7s4I9/29dXOkHZ7WqyTALs4Ew4nU5H9CN4JzBt8EK8VBGi9JjlqxO+SOp32uSdAbxBtuxdR1PDdruhrhu0EjngbDqhc4GoLcdncx4/eYrVmlevX/P69WeCdhyfUJYVbdfjXeDBg7fZtC03tzVNLbblRZERQivBQil613Nzc0ueZsm43rPb1uRZxmq5Hod+nZ2eM5nMub66YrVeSxvERWIyXIsR+uBpfcd8PqeqKvpepMt9L94wDx88oN7tJJNXmgfn55RFybSakOUZVVkSfKBvZRAiWuz9p9MJddPjvcIHksxWYPXtdsOPfvQjbm5uCDGQ2QxjDXmW41wvqJEdDmxLUWRUVUVRyFBBpUAHA8qJa6TR49RRojj/qpis79EU1ZSTkxPyIqfIk9MukTzLZW5MI4dqWRT0fUfwgSwvGMiTIQz2ODKwTUK0RkXYrtecnZ0yKQpUDGgVR96GMVoeL3hpLyTr7UJZQtQy9brv0n0YCVqeQ6TVqUYNEaNNUi8JN6XZ7piUJfPplKbZUWU5i+mcs5MTfO9YrVbYrMTYgmqap92gcd6PqqAIowuqUgp/4DcxmLQF7wXq90PLAWkzKpnI3HUt19dXvHz5ku1WZNTOSRvC5oWgHVEm7QbSDKOmZte1RK0weUZhpK3lg6dpWqzR0h4BXIx4RMEUtQFlwRiiHrx0xO5/cbTgP/yP/mPefvyU//ff/d/4P/6P/y/DRG0AGeonJmTGaPEs0gOtOgIDUTUQox/5FQFpT4ToU9tDWidtU7NaLbm4vmS13Ugys91yd3fH2fkDymIyFkF1K7OmstyivRzcNzfX1PWO5XKJeJCosQVyiNoMh7G0tzK6vkvtMs/NzS2r1YamaVI8e8jp6SkffvghXdfx4sWLN1AZSKR+rSXZt9LW02owQGREHWOMSZGUVDwhoVsHihrvPU0v6sCyLMd24GHb/JDLc8ip+TIyNSSGznUyMFUrnOsOErZhZllAhpHuk5kBFd+TucVgTUTg0mK01jCdT5kezTCZuIAXVYnSUiCFIBOdy7xku17T7HZUk0mSHYfhwxs/o8EAbSgeEimOPfy2b89IsjT8ehyBXdmD8nMpDZV2dIohBgUq4lzHrt7x4uVLPvtsx2wx4dd+81sUxQTnNSEanI/iY6UOE59/cxnK0Fb6l603W1f/etZXOkG5uLwgS7K9YcMP0zO9T3NQypyuG9waW+q6Zrfb7QeApXbIoS5/mLgJslF87dAqslprbm+XqdI3ZLnlj3/wQ6pEIptWFfPJBGszmrrn+3/8A2xecHb2gJPjU4qiZNvW3N3VhGCSkZQhBJHqOe9kNg0RWshthtU5eZbveTHWyoC45G/hXU3fhzRFNzHx00aPyUFSEbE2T7B/z/XVDZv1mg/ef4+zszPq3ZbcGu5ub8ltxrvvvQshYhDCqEgOU6WlhraEkcTDWLQtsLbA2JwTfcbDRw947/33+Oijj/jjP/5jvvjiizeqI2MMmTHk1pIXGZm1iSg5AMsDoqEw1iT/GZmcOsi0CUG8DPKC49Mz3nr8mOl0Klc0RsqiTD4wGtd1KOeZFCV5lnN3e8eTx4+Zzma88+57fP/7f8KLFy8w2iCyRcScD8Xy9i4hRx1Wy5BDFaU/33e9XDudp6QjBWQiOoCyGSp6URp5h/ZgTA4q4qPDoCWJ0npEVKzJhKeSLP2LLGc+nXF+csJiOmMxmxO0pXWOxgVaH4gBMfXrOpZLuT8nk8noODxIW+X9AUZQqTAo4IKjH1oHKmBz+fmbm2tevHjB97//fVarDUqJggOl8BFRgKgUerXGRY+JhqIqsIXwoFwnc2RsnnE8kZlNzolvSOYcKrNpEGEOVlxAo0JQlBCwWcbV9TX/j//5f+aDD77GarPl+OiIzWZHH3pOT0/5znd+k/MH59jkXaKMxtiMEKTNm2UZzu0Roq7vvtQSEU6GtGsiXd+xrWvW2y1N1+J9JKC4W8oIgdNTC73CBydjNfqOq+srijynbWX68Gq1HL1ChusgiF37RlttOMjbVqjQgTgmNH3f8+rVq/TvLaenp8nVteaQg3L4PqJS6N7TNS31dkuWrjHIwT4ko8H1kpyFIC6rCZE8LPwDUCTLgAHFbZrmDQ7N8LyHLZnh3wfOn6iUBEnyXuT7Ax9naEnJ9dlPWR4+o8NEZ5/4kKbVR4KKmNwwO5oyWQjnpmor2mVH37mkWlTYJPPfrjf4voMoXj2DxDfBE/K+U6y6u7tjcXQ0Ogf7g8/8EHELIWCNZt9BTC2pg/8e/i4Mun2c6JPj71/57e9S75Z4PJ0zZEVOQOE96BDIskjUUdx1ET7cvwsgylc6QemSp8meDMfInneuJ4Ye51qU2k8CdU4CgTEDxO7TDb+3v5dqayDXqdE+PYRA14tEMkRF73u2u0Z4FtpQ5ZZsVCMoVBSG/6cff4GQJDO8VqybhrZrxZ1SOVCRiCdEh3BNNToaQoCuc4nj1nLx+hKtNQ8fPgQUry8v2Gy39J20KWKMOC8ZOkPwiNJXbup2LzlOMPJyuRIJcAx848MPeO/ZO0wmE8q8oCgKtJLXrFJ7bJiArBQURcl8YagbR8DIZxLEidVay7Nnz3jy5Anf/va3+clPfsLHH3/M559/znq9Fmv54ImVuAAP3XGlEjSsxdJdTOT2VZg1Btf18jqCwmYZeV5RVBXG5mgjKgltNEU1YTKdYa34ImTJ32U2m3J+fs7R4ohA5Obmlru7pXzGIVm/G82sKsmmJfVuR71bk2cGQ8QHh4pCli2yjN5FCJ4YHAThvmitkw5Q0Q8VPGHfXkhDDWUUwPA7w10tVVXXWabTKXmesdls+N73vsenX7xgcXxOPpng0KAsLojrcGE0feJWPXz4kPl8ztHR0ZteD0myOEjygXEq7XCQoCMoOdCsFa8Z7z11XdP3Hq0N1uZJ8ZEOtFQ9CgkTru9u+OLFC54+esDxfIZNnie7umYgk1pr0ZmlUBVojclycfJNktOhovXBCyfJOx4/fptvnZ7TNC1/8AffI89L7m7v+OEPfsT52UNOz44AOXAVwlHLrE27URRaIbn59gk1Nem5hgIlhMBut2W1XlG3jbSrvCRK6/U6ec1IgueTK1zbtqMaLM+L8T4eyLmDCRnwc/4lh7yRGFNB5AMxujGpefnyJbe3t+OAvS97/LwhFY8RqzS77YaL16+o089KvEsowMAFGue6yBrtFdLV1EqPSMlhi+rL6MZwLx22st4kx8p9csiX+UVIizyPGuP58G9DMjQ8x57GJC2Tzvfsuoamb7B2gieQFyVN23F1dU2MMvKgbWUswu/9/b/P+YMHHB2fSOs1JUZFVVIVJdWkwnvP6xdfcHJ8hPO9xMEDvg0pwUzD7Am+T47jmhiTsZqWqdBjzzEhLQol92iMVJOKk7NTbJFxMi1pu46eiNYZRfKGMiYTN2NimgK+T6beWL8A5vizsI8/D/n3T//lX/z8/7rt97/SCcqwQQYIcCDFKpXMqrQFwmirvIeE95tI6WE6hchdB/+KQwIZSkicCmQOSfQEP1Qv0ovPMvHQ6FRMML4QX4OXx3LO0axW1G1PHyM6zb4oCml/QMB7MWsTbxbQLogkNwyJkiQYV1c3xBjwMYjs0nvJ7oeKI30+YwYfI8vlOrVh4KYSfkRVFZyfnvDhBx8QoyJP/iXeBzabLX3fs1jMKcqSTIkZFzEROg2gEllSGSGvaoMxkGVqPITOzs44Pj7ma1/7Gn/4h3/IP/7eH1Lv6tT/VjIfJkolobUWMpsfoN5I9GIa5SL0nfAZooqpHSZmZjq9xyGgWiutscxm8piZYlIYdvUWHwKT6YSskE0v90wvgxNdn9o0lj44urZjVhYi1c4Ufdegu4FBGLHGQLTEKKZQwUtQ19pglPAkoqh5ISYTtHRxhgMsBJ+ItHsFxCHBsGkaVtstzgdu1jsWJzcsjk+wRUlRzdDGStsuHZrDfhgq9IGTJR93sgf/UgAZEhaZa9PR+0aqu7ZnNp0yn825vr6laVryrKDteqIaevj7IJaXOVHBp59/RlEV+G99i/LDD8hzSUJtLoP0ZAicT2RijzW5jClIUHrXtQy262cnp/y1/9tfY/vdhhgVTdPwjW98g/lswatXFzx//iIVwkoqXyMqlugdhpyPf/oTHr71FkfHx1IFp9at0UYM+py8DpUUEgRpu+3qHT46tBnQ1Z6+b+m6hhgcykoL2bke1/f4RLiHDKV0igvieeR6z67epTZKkocq3jic97wYSU7EGVaN0uS6rmUEwkGb6HDmzXigpGSnyMQU0Oo37ezlUB1mDZEixPAfaX7ZcDAZIy3mpK4Bxlh66Ijrk4puePw3Sa0SR9X4FG+6xA7r8L4//Lnh3wYCszDpDjUwEReCIF6bLWVekGUFbdsLydc5GQVgNFVZ0rUdm82aP/oX/5zNWvhj5RAzJhXTyVQSFOcpy5LdesnT996nKEVNpZNBpCHxeaIgy9qITQHBpxk6mhi98OBSkmLS/S0tNtmPfd8xm8/H1mNRanLE+ZfoiEqjUwtSRjPYtI//5evP15h58xr8ov+GX5CPHLSy/qzf/T+brHylE5TDD2JwlBz8QLTW5LnB+57NZs0wWlsIjQcEr2RqJVN93yROhcHDQqtxkw6Q6iFBTMvdhnOePJO+p1KK4CDPZBJp28ok2jzPwXkCnr7rsFphdIZG7MR7J5uxOGDyx+hHIlnTNKMstO3aURlitB45MwMBlRBSlTds/CiDwELE5hajDbvdTpj0MbJar5hMppRlSVVVHB0dEVPzsx7kzFpTlhOUsqkikPceSRwfJIkLSXo4yASPjo44OTmhrAqyraXM8zdkl8NniVb4zo0W6CGG1FYBlEq29lKtayO98LzIR7dUUVHko8us1hqiZ2Izur6lqWu8l+BTVhOxFZ9MaLsOkwsZzRoro+6LnKwomM4qou/RSsiHbe9SVWUp8hznxSrfewdojIGu7aWSclFktkPgjUlRQ6rcrJHkWR/22WMabdBStx1BafJJhfOR3a5G2QzTdhSdE+Kv8/Rtl1CD8o1R9YdwfGbzUWY73OPDz2VZRlWVRAImE5VKWc1pO8cXz1+y3mzZbWvquhFOyYh77feLXCLF1eUVZVHwztuP8e96os3S5xHTNUeqTonn4gUTFVoPh5+EJaU019e3/PRnH3F5eU1RluneLPnmb/waf/Nv/me89dbbiYzqKascdOBw6vcPf/hDvvjiC/7af/Kf4PpW2liBlBGITXoMUmGbgS/Ty7V2rUsuwFbmXrU1m/WSrtth9ASFR0XPpMpRJ0dsNluKTEj7uc2ZVlOOj4/3AwO9HF4++IHllA5blQjMA5oS3kg69hO/9+jC4B795TYISqpzGUEAOhknDrELBIEY/n54gHzZWdVHxmRkkKDnuRDkB/O+/ZDWfSLx5RgpMvuYDNL2KMwbsuYRRdpPOQfe+AyGFlYIDo3GRyXjQdI9JXEnju0il3hV1UTGobRty2Qm98WDh4+4ubqkb+rRrTfGQLtbs1kJgX4+n/PyxXP+/t///1FV0jKdzWbMFwumc/F/enB+znw+JyTelBoTkoEYPyhx1BvvUwFdJwMiFcJhU0DfNhA7sjwnBo1zkdWuZb44Qdtc9s2QoP0ChOPPwwH5V0oafo76MsSQP+NXDtCYf9X1lU5Qhs3w5cFTPs3A2Wx6qjIfYcqu68fgNWyEwWFxGOt9uIFG3F2THBj3hkTD3J/D15JZmc/hQyCzlizPaJqW3jl652V+iBK1hZImPl3TEoPHZHKQW2NwCXEZTIQGxGcwzhq4MnbgEAz2/knRNAYsnfqiUb0RCOqmoe2gaxusUbRtw2q5lLkmyRF3SFKsMRwdixGdHDIwXxxxevKAoppgjCVipJGR+tkhbUgd9yz7wwrQ2mzkRQzvZQiYYvfdjVNNRXWS5lgEeS9FUZFnOceLI6bzGZPZYkxMDo2X5HppikIcfr33Qqb2kfV6w9X17Zjw5XmebNvFjK4sSpk9MpumSiYync8keK43eAfRB4yVWTDBJ5KgD6m9aBjt4LU5OCBkDRtbFGgOrCTPw/WT1y5TeeuuRTkJxLvNhnXTYGxGVU2YTGZordmsNiPqcHNzM6pH3lBaEPby4ARND/eO1jJHBiRx0FqzXq/5yU9/wosXz1ks5rzz7rt8+slnbHbbNCto/z6Ukjan1oqbmxv6ruPDd9+l/tZvMFscMcsKmU0Uh3EKSMsphkRi9KA9nQsjAdUY0Dan7z27psEFaTUNB/aLF8959uwZ773zLtYa+n5/KPZtR5s1PHv6BJtZXr96SZ5n1Js1mRYUwnUdKgSsQoYtIhNvVfBM8grX9XvDOhWxWtG3NcvbG7pKzBC36yXTMudoNuUuzw4O6QHhS+2O9Jp/EX9DKSEqCx9z3yYZDvBDIuqXE5Mvc1CGaxmjoiwnnJyckmUDkfpN2e6biEdM98W+Iu69J8vld2ezGfP5/A1VknBKPMP4gMNWzOFr2t/zv7itc3jPh9C/IVo49HwZiNwhOJxP5OIIQcseUlqJ51LX0bQOa3JslhEI+ADVdE4MgZPjYzJraTYrbta3GJWTmUIKxL4nsznTqqBtG0kgvSd0NduuZnN3zeUgYdfiwq2UYjqbc3p2ztn5OZPZnLwoqGZz5rMF1XRCjDoha9KWUhq6puVf/PN/htGKv/zv/SUZcts3fPrjP2ZxckI1PeLFiwtc1Hz9177FbJ4L0Tbwp1rJxi8XDV9CpobvH/73l5VWX04oVGoHDu3BmNpNQzWvxscR5OgXPccbr/HPymq+tL7SCYpKzqPe95jUMplOK0IQfxSiA8Ibsr59f3h4jIH4ZBJHJST+htjgg/CojILgAkq0kaiQkknFqAnwQMisGDj1Do3A1iIMUSgzTOKM8pjaCAdBaTSDmiI5TsZ9QjJs0EM5ZIxRWi0DghHFNGpQcOwTFcYe6BAUZa6QtGmU1nSu5+r6miwlDtPpJBl6ZWnyL0m9lBGDZrtpybMapXOMzaUXDEkNEAhaLM3RGp02yXa75fb2Voavqf3E00Oyn5igOVIHJ/Vd922RgIwHmM/nTIoJR4sjyumE6XQ2ulLu0YAqkfNEqWLQ1LudGGmdPeDJk6fs6prLy72HzCEJr3dSIW43SxRe7P+T0sAoQ6YtjNcOolEpARCCn4oGjaHI5RopnWplrca/a+LYljk8OIA0BsBT1w03q62gb2U58oCszdjtWuq6ZTKZjN4+R0dH7HY7Xrx4MRIb9yaG8eAwkjWopkZTiYQE7tLAu5cvXnB5eUlZTkQJVebUbS2SAqUBGTapNSmp3vfI87wAZQlRKn+JqwodYoLBwdietulQ2mJNLtOwlUbrgHfS/imrKc+evQtIMlPkOVVVYIxmPpsSQkcIBtfJ/ZLZDKuEHH13c0tR5JwcHdH0HeenJxzNKlbrNb6TZIcY2a5aXN+jFHRdS9e0lFnBpuupN1tsZgmZJbMa71t2u4626enbVq5hlpFnhq7ryayhzNNsKSUooAsyn0uGNw5Tw9MhEqRVm9mMoW18iEYMXkKHIwkOHYC/3FZxzo9k1jwXguvQChqSP7QZOTkgqrq+72nqJhV4HZ3rqCbVSOy11o6DWL9sQz/EG7mn9u2kPYE2jMXV4aF5+BUjIw9o5MOM/xbHzwolZFuTlF7D+xVPI43NM4qyZDpbsFjMQSk6J6iY0YbZbEbbNFLUeodROd51pJCVpNkKgqXpOnKjUCmOWGuwmaijZBp8gAD1es3L7Y4Xn36WilCRNX/44df55re/RVFW+JBI9graesfF5Wtmkwk3Vxf83//O34EYefr0LR6ezFitNgReMJ0f881vfZuqmo7FgEEK5jfVRvs1qm7iHvAYUKmhZXiYIB62CZVSXF5e8vz5c6bTKc+ePUsjXFKCkgjFA1o68E5iJEn+9S92FT5IncIBIflftr7SCYpJULy1WernueRz0pNlhiyTCcTeu4S0DBXq3jVT+B06KQBIrO90IZD2jySQIlf2UapFrRO6ocQPVTweAsoatDXi/Nn19K3MDAkqojMjk3N7lyoqUFYuOFGG9RklbaEsq96ooA79BQaynPMe18v7sJmlLMo9wnKAmrjeJTBIJyh2+AST/LSPVLkQVoW/U3J29oAHD87H555MppT5FOfAh0iMRng4RtoWEMepwPJZiTTYH0DJAw9okHMPbP2yLEfvEj9Yckf5WELyJLHakhlLkZdMJzOqshKlynRKUZUjijZsQJFDiux5UMWEEJhOp8wX83QoRx48eMDr15d7uDoEbFWQ20S41QYVhbw3DECMfpjOmmDrNOix61r5cI0ieFEOHI5h0FrUSwN65J20YopCqrcYPE3bisdLQjG63lO3DucDeTIX0dpQ5CoptaAsShZHC9qmJc9zTk9Px8BiBm+QAVpW+9ZM6prBQUDzAVCasihYrda8fn0xPsbNzTWb7YYss0SlE/qRoJiB8aRUgvTho08/48EPf8TXP/waT548ZnZ0Is/hA9pIwhZ9HDl/Iz8FcYKu6xpQnJ894Pr2JilyoOs7VqslSgU+axtOT495/4P3mU3mKMQWPGghVTe7LR//9Cd88emnnJyeQIj82tffwyauzm63k1ZrlnF5ccHPfvYz+j6jaY959fIlwTmyTAzgtFG07Y6uLZnOphSZpUtu02VVCUoYG3yQhC1Gma8zDLZsmmY8oPeflbQl9gmqkE+HPXGoOPwyqnJ4yOyXoJK73Y71ei3t4sEXKP1u3/eECHluRG6fiNMXV1f8yfe/z+3tHc47IPLtb3+LDz/8kIEPNQw9PGw7HSYch7b0byBEAYYk5cuH4mGrcfDYOUSahs9Kpd6I1ppMW1QqhDJrWcxnlGVB17VyX1tRk82OFvL+U9wMzpNlltVyxbU2RLRQ2KMmRBng1yd/nRAiCktkaJFm+ziVElvpaivKPMMqUZ65IGM8gvN88emnoo4sS6LSOAG2qTcbrq8uubp8zdXlBbvdljLP2KyWfJRpbFbw3e/++7z73od0nUPRoEyGMTk6oaFvJndvSqMVe5TKez869Q7E+eHfQgjjnCURl+y9tjabDev1mumkItOKLBPi/mQ6wWSJ0zkUVTGijQUk6R07QlpxiOr8RddXOkGJEZqmZberxyAQwsH8By8j4EMYnB7F9Az2w+XquiHEN50dhWwmVUWW+AHe9TR1DQyQvU03x57cBuJh4hMSo5QY8SiEI6KUmI05D955nOvoXcT5nrIqyTIraIgPeNWnm1kOB4IQdbu+SxtXJ3MoS1PXb2yewRNm4GWEXA7PkOD9ASUQRYX0/7tO7MMnkwkhwOXVNU3bUlUTTk6OcT5wt1yjVZaUCiLllMI8oJVBa/Au4J20chSWL/MUur6n6zvMcOMeoIneB3rn6XqfBsqJokchVfUw8ffo6Jg8kyopLwqpaMweFSuKgqLIscZijMYaRd80rJJDqzWG25sbPv7kE/7wD/8J1ze3whsiTVd1Pbvdhjybp5H1kugIk19RlsN7iilQkHwdJCkujaXeieJlcHeNqUfftmIOJ4HXExtP7xyL+Rz7pTEM1lryUqFMQ9+34JzMOgoybXpWVSzmc87OzphU0+QHtOb29pbNZk1R5ChVpARjcGNg/5nHIbWIA3pLDJHleiufVXqezXpDmUiCRVFQN81ogrYPdHEMjjEG1usNn3/+Bc+evcv5+QOOT0/JckkkE6dZ/lSQpfbsoVJkGCC3WCyYz+corej6jt1uw89+9lN+dnVJlhvOTo/Ji5zNZk3XtGRGOBKKQLQZVZEzm05p6h2ff7pmtbpjNik5Pz+nLIqxCm3rms36hqZe0fvAW48eEVH84Ic/YLNdpwQ/kmU23VsGW2qCiwlJg2lVUtc7nBfSrEpIWVkVvPXWI5bLJavVimFAaddJEiDooThJxxiZTGQe1uCsutvt3mhfD3vpFy2lUoKf9sEgcR5+v+s6mqYlKClOprMZbdfy/MULfvKTn/Dy5csxOaiqkq7refHiJc+fP+fzzz8fxyVIjI1j7BsKp7F4OvBFkb3txte4J20fIiwDohzHOV0kwvzgir2PXWkCvAKjFZlNM6EiaG1p2x6lxbQQZGSCihGUJDPlZEKIkbwsQVuUzcFYfBiSqSjJijJCuu4HU8CO27slru/J8pyyKMnyLO1JwAw29nINvPfs/Ja2lQQ4n1ToNCZCE3n77bd58vbb9F3LZrOiyHPKqsQWOTEqgsr54+//iJCMFSeTGfPFEdPZjMl0KsNvD1rHo8VGMu1su71R4OXlJU2zdzQ+bLMdIrfDfw97UdyQN5jox+TQaI2xhsV8QZaJe3I1qSirGTYvx5af8x7CcH3j0ET8hfftn7a+0gmKzTJiCLje0TaD58CEGGVgXtcmZr0a2jUCh4Qkm5TqxKFNhvhZSIUryYT8jtFgDbjOERNInRfZWE23rRDvomKE73NryTPpT/rM03WOrhuqIIuxBhuysTUk10/m5ZjkrzIoLoqiwFiLcwK/dl3Eas1kOkkKGI93Q7tGiL3aDC60QtzMs4w8KSi6vsN54ZIobcbhgdoY2Rha03mP8p5t3bJcb7m8vqEsKqq8YjE/lsq+a2hqS15Vo8rBJadZOQxltLkEdSGc2gNJ8SGpMsSIT9boIYBLyIA2B1Cx1gQFQYlHxjD1dhjGKAS8AzOsENGZwnUdy+2a3d2S7XYrvi1KgppCqqLpdEJdN7hOPBoyq6ijw3UNeWYoi5yzc+nlZ4n7IQmwwwdP34uHSO8GyJtUMXcjEjI8b9f3gtJYSwTavgetyQdia1LddL2Y1OVFzmw+T6TUfStMGUVWZJQTOWSD9+RZxoPzB5wcH6cA2aNVgdYQQk8MFmWGlpkiGYYPF0SqoKioipLX9Wv+2T/7p3z+2WesVys2mx15uueNMbRtc1AFkz57S9/JJN+yLGnqhj/6oz/Ce8/Dh484Ozkdg9XQux+OWW3M3hkYxgF1sneFlzSh4Pz8iMdvP+I73/kmV1eXHB8vePXyJf/8n/0z8izjaH6UJnvL4Xy8OObBwzOWyyXr1ZqIZ7dbs7xTbKwVk8IQqCZTmrZhs9vinOd2veOjTz7BBc/jx4/Zbtc0bc1yuaSqSo6OjyhswfHREdZabm/vWK57tBFybd9LgWBQaYBhRKmYWtAhITei3JCEX/yFJJHwMlA0qauGz3kovA5b1D/H80hfyhiKqqJ3jrvlakxCnXdsN1vqrpPxG5dXqbgrOD09ZbeT99i023QI5hwdHdP3js1my+XlpRQSvR9fx5B8j0TWOBSJCSVO98eA5A2J7JB4xD2Ul9DTZHGWbk4F4xDSgddljBRyUQfm8wnGKF68eI7Repw47aNKU4/TyAyEIxGipvcRF5IBQBRfnxCj+JkYgzVq5NRlSvhkm82Gjz76hBcvXjCbz3j/vfd58uQJk9lEvE1iFAdlLf5GJ/MjTCbeOO2AzprUZkuJXtf35HnO228/palrtB1aojlt77F2QM0UTdPSNBdcXFwIWq8Vg2x/vA9CGBNMpWVS+pAQDm1C2I8lGH43HPzeIYFapk3LmSJ8RhFehC5we3OT9rIUGShLOZ1STSYyYPfoKMWMg+KIv1iS8pVOUFznUlUnUri+c3i3STCqwmY5eZ6InFE2TNu2Y+VmMhnKZhLPQWDnSGZS31eLaqN3Pb3ThNaTWY3N5YBQCkLrUQbKLMeYgE0JynQ6FWhtuaKrxYUzy3K8CyglbaDc5CgVKYqcvDAYK0mFHNqD3FkqD538KYyOqNQrnc+nWCHHCKpDxIceFQN2gJh9Rw9JbqoxUVCY3jlUJz3ZLLNErei8J6ieznk2u5qyrJhOpyKVU6LmCdHR9w3bOuB8T3P1KiUaYgiWWUtuLaqSCcrEOB7gIW2GrusxWm7qIdEYgtzYJycROJMjbug7KqvpvKPpO7IiJxqFT5m9sVauZ9pU1hi26w2ffPoRH3/0EbubG4qi5PTsjPVqyeXlFavlEud72qYBIsYaxOBVevfgcX1PS2S92jKdzJifzYV05z2Qsdms8SFSlJW03JxjqKO0Mvg0asAaSRBJMHJEieNvnqGsvF9jNCHB2K1ztM6hspKisEx8hXN9OqCgdw3rzZKitOR5Rq4zMp0JcVfJzKXT4yOEt9GjQdxqlcidhbPkeQPCYrj/DQ/PH/D2W29htHhxTKb5qBDa7Gq0Hg4Llyp0hXde/IJQdG3PdrNFqys+/tlH7DYbgvPkQ/8+SDLuQiCmw1dQNzW2LGOq/tabNXe3F+SF5fj4aI8+Rc9mu+by+oJPPv8EQkgJ54wnT57y4PwB86MF56cn5GUhEvN6wmZ5zWYjs31eX17y6uKCqppQFCU6s7x6+RJbzsjyHL9ecXF5ifglOZbLJVor8QsqSxZHc4osR1u5F/VwEEYNqQ3qg6OtdwTXJxmsDPCL3pFnQuJ3qa1FFGLobrdlhMvfaAExoihf9hwRNMKANuL0azPu1puR0D8gG955JrM5Sok1f54XnJ+fM5vNKYqKzWaTkpaM83NRuZ2enYkdgPM07UuMtSPnYJ+URMCPyUgIe7VkUYql/fBaQvD0Tv5NiO0x+R4l1GXIbGA8QIcVY/qICWgVKDLLg7NT3n/vXRaLEzarrSjdTI5Slpg8g2SkQvrCEINC60zalFGI/j4MnL4BFSQVS6mticyCynKZEq9tho9iGKdjKmG1IRpD63smRUFWljL0M0iRG1JCppVCFwVd39PcraQ4JuCJ9EldZrP9MMdhhRAxhXkjsYgH4ggdGWNo7/zYXcjz/A0fHtgXPId/jzGO3xPTUtnb4oStRoQIIrmVs6FzLVF1eN9Tb1ZisvjhhxT56ajABORa/LuSoOx2LVWlUl/VpU0omalLlXwIOVkmFb734iaZ5SZdBC2Eo16qkjwNG+v7DhU1WVZwNJvQuY66ayjLghBkA87n07ThZQbQbDahyIRXEJyDENAIufbhg7MkzXNcX69YNh0hihOqNjpJaSHTe4ly37sUmJLJFwFrFSETzsLJyYIsy6l3G3QMlJkcIG2rmJbFiCJttjUu9nsCoxoIqhJQrDUC2cZIwGG9BHmb5Wibsd7usNalaZoteYIoY73l5Bjmi4WokkiD/EKk2e0wSlFkBcpIO0shQX0ynbLebMQJkhSH0g3bdQ7XCyxodEZUjkAcbfmzvGBxdEw1m2CLHKxGZ9IykF60waoBJnZs1iuWN7e4pqV3PU29w2jN228/5vT0hMViwWQ25Uc//LGQZZH+tFKRSVVRVRnTSiTd08mU3BbSTkyD6qTS2PdztTbM5xM2m90ITcv399wBec/CC/I6oHND0IradeQ6R0dottukONNYFMZarJFgg4ojGblzmratadoceuhsj1KR169f8bOPfsp294DFfEZR5nLYeg9BozOT4HTp94t3b6rKFSgLrmvYbbbJrM8mQzeV0C1pawwV/X5ysAQfGb6o6Jqe1jS0u5rQi1dMWzdynbTC9z15UdK7OLYGhpZL33cjGlY3O374o+/z6Wcf8/Wvf53z8zNubm745JNPePnyBdc3V3StDG50XY/Hc9KecPrw13n49kMuL6747LPPya30732Aza6GuuHq9pbL6xuqsmYym9P2PberLXfPX9O3/TiaQWtR6DVNx3q9YbPZoA3c3DVcXF3Q7NoUGzR5XmBNAWjhv4VApjWTUpyMjTW0eQa+YrGYM18scERubm+kHWCtDLbc1TIKwQinzZi9cgbeJJCO95V3GJPxzrvv8vjJE0GS+56yEvMxbQzOuPGwGtpAg/vwkydPyHOR7Q+JirU5WeY4OjrhyZMnbLc7NpsNMHDppFjRWmOtGROQYUV8MrjbO8gOidehyWZmMzEx9D7xOBKScpCkib8Io0O21orJtGI2nzKdzsiznBg3hDR7TCnZo2KaJvyoGBNqcrBHDy0khsanQkZSxDS7aD9gdi9AkAPeEqJPaEzqm2qNyQuiTs648U2kSa6XJvqYBjdC23voXRpXIRJ8YzLyIqdphRA/7L3Ot2NsGZIGpRTRJW6Q1uIrlEzoBhHB4X1z2GIb7qEBZRnM90Ba7y665N0ixNjgPcF17EAmkGuNzSy7rU8Ikef1y4K+2Y0jMSIRm1VEVfy5z/ivdIIiXA9BGESuuZeoxSimwm0d6NuETBiNUgFx2k6TXFHYXDOZTJlMKogB7wp8cFRFjrIRFSLTSUmeWXa7Hb7v8K6jKksWswlrAtOqYlLl9F3Lar3m9vYukfosb739NvP5nFevXuN9xCWfjxg92kSMVdhW2iZ5LvLkyWTGMNQtEvDRj/4G8gXaqGTlnxOCY7eTaqmqKiaTijwXTsuu6YSIZ4SFrnSWLOMdipyqKkEHcXhtdvRKEiUdoaomTKsJVVFyNDmmyEoWiwUxRj77+DMePPQ8ffaU6XTKZrtlu1qx22xZxTX2cslsvqCaTtHaMq+OmJXHvA7XSKWlMcqiowGnwEN0EPokhc0Uw7A3rQ0Kg0KTmUKqlBhR0WHRmKjQUaHw2Jjhmpbl9SWbu1tU8JR5zrbruLq64A/+4VKM4YzFBSVzjopcyLByN6X2SEZZFSI5XpxwfvaQ2XzKtllzcfGa1WqV+rownU7pOsd2W49tqxijoE7IYe761AZLTH4fArk1hD7S1Q2d6SnKkr5zuM7RA6oPxDwnRo/VSXaNhE/fO1bLJfV2Rx4LIZwiqBnR8fHPCrzvcV5g5DKfkGflXlatNfP5fOQqCcpmsVnObieeJ8KTEL5C0zYix0/JySADHQ6Yod8NyTTO6qSwaLm9W7Ld7tjttvz0Jz9mOi2xxjKdz3n67L3EfUpQsFbkyZ4eZHqtMpqb2zt+/x/+Q/I84+TkhFevXvHJJ5+wrWWoolFQFhk2y7i7u+HV65f81m/+Fh98+DXmiyld09F2DdtmS1VO8N4npZYY4e3anrbv6XonCaQTgruQM4ULFSNstzWff/6ck+2CxfGcshD7/947mq6XZD9GtDLYXJPpHNsrdAcQyQvLyekRfV9RFCVlmRM1oI7TvTQjyzLu7mTab1O3GKvHw+FNxY57g08QQqSqphwdHY0kaa2lhSPoW4/3O7bb7XgfDOZ+ZSkk+4HEnef5QVtFPoe3334MqNHddrvdEkM/HmwyLmB/4IG8Xq1SUahFyhvDwClRuD6hLHZwif1yhR0S5ySSWKmSPihFmVfMqynTqhLEVgWCCkSkQI0xJXPJPURrUESC7+ldJ61l9Bhrh3vaOYfzHbg4egd1nWOz2bHbNcznISU/FudSy+nwFceQjA8DdV1Tt8K7O3xnhwqtLB9GtgBxnzT4IMmfDw6bp+TXWlBJPGCzUQV6qHYKMRKV+OsMZ6TEUf1zCcohF2Ukbh8gVsIf8eh4oHZMZqJWSRJIQo2NtWTWkBc59WbNZd+S5yUxirhiMp1zdHr+i47zX7i+0gkK8KV5D/sPVeBinaoOxJFPi4Z+T3Q1WK3JjeLkeM58PsN7GaTXdy2TspSgrSCg2e7qNOFYFDfee4qikGCtNWVZMp1OQMFyuRyz7DAOo5NgEUkHrtIYK8oKY/ToD2J0mj+DZO/BixFX33WSlPWOtm7SwL19ABkq2t1uR9sKKbZrO7mZvEv8DUOmDcamyat9T3m8EIKXghhrQoi4vuPu9gbfe1wncP2NvmM+WbBLn8PDh48oioK+ddw1dzJQLnoKq+lbT6Yi0zyT6c/GcjSdsphOKDQYFZhkEpD6Tqz/M2vJjcJWYijW4wgoMiOHp1WRKpefmZYF1mryzGIVqBBwXYsLgR7FdrNlfXuN8j2T3LJqajHf8l5GxnuP0pKgGG1Bq9Tnhiwz5IVlPp/zl//yb5Hbgru7FVVV8Y2vf4Os0Hzve/+Iu5tbXO94661H/PZvf5c8z7m7vcV5z3Zbs9nIgLkhkLetQvcqmQJKpdg0XbIdl+vRtU4qMp/g+Lan39XJbVilfrwcmLm10jKwGYUuiF7I4O++85TvfOtbLFd3/NEf/Qtubm/J84wyr7C2eEPpNEizhz00oJHbXc0PfvgDbm6uick6PhyS6tR+GOFw7w3B0SZ7+YHrdX15zff+4HvUO3Eydn1LkVu0kkFxFxevQYkUebFYADCZTLi6uuI2vfbTs7OktLklyyzOBbbbGuc83keatsX1NZkR/kpZVtTNjs1mxSeffsy0klZl13X0ztMu73CpRaGNZb3e4CNs64a268XNOMl/TarcO+fEgRZ5vrppCbcRa2XPxLTHlYq0XZss8g15IclaqQUt0EZaktUkTxW8IBuLxQSjbeIhWfLslLLMubq6Hr1lBvXgEPveVMpI4nt+/oCnT59RVRPa9o7BLgEGEYCc81qpVP1KS1QZS0gtgUHSG9VeBj/8/jvvvMPx8TGvX7+WQZLrjaDRRlM3O5qmBkhomFTzkuCJ2/fJycmoHmnbdpwF1HUdKu7tFEblTlrSIRW8jxixWcZsPhdViTYpzklr3GqJ9zq1bKMP4t2DWFME34/xVKmIzAqSmUHDoFVpVQ18xISyp0ReJ4PPYZ7RYLQWorhHx3A4wXqf/NisGNEG2SeylxR7lVJMRCKVDEL7vhfEOQpXK3gv8SCC78VtlhHFFFuLGFOLPDIWI78oORniwGG7aEBEhxVHWXBMXlGRqIIY+WmD1YLIKq2ISpzFrR28sZJtQ9+nWGeYzZs/9/n+lU5QBotiYcSLKmdwU7UpkxuqnxgdzgWslRtmzDRlpin1bo01kGWW2aSkN4qySAEkWpre4V1H17aisZ9OyAvp+WdWC4zZN2RRoOqyLJjPZoBms9pSbxuB/l0kz7JkVhXRKkrA0gaioWs9u22L1pE8sxRlOY4QD96PvcbOOUpVQfKfGKDHL998xmh8cLjgpb+tRFnkepdIrIH1asl0MUFsuCPedWS2wOTCsWjbhvPzh0xnBdZGfGjoevBOQSzY6Z7gBOGxOrK8vsAay6Pzd5hVEd/egbEUpuXRacnu8SmzyjCdlhRlRZaXGJuRZTmTyVQmsaYs3Ohh+q8ockARvJPDQEsQjGnuTQgO3/cQFd1uA6FlUppkMBdGBrpKnyfRY7OS4GUSr1zrkBwhFXmW89mnnxFC5OryhpPjUyaTiums4PLiktubG0II/PiHP6JrWn7rt36L3/iNbwlvJ9Nj+8f1fZomHKh3NZvtlrpuqNueu+Wa3U5aOtvtltVqxXJ5x263Y7er2dQ7IBn6pfvaWCseDD2owmPJiL6jLCryIqOalJw/OAMlyert7a18dkFhVDZWiaT2Gak9Z4ZqrsjZbGuWd3cSxJ3fU57TfaWGhCqRew8t2IfhhyFGciso3nq9pu97Tk9PaGrF3eoORaTtXpKXMo36/Fwqq6Zpxr38ve99j+PjI6ppTl03XF3fMJlUXF3dJGfljq7vxR4gAEYl80VpEd3dXeN9T2Yymrrh9OQMTZZer9rzKIwVK/KmG7lEg5w2BA/KStCNMobBuf1Iir53BB/H622MmB0G70FJFa/SfTxIiSEmKasUU8EJob3vXOIGDdVyjlGkybsHjrFpHU76FdM0y/HxKUdHJwiHhZFPoZUW5FWlA9IIGV8nhGNoz2htkj383mBQDuW9N8lgjHhzfcOWDSFEitJSKRlIOrR0Bu4BUXxxjDF885u/AcDnn3/OxcUlICqfrutk1MABF21Yh8iASq7gRS4KrclkKg7dpH0dRDVpFWnqOcTg0ViMIrWAxeBSBqruvbL2yszDGUBSVEynU77xjW/w7rvvUhQFs9kMIPGxYoqf+1aOTkVr78SeIs8LsiyXw3qzV2YN99pAu2n7DmsMk0mV7AeCxIL1elTmhBDxKa7keU5ZVcxnMzH8TMlBRKWYKi64h8jbsA5bPIfk60PURVpGcRyGGA+sIAiDOCRxkZJRaeij8O66QOfEU2l5d0ee5XzxxWd/nuMd+IonKMNBPPhMfBmq2q84cga89+RFnlQ4keA6+laGg4knR07wE2FkB09mDMqYZAYH1moyKzb6x0dzgg9kmWxqrSN1s2WzWYk/SlR4BzvfpgBgmVRTujYSY8dAwHJOMvjeSQLig6MoFLPZhKos8SkBGwhxwyyG3knfN0vur8PE5mFz771TFHmekWUGopf+rYqpr64Sd0MlLkKqnIJH24z5fMqkmmA0OLdDq5bNdkPbGk4WC6bVCScLRZlPBPrvGt46ekDf90yKVgZeabhe3pER+Q9+59f57l/+AEMvCFCq6PxQCWKodw2u9ygCOgjxjiDVlRr4HMNm0waXAoSPXhCzEFHRE11P39R0bUffdymIiDLKhUDXO3wnWX0YqK0xpiGUWg7KtqCuG+7u7thudsznM06OZ1y8fk1TSyXgvefjjz5mUk148viJyFC1wWaZKLQw5NpijGU2m3IWTtOmz8UboXf0KSDsJ2VLchxioOk7litRoazXa5bLO25v79Lwug7X99TbrTC/FWRWhlsaLSTl3WZDVU3wLkK670KadC3XXGSuZmjZGE3vHE3T4oMfZ52NigEFqdEueyihQfLdfbC2JpNkwTkuLi/4gz/4A6azKVlmsJlmWpVMpjPa2yX/9J/+E5qm4cGDB3z44Yd88MEHPHv2FIj8g9/7B1z98ILNdkfbdnRtR1M3chD2XeLcpVlHqW3Q9w7nNsQYOT4+5uhozqQq8N5R1xIrtLHUbUfdCdSvjEFbKyjclwzF9tyBvQ29c54sC+mg35MLtRYUzuuklkgxakA8Bi8gIZIOsLmgpE3TMYzq8L2ja+9Y3q0IvZP5Xr+AM3DYllksTjg5PiPPSgY34qIoxfdFS0zIbM4g1RUBQRrOGYaZNylxjW/yFb7snyGeOydopTg5OWFxNOP29oYvvvic9VqUY13fEoMgRkoZzs4epAGong8++Brf+Mav89Of/pSb62t61dI2zc9V+nulkqAwPn2mZVUwnU8St04q/a5NRPQQaOodWglnr+8ajIYiM1iVE70juD4VP3uprk1J0dCiHZ57QFAmkwmTySRdQ4P38l6Uith8cOwVnsiwX0IMbLZrbm9u0UqL4vFgdMqXEwY0NDGy224lfitBUgYTPQk6AssbpVBBXJE3mw3lpMJESSbFlyS9ooP75cu8peHP4b0OaM/wd+EYiY4wROR8kPkeKIsMKdUOm1tIrS4VpDDu2o5Xr17xxfMvZOSMGhRVf771lU5Q+r4fvw4dCkd2e4w0bUOWZrSY5PZp7dD6ET6HSS2f2XxBZjVN2+H7nklVsZjN0NZis5JXlxdk1nJ8csLR0RHHx8cSuJz8ud1t2F1eAFCUJcElLfyupm9cysoVPu6DmUDqfSKsqtQGgrLKkra8YlD1tMvugOQa6FohSg195MHQaYDsJdMWF1SZXyM+DllmaVtN13Zk1lDkWXJPlCFjvnP0bYvvHHoOrVIoAudPznj89hmTqmS7WrK8vaHeNGQnmpO5eJP4PqPMqjFBqtuW5WoN3VYg0DZS5hnRy7wMsUcX0u5ms2O93uJdwGhLpkusLbCZGTlGTdumwX7isrrrenpEHdC2LSYlb/Wupmtb+q5nu92NlaRAzWlitDa4MJBOVYK85d7SSvrpr19fSA9512JmVoyqerHtH9Cswcr8i88/5/kXX3B+fobRuag1QIjOb1QvKcj7LsFAHo1PqB9Yo7AmIkaZhryYMp9OsM+eHjzG/sBo6hrvxAhuV9ei0igLHpyd8a1f/yZVUYoD6GpDm/hPXdfhkXZhCAF6CY7WWmye0fU9bS/ohPjRmNFATtQOhzLHkFoc+6m83osaKE9weN00bHc7OtcjZKNAUWQURQmpIu76lh/88E/4oz/6F6AYSX3LuyWbeiOjHXonk7a1oe9rvA/pWmqMFp8arbTA/dHTtY627ZlMp6jJlBfPX7PZtEL88yJvV0qmOPsg08DjUKWncjGECF4GvxljRtJfSPeh9yGp8xRK9VJJq+GQFVhenE7bpKhQKLVXUCmliT7QtY6mbtHakBUZVuc0vkc40UoI0vgxgRniAMjB8+677/Jrv/YbPH36AVkmJm9aGTI7DLHUeC+ImVJ7YzIhN+s0CV3+W0imh8kBBwdWTChxyXvvv4/90PD48WNm8wmffvoJeZ5xcfGau7tb2ImvS55VKGV48OAhz569Q5ZlfPvb3+b09JTnz58LF2i14p/+4T/mxz/5yeiMvJe8SjKlUlxROrJYzHnr0SNOT09SW2aYRC/ownq14vLigt452rZLw0AT18Z7Vqsl5iCx9N4LSj20Xb7E0Tjk+gxnTp7bZAUh6FrfO1AqeZn45P8in9ViJojw0No6RIn2xNuhUFNpf6mxHTYUMsF7cjQaOeNc1ydSq+L49IQqWVAYY0fawGDeNyTJh7Ji7/04x2xAWt681qmVFaWYUVEKm+g9u2HatxHrjDY9fjWZYK2l6x3L1YoXL16y2W7IM0s8IFD/y9ZXOkHxSV516A0w9Evlhg1jtj6gKF3X0nUD58NKpWsKFos5xycnxODpuzuUjuRFSVEKMtA7R1WW6OlUjKCUGrkFmbVMJhOyPGc6maFVJjDr7JjXry95/foK166lYlUwZNhDVTZa2bukLDKW4KHrerRuR0h+sDQfs31rR5h9eP/DMESQDZbnOWWRj4mcNZqz01NOTk7GgV/GGJzvUUCeWVqj6Ftxv+26JtlKwxdffMLVxaeUecakLHh4dsz5yZyjaUaRRazuCKGl3taIy2+GjgHlHS8++5RXFxc8ePCIswdnzBbzUQHVtz1N3XJ5eU1dd/LZHZ+ibCAvhKWvTEbQmunZMZPJlMX8iCyz9N7Te1Fu7bY1TV3Ttg2ffvwJH3/8CW3TEjAMZLn0wYyJno5KfA+S6VFVFGQW8szw9OlTtIo8f/6C3a5hu91yfXXNbJKTp0GBu92Orm2Todmay4sLmqZmtpiNCcSXkb0B5tdK0C2rDdHuFRBKBQiOSGoNaPFMCb1wV4R0qBn2eZlb8llF13VYq0cyZ2an/Kf/6d9Aocd5UC6I8ZdwYlq22y1N04x/Nm3DZrvlbrmiqqZcXl+z3dX0Thwyvff4IPep8248LI0xMpxOa4ySmTzeO/rU83dOUKyiyLBWYzPNZpvI7T7Zm6eEJiDzsVyQYNx2DaH3tG2PSz87ODHHkNpOCYk0Os0qUUmOaQK3N0s+5TOstWzWNV3rmU5nhK6n7lpBMJVKhMSAMTkYQdw8ktkGF4la7AEGsmPXdCIjT9fXWnE3tWawQ5c2Ur1rUxwSaFyrgDiUSlIXgxcUBotSWXIgrsjzgsW8oMjndF3Ltm1oD1oRh5Ory7Lk7bff5oMPPqAsF4A46YrBmMdaJVPBE6JlbYaoWVIxHhkVhHLPvolgDM7bw/UeWhN5llGVFev1itX6jl29G19bWZX0yXzu5OSUd999j9lsxmKx4PT0jN12x93dHd57Li8u+eEP/oRPP/2Uuq5HZ+iRdK1VQt4ycVCmHy0KtDFJAu0wOscYy5Nnjzk9P8d5J23VzWbkg91cXYnjbAhkxqLVbjyghxEEb5wzKUYPh/ahlXsIiq5zFDpDGxLdQJx6i7LCJEfqPM+oijL5KFUjd3LfRtx7ANkkABjbY2lfrdYrLm6uuL26IWx26CASgs450IoPvv41Ts5Ohaiai9nbUAQ3TcNmI+qzocAZWlkgYgiZAl+N73uP7AgiGryj74S7E0PEpFGXA3LZey9+LxF83NHUDZdXV3z+2Wds6xplDHXb0+zqP+cJ/xVPUIRwtteDw5uSTqUUNrN47ySRSF4gIXh673GdT/byWngLncMoRd83WKtp247Xr19DjBSTUtpIXTciFMPFPjsVA6rbmzvu7pYURclqteb2aoVCM58tKIspy7sVq81G9P7pPRxWKJCIa+k1ioKioygE3JxMJiMpse/7sb019ITLROod+vdd1+G9Q+uSx48fj7393W7Hw4cP+fDDD8eN1/ctn3/+OZ9//jmEOFaJXdPIY7YWozJCrwh9xLWOerXl7vKW7e2a2aQkt5r1csWrV6+Zz+e8/dYTmqbl+vqWpnacHz0iVyW3lxuur7cCjzovxDjn6WtFZmbYbEE0M3wxYxcNr25kzoZzHq2XHB8fMZ02TKqSSZlT5Ib5bMr54pSqKNluNiyXO/RnL/ChHfkCoxrjsAWo9uMDhnHqg+HdZr1BqUBdNyMZebVa0TcZs9mU2VTs5Qc7++12y0cffcR3fvM7nD44Gzf4odJluG/l+yoZQsU0oE/8bsT4rhv5ADZL06rdIV9E3kvwYjBY1zuMNRS5Fbm2c2RZmQ6bVOFkGSHCdFJyfn46vp6fM2kyWngW3hOCBMB6V3OzXHJzfc1qs+H67obNZsNquWKz3Yg/ymbD5eUlm/UaFQ2TqmJSFEyqiTglW3kNy+UtTbOTCcLWCEfKCfGvSRJPMfULAh/3LbmxdK4TV8/Yy5BGrcfJ3Wps7XiUcqllJaT09XrDdr1lOp0wqSbYTJCwbdMSkUOOICqN3U4M0nQUT5qQIKGByCx7dryQSa7vUEqT5zohJ5oYtKh5QqCuhZMhCQU0TU/fh/H6GqPpu4BSGWV6jMFHJc8LplNRvsxdj+NNfswhcirIkhJiaCKoxpgkq28ICLLRlkFrxW4X95wRGDk84Mny/b09EO8HxGEYXDjYNwA0bS3uwEVOESqqyYSqmnB++oiyEBVZ8PDq5WtptTrHZrPh9evXgla2LZPZTKr09Dwh+FG8aLUap0JX5YQiL5FjzCTuUIcxmtl8zpMnjymrCX0qhHxCC7fbLRcXr7i9uma33bBZb9is14ncOxiUDXt2TyQd0Pn9PaDQWg7vpm6ISoaQrjdbbFYwmS0oqykRRdv2ZLagKKQdtatrmma42wWhOEQqjJY24NByApFhDzYE68tLmWllDSbPMHlODIEiz8Vlu6hwXugAsq8z8rxksbBvdBkOW5NZlkv7N/y8kkqn6dBt28p7DYKm9I0gfkVegLEEI4VW5xx98BRVyftf+5Bv5kWa/B5o2p7/5//rf/3TjvU31lc6QXFpYx7ePEPLRAKzT9m/I8RAnien1sxKBZpIIJHIZrths14xmZQ8e/qEB+cnZEZTb3dCGMsyTk/O2Na7kaQUE/ks+Ih3geDFYKcoNKcn5wQP6/WW3bahTuQ7IFXBgIkYpdHDHKaY+BZRLOO7usO1MpDMWstsOiErKwlQXY93e6TEOZe8KvYkM63FHn5SlhgUrutRMZJpQ24s07IiLwpubm64u77DtY6yqJhOHXGzYc/eDmx3a/pe7OAnRcF8UtEr6Js1OMPJ0ZyT4yPK6pTprOPm5o4YrujantVyTYhgTaAvtciOjRIYUgcMCmUMVXWKykvICrZOc3G95mrTstnuaNqOGCVjn882ZFaC66SwmNijFeTGUmQG1zRcvX6VlE6ZzPRJgZXhC0YUKyS1hkD1NUWmMZmR+TzNjs1mywCLd13HYjrh/Pyc5XLJ9c3VCJtWVcX19TWfff4Zpw/PmC/mBxD1vpqBBBene2H48iFg0jRmFeMwvg9B/+QmCYlAqdSgyEiW6eIwJ60XpArDB7Jc7L79kMC/GXekHWGzZC0vhNaQVBBVke9bO0dHPHn7UarsoPNO+ENpH7pE4O66TlCspsV3HZvNmr7rOTo64uTkWKD04HB9x3qzZrVesdwIt2a33VI3Dbud7Lm6rmnqht7mwp/xAd93dE1DJBUlRiaASzCXtlzfd/9/8v405tY1vevEfvfwTGutd9zzPnMVdarKLhsbOxiDk4hgxUOnYxuUtLtNQCBhCbVJEz4QIUEIEhIdoCUwrWCFL4AEH5KWmKLEQEMTwG3KAxi7XMOpOkOdYc/vtKZnuod8uO77Wevd55RdVtIhBau0a5/9jms9637u+7r+13+Qjd5H2naLUoihVJDxSHCOth/pR0+IGrSYeYnRY4SocCFZuSMuxgjHGBdC6nAzegOSRxQZhkBdF2RyanY99T7gxoB3kaJIScDytk6E77IUp+WirMhTwL7vgZ6yPOL4+JCY3hvnpOHati2zpsEWhfj2VDXPnjzF2iUu8dHEKdtKflY6jNrtlqFvqWtRgAnVPO1BWbGiNIvFjDJaIZQOI350U1NEUgFFpJnxMWWbIZW2KUoOilLcaI1cr5wcXxRiGuacZ73eyH10dj6F/YkqxlIXhRR/WXkTRqDg1o2bNE3D7Rt3mDWHaCXX3Hlxjq6qCluUoAXlU0oMN1UjJNrFYsGtWzcxCtrNijfeeINf+Pmf56233kJrzXw2Z7aYc3h4yPHxCQcHR5RFSVGKg3hZVIQQEx9syfLqivV6w3J5xdVyxXqz5fD4mKF3gAYv6HjXj5gipYwjf4wxk3owvwUhEfqtsWKdGAJEKZoNBnykMFak1Inka41YzpdFgdUiwtgfJxtjptDIfGbkRz47c5P2PC8GRAUq2V95PCjE3eXVirquOTlpKItKiNValKlVVXCUjAxjIDUPhrbrf/3DPT2+oQuUzWYzLeas2b8eYpXSe7VFI3Nx7x0aQ0w7tdFGDkmlqGcz6tpycnTA/bt3ODyY0bcdjx495J0PHrFcrdlst9y8dZO7d28zn8959uwZVxeXnJ9fsFqtubhcstl0FLaBqFivtyyXGzZrkf764FFWJ6JRSMoJ2bCCE/lbwFPVhST6jmKSY9C4QYqfQhtmaT4fuR68NSWRJqOdsiiECR5FTeKco6kFYmxb4VI8fvyYs/MztNKcHB8zn824KAravksIDYkHI0XZtu8JLrBoZhRNjS5maLug67U41/pIszhA2YLQOXFeVBaFZug9IbYUcwsELELk9DGgjWJMB/NqHHi2anm2lp/nvEEpqdSdFqmsj57NGKjKGp3M7jbLltX5MzZXV9RGJ5JqPtzjJJfNWv7cMYmEsKCu5mgCdaG5fesWxsAH7z/g4vIKIBH0pFs1xkhEuxUOT+5mu64jRD/97pD3CRXJssQQIzHIWESMpMRd1kdFRMvBl+WRajeLh93mso8aBgLBydgjp2Ibvfsenbg31zUgIjdVShJSC2PphwFbmPR0PdF7DFkJJ6o3onhW5EdVFaCS4VacE+MxxIhRis1qxePHj1mtVjx99CDltQjB8Ggx59bpCbaqJ8m8SIid5P2EgE9k3eDkwG5TYN1mu+Hs4pyn52c8ffaMJ08e07YbtIHaZIt8R4xB5upEhnGQtORoBRXRMibLkmLv0zgnyMjHpcLQJlK2j+LS6UlpxCokw7sCrRVEzTh6jBGJ9TCKXHkYJFoiS06lRs7cD+Gd5ewhrbOLp5KR3OhYrq4oCsvx6Ql1ShffrDes1uuEdIj6MCPFRve7wjekmIN0/2pjxSTSqEnRknlZWUae5cF5rSmue2NopRKRXng+LjqywV52iyXdx8F7XFSgZF+qqiqhBWb62nfffY8PPviAvm8ntYjyClLu0dB39K00V3ZmePHFl3jxxZeo64qqrBLXQlMUNcEPVPWMsqqkgJ8WejJRI7Jtt8QQaCqLKTTNrGJwPeeXZ4LYRM/oB1CBw8MD6rpEVFUl8/kCrQ2zZsbLL7+Mc55nz57xpS9+ka++8x7vvv8e3gfqZsE4hqR0NMxmC6rUEIYQsUWgUsIHVGQPlUhA7jFjDFVZUiiNH0b8MIIPmIg0m+MgwbJlhU/vSWEtxKQKgyk6RMbJhqBE1TnFTKQ1ks9BCb7ViYGgpYELEngZfEDc5oAo4Y/OSWZRiIZhlPy4qEaUDriho+vlOuMj3u3+XK6ufu2Dfe/xDV2g7PgmO7LpPvNeCEa7WdoOYfFJkSOeBSiRrL3wwj0ODmbcun2T2azCWM1sUXP3/h2CLXjnq++x2qx4/PgR2+2Gb/mWb+X111+nbzu6rufhw8fMn56xmC9YLA65vFgKYbFp8C7BpOOADmaSzIoDqxioRQN+zEmYAV0YWUxRDpLovRxqMeKdw2idEozDxKkoUrpq7rK6vufZ+TllcuoMUebNj58+ZbleU5YlL774Irfu3eXpkyc8efwEZS03b98hBhlzjMli3Y1umkVvty3rqxVlUbC8WtOUFYcHB9y7e5Pjm7foUnWtlaZq5qioMdriRxmvbZZLjIGj2UIKqDFMuvnNdsuy7VmvtrStQ+kCheQGxSAOhtFECiMHc4yafhhwwVMXBp9GYJUWMmVOJo3pwBF0NselSyHgvRf+gS0odKSqrEgYm5Kry0vOLy4JUYisbduyXF4RguSt0DIx+/tewit9kjDmAgggTtkkCk2c/AommR5MCI8oipgOhwznZ3Z9jLs8mxAjSpbAdYAod2UxezrIF1xXRkBIxDsHSdIu5my7SYYgV4A8b0CljjwXPWo6gOX1yHoNzGcNL734gvBbUprvOA70fc/qakk/DARiUnmoiW+Vi26bNt2qrKnrhhs3JE9IiKwaHwNd3/LP/8W/4Od+7r+nGzapmIsMQ1K6GYVJUQM+BAY3EIK4ijqXColIIsiKoHrXge7UI4L4K1RyIhXp/5jQLIMxkRA0qkzy3rDLAMsRBcbY6Tq5FOqWPSdEka0nJ+zttiUEMchTCnQhzqZFUUhHrTxGyb6nYo1REVxPVF7I1+m9gzgpW5TWWJViLaKM8Ng7sGRNpLiNhDjJz7numzGZ6qX9SSPoDshYTBxdxRyN4HFp1CjTtMA4DmzbLc+ePeXs7KmMwKxJG50ggcMouU5lYSntIq1TGd81jRQmSuWRixR6tiiYzec7T5AYd/cVTBLoEAJlodK6lj85BFYbw607t7lz5w511fDs7Bmr1ZqyrFJQqfx97959DhaH3L59h5s3b3F0dMw//e/+GW+++RZdJyNplfa/Ehl7FWUhqeeJ9FuW9XQ9hVsWGPOaUrvmSRR5aRTeS1GaUVefzsK6aSjKEqMtwbl0/+ZGQl5r8CERaOXcNOzOR1mrmdC/b8omKKEPpD9J7m0MVTNDm4JuGBi3HeM4slpd8u47X+GrX32L4Eaij4QxSDMQ0mH2dT6+oQuU4+PjiYUM10mn1xjRe5BVVsQQEjrhAlURGQuPLSyz+VzgQG1wSULczOfcuVuK2djxMeM4sFyu+OCDD9DaQIgsl0tW602Krhb1wPHRCYv5AV0/4n1gvd4QlFTJWpvJHVIWaLLTLqz4pabNOc+TpbByqHSDi7xSp1NoNxvdJwzLYRboB1FjFGVB8IEnZ2c0TTORfU1ZcXr7JpfrLW999asMw8DxwSG3b93kYH7AZr0mIEhKn+amdVmxGUbarsMYKwS1qmQ7jvilMOi7tqepGhbNHKNs2thHxk1PF0bJ9LlaYZXwAOaHpwza8sGzCzbOM1AQh4Ayjug1Y4CgDcEoRg2l1UQVKUpL9J7SKoYY6LYr6Xq9ZzP0kg7tvah1lBJjo8SSj35HANTGstluUX5kqwOlVlgduby8SgemJEuP40DbyejAWDUhAmVREgkMQ0/bbhmG+eTOKuuTtAZBKSM3OmLtj5KuyWf/gY8aQ4XrQXETn4ZcmGRCblrr+sOz5P1/5/ujLEsePnxI27bcuXsHU9jrBUz2kph+fsomianbTs8lpPHSblNkWodN00ymhnkz9t4Lj8EoZvMZMY01pu4ufZ2MJUTpNowjrnVsu5YnT56wXC05Oj6itJZm1uBiJ8nlSQa6Wjv6YaAoooxRtCUGRz8I4diYglIrIZOGAXCEKJ4quUAkyn0lXkWpwlekwtdNM3zhpiVvkaSiKIpyUmHk65dJlvsKRKWY+GU7tEJGwbPZHK0V7WZFZeXgWq1X9N1OCVKYgMFhFFgtCJILUdLVIyitxUvFK/ww7JC8PG5ij6eSn2dC4Pq+v0bOv76WEssWppQV52OyB1CQycxKlDdKC9+t7zvOz8958PA9hrED5XF+l8+lNdiyoLJi8dD3LcE7tDG02w1t2zKfzzCmTIIHkwryeC1Vedeoyv3lyHwPKUI1kX4Y2Gy39IOoJJvZjE9+8lO8/vrreO85Ozvj6dMzQcCjx0XP4EY22y0gPKJh6CnKauLrBO+nYqdsGvEFms6l3Vglcwgn7iRyPhVaUxhLYSyjTyPo3EjFIM0NELVGG01RSYzD6H0i6YpVvw+Z5rCTuWen3P09IK/ffSl5/rwQosU3Rqz8NdooDg4bZNwsoYTRKzSaeVXRXl5y9eQpVxdnqSnSqORBNoz/gZBks3lQvvj7ts/5jcgXft8KH5jeDO97fIgMo8gRUYaiqinrRkzUlCKEAa0N8/lCkIPEhu77gdnsnHt37nJ0dMz5xRXr9ZrgI13dJzvtyNVyNW28IF1UhnFD8BgSF8FJ95a7LK1lbi6poEH4ByqgjBwqwygz34wk5cNL3G6FQyHBa2W6CSzaCGznQ+TZ2Tlaa65WG+oPHnJwcMjprbt02xargJg3P4uP4HBURcmQ+C+LwyPZuIoCpxXPVku2Q8fp4Yy6lCyfbT/SdZdopakLMZ7SlWWmFgyDZdhusHXJyfEJtqwZMLxSz4hFTRsNnY/U1RyjC9kLR0dVFdw4OeTm6SHz+QyVFCN91/LVN9/ky18aOHuyoQsBldCmGMTbAq1RCXGT/SwjN2nTCh6b/v3kyRPqyqYQPI1H1CvzxYzFYk7fd+IjYwzROcboIQSuLs/56jvvsFotd2ZXidyqlJqk1WKSpa+pMbLrY34olTgQac3mP6AksDJ9nXAI9vgt0x6zky3m1/n8I4TAwcEBIKZjRVVe+/z+wbT//YLY7CMtarLczhLb7Lj8vEQ1339t19F3PXUjjUFVyehyl9wrB8/BQn4XQNf3rDYbnB+xhWH0jtVmw9B3wk8JFl1VWKOoq4LsDzMOAy4OSAJXQNROEYIon/LIhajwaeSiBOmejKh0RlNCICakZb/okiLDX5P852uTUV7ZA3Z8JFHGqOTV4/dUIvlA8xTljKow4Ae2fcfFs6eMo2OxmNMcHoEf2awvKW1NVSnqWiSjaI0LIpuOeQ14x7YLGF1I0ZXfu2SGmMfm+T0qS8n5ep6bEBJMpJt6Vygja0+rlM2VPqqsEXVJYdNe2nB6esIrr7w0IXwZAbG5QDGaurAczGYiWugkekGbkirZ+OdCN/MnvHcUZRqdPIcUxjy+SyRQYwwaIaeKb84uowgUy+WK84tz3nzzTZbLNdvthrqZc+/eC9S1OIZLgGdP27Vcra7wIbA4PEQZIwaC3qG9I7iY8tCy9cCHgyCHYaDvOwbXoxUSQoliTB8/OD7ik9/0ae6+cI/zJw/54IP3uVyumM/n3Lh9B2Usy9Wai+VapgTp3AOuqYX2m/bMnTs4OJiM5/abexlH++S6mw0yxfDOmCKplBQ6iDLNoBn7FoMm9iNVCiCNxMkxuHiOB/drPb6hC5Su66mqXV7E/psAO1hyXyJWluW1RauUbHDjdsuziwvu3r+HLcqUyDow9j39OLBcbSnKipOTU+bzA27evMX5+QVVVUlIWeJ2mGTqlhUdoGjbYfJXMMbgYsQFT2ll89RGkRMjVYxELXyRIm0QmVwUgkjpZlXyGUHRDUI4ysqirDQB0uZSs912EMWh0yRJ9MnJCc65FK0+EktHWQe2nWPoRxZ1zWq1ZR0cFkXftQzDyGy+4PSk5mq1ZtNuicrQjiPKS2iWcF0GCIH5fM68maGspet7+pQTpLROfCDF7OCQu3ducnJ6QgiKfozMg2L0EDY9SkGjA1WhKa2kP9dVwclRzc2TGbdu3ZiKM6MUBybSXZ0xblesl+sUWyCHgg9yfYXcx84WOyUwa5X8USIyj1UCofaDEJyVEZvz46NDDhdzLpNJkzWaGJx0L+PIenXFl7/0hpgmJXJa0zRsNhvGcSRbSRe2pEmyvuCD8COMwXnpbspSQv5yR1iWJScnp9y8eRObNoaIQOw7tGG3EYvrqRNnTWOnAiVv6tkfQWvNYiH5L33iLwlXIE5d/f7GpnXqmGJMoyOmQ0nWXR5p7Tw68oZcFJIDFRJKII3FTmWlUhicVqnr18npVMMwikRWKUVVldS1SKu75VK4YFeXgCOMURK8S0tTVwydSF37YWAcRHETg5ENM5EVx1H8TPIjRvE2MYUc2jF4XD9SNg2zqkZpGJxnHLtpr8mdqlJcKz7kT3KOTg3V/ghL/D5EubePGjkn9gj52hgr5lfjMAhfqqmZz2Zi6DibJXdUB8NAVTeoJASoqpqmmUkXj1gmaCv+HfM0DsnrbVJypTVS1zu37vzeX1PBxSiHUypI80P8YsQczlgj/i0pmT2HbMp/Zx4OqFS4Z8auVorDWc2slmR0bURC3vVO5NFpr8/SZ0GvneylYRe98DyCIA8FaPpxBK159WMfY5YykKy1vP/BA9565x2ePn3Kg4Qudl3H8fGpePyUJXfu3sGWhnGMNE3N3bt3+K3f/V18erUBbSibmsENqMHgYmAcxrSWdyrT/bGZ8Ad7Li7ORFEkjNnpPCuNcC2LuuLo5g3mmTgdoSgkmHC53giCpTU6JUfL23R9orDfvOeiLBt9fui5xYDSBqMUQUUh8AdJto5ozF5ytEQoWAoMFQb83shYa3E0/w/FB2UYerLS5LpV8a5gASE05orZGDP5iaxWKwmEUpGqLHj87BntL/5rnjx9xJ3bt2g3a66uLrl16ybDKCSvGzducHJywt27t3n9dbGEfvzwER988ICnz84ZhoGjo2NmzZx20yWOQUebeCohxFSQJAdDo1BRnndZFDlTdpKX7RJjpasNKSDRpg3GBZ/8L+zkgZIVPUopum4kxsTgHnr6bkDRc3AQOT69iY+Kd997n9YpxkEKo3a1pV1vmdcVBI9BUpuV0gzrJefLKyKKe/fucXh0xMNHD1mv1lgthNyiMHRdy3rbU9dzqqKkHwaUhnLWUBaW5eUGW1bYSuNiZPSOppkTomOz3NIPHrdt6ceR7cUZKopfiDGKWW1pL+ecPzI8OT5kVjdijBciTx4/RUXHvCnptxqZhKnpJo8w8RcyuiAEV0tIs/+iMJS2YDFrMAn+H51PqgsJpYs+hWeFSJm64VlT0w8DVVHSVBXWSBdaFSXHh0f40bFZrSdYv7AlN05uMAwDT58+ZbXdTIF7p6en3L9/n+OT46lAkDU9kg+6/AjsRi+5QJnGPEqlYmJMHhK77Kp9P4flcilmd0OPC57FYkGXJOa5UMlhcuJ2qyYCXkajzLQZJsdUlbKikoQyj0tQWizItSgYtDJYU2B0MR02mWeSXwNAYeXeHr3f8+2QDBBjhB3jg6PftqDg4OBAQghVpKwqvukz38y3f/tv4cbJTdbrnn/+Lz7LL//KGyxXHTo5/XZDS1WX4mGhDXUlPkJVYbl14wSxMVN0fcvb7743qaPEzVpygWSslw95scafZO7pJ8howFKWNvHFVqlwzUnkW0DM6u7ff4GXXnqJ2aykKi11XaWfJQ7R+RqJD0tBCFaup5WEaWMKXAhstltcCFQzKWhOjo85Pj6eULssl88FSdu2KV9sfo3vl3+fkKKjZARN48YUiZDe8+xJFZSfiLQ7RGPH0VJKJWXWjltltOLkcMHhfA6Ix433gaB2aPH+2OTJk8esN0sZtybRxP76yd/TJ2nsUDl8iNSzBTdv36WZLaiqmrIsuLy85L0vvcF773/Acnk5rcthHFht1lxeXXF+fo5SkhTsBglybWYzIaMWBVU9E48WlbkXO/7OR1kPFEXBrJlB8KzU3ig3RqwxU0Epzag0AmIqpyeFzTB6NpvtXhOyu9fzx/bN/fK5sY/C7zf4gDiihzTaUWktx4gpQOsCrQvhJ2CIPjlUuwguoH1E+ShLnrQv7aFwv97jG7pAyZLM541u8saW34B905+su29bITIqo7BlwcHRAVVd0rVbvvTlr3BxeU5hNN6NNPOa27fuMgwjDx8+5L333uO1117jzp07KKXYbDZ88MH7rDcdxkimzI3TG7gDz5Mnz4STkua+RkvHFpM9sVKidrBGjL90ej1Fem2525bXICSymGaRJMhZXE8FVq6qalKSyI0r7HZlCmypiapgcI7HT87YdgMKxWJ+yNV6y9BdcnR4wI0bN+m7LT4RiJ0bUaZIHHO5+fq24/0HDygePeXk5JiTw2O6bSdkKGs5vXmHvu84u7zk6dkzCV+c1ZNioN9KjkRVW9bbFQ8fP+Lo6IiqmOHGCBhKqxh9pN9uhRgWAlVlmdfHHB2e0NQGHTuePT6jbVvW6y3rTSuS7rEXfgAeVNoYTTpAyaMTk0ifEsooMDMYm9xRY+BgvqDvO9quJ8adfFcM/iTbyEchSS7mB5TlSKELFrM5VSPjirqqmM9m+HEU8lrq6IJnciMOQSTBfdczOkdpLIWWA97sdTs7mH3/Jo9TV5blyNmPYxxHzs4uuLy8pE/kuvv37zObzbi4uGC73U5Q/unpKXVds2m3E9Izn8+neyxzEYSIXVDaTPbWCc4XFMX7kFRysrHlQzwXikLFi0nBpKbOOb+G/Vyf3O3hI16lzKQg7rzZXGu93SKW7iURKIoFkYAbR1brq4QQBNquJSKBmf/2V36ZL37xi/Sjk2BKP4qRXF3y+uuf4NOvfxNHhwdiwljXVKXl5ukJh4sF5+fnfP7zv8pqs2V88myXZ6SvW4nL4Ql5zJGLx30uD2ktiuxW1obEcMAwDMznc+7evcunP/1pTm7ewhRFksT7CQm0Ca0IQYLqSlumA1FjTcnoPA8fP+aDJ8/YtC1tu+Wlu7c4TYaNJh1+ubHLHIWMrmUEb//w2q082Q/yiGd/fDBxlzLqInjfRFHSykJeAyh89KAcmZqc93KJWBJ0ERV2uS/XxvlqGt8//zxzo5obg7ZtE8lTkJZh9GIEqQwXydfn4YOHvP/B+yxXV3g/4sZR/GOurhhDRBnL7dt3Ob1xk7KqKatSAkeLgk3bMXpPjIqyqlAJvTS5gNsb6+yvcaVEWaXS2D8XCENSRVVVNZ0FY3CCXhgro7lC4V1kdDmBXFCdIhlQ5r0jN/L75+N+cXINHcvXP4QULSLvsdbCjTK6IGpDNoacaEdpnJ6VXsJRk7veaEVwX/+M5xu6QPHOybgkdZ15xLF/sTPSsJ/OmJ0Ky7JkDA5tNVFZ7r/wEqcnR6yXl3TbJVVpuXF6ynzeoDBYW/CpT31KKt3ZDK01s2bOiy++xJMnz+iHBzT1gqZuODk54WBxiNaWtu+nrB9tDCrK/HqMHpuMiGIYISR42IsNuDFCyhuGjuVyiUJMtqq6Bi+ySaJ4qXjnGKJIRXPnLhukZRgDbb9Ca01V1bz6qlhNr1Zrlsslw+jlIO56Ygo9M0XJMHQys0WUHqSMjsIUCfqXUVXbdiyaGYtmxhg8o488O7tAa+k267phMZujVJSsjUSq8sETosEUFSE4un5EG3E8JSjG4CF66tpSV4WMZ0xkcdBw88Yh81mJUQrjA2ePJZY+ukBwA5oosLCKGGtwXu6gKBo6QMYIHiBBllrLoVBKOpsokMqSqijEGA04mNfcvHHMrZsnNE1Fu1klKB4ODw8ZhpGyqjg8PGS2mItaoCw5PjrCJ7vpGCW51VRF+h5BwKqUTJyLhom7omXtZe7SR5EVd2TrrFICF8Se3ZZFcrW0UzxC/hFiCCgF/mIxJ8TIxcUFffLeuXv3LuM4sl6vp+Lkxo1TZrWQE7u2ZXm1xHlxJy2KgpjGZlU9x9hdyNwOxYpSqGo5dLSXAk9ryYXR2kz8i9xhRwMqBPC5Q8/dOIkrBsaaxCPzKSCtoutaxtHT+pZHjx7wpS99kdnsEK2MeIlsR0KQ0UdRGPqu5Qu/+qvcvnGTm6fHHB4suHnjBsdHB5weH+O949133+XBBw84ODggoFitljiXeWJSJAj3SFA65/zEJQteQ7AYazBKxrkqIj4j3qGbRowjg2Rijf3Adr3h6vIKXTTUi0NmsxlVLQeVyEDTuC03Zlpj0QQ0MSq8Ao9h8DC6iPNJPabUtT95LcW0p37UGAJ2DWCMMffEE1FasV+ESZdvEhF3+lxKV95xl0iFSipCohQyMg5J5okIDyiqnTR2n8MBTAVV3/c8ffKUbbtNBnCPATg6OmKxmE2oR9ttefur7/KVr3yZtu3QRvK3rq6u2Kw3tF0r2U+jjD0KZPy7Wq25Wq5ohxGsiCe864kKbFVRK03sJTU7JpQJxPZiQg9SyN6EJuUwR5OTrOtkny82GQExLzRFuQue1AplrLDhUUTlubi44u13vopC8dLLL3ByfDSN3sekwszo1nTxtZ6I0ey/5zH5M8WU2ZVRn4QGSSihFCdpZ0WjRFk3Dgw+CP8/v/fkdfEfSBaP2OoKsbEsS5rZjKoW/fvQDzR1zfHxMfP5nK6TwDcQSaho2ueYsqAfB5wb6TrHYnHESy+8gFEepQLWyCElWRZyUOSbNwTo+pH1usONgeOjUz72sd/E7dt3KMsKQuSVV17BeXFmvLy8wqWshsJajC2Y1XWCxMNE7Are0XYSdGWNKHEystJ3A1VZiTQ1h7V5h1aa0opBjxx2dUq+FFg550R03ZLNZstiscBYQ9tKEUKU17Tdbti2G1BCPI1EqrpkCF4QgOhBGXwYqIuSEBWmKMR8DcW2b9m2a4a+k3FIjPiq4N69Oyxmc64uL1gtrxidpygLLi62bNuSW7dusjg4AmB0HUqJUZGtKlBiFha8o66syOmS2VOhFIv5jMV8hkJL5xKAKGugb+UQNsokohZ5zjPNeKP3ROWI1krRFAIYRVWWzJsZXb2h0IqoFIeLGTdPj5g1BW7UHB7Osbak73vqWma5ZVNhy4qyEr+ZsippZnOatmM2b6cOte9HiqrGFPL5EGJy5xSiplZaOkdlhNBoCpQSAt/uofYO87TpKzXxWUIQ7kU39miYpJzOO1wYMYV0T33Xo4wi+sDBwSIVyBJu2HUd4zjIYZONDrWsx4uLS955+21Wq5VwbWYzjJWR4q3bdzk8OsEkaXTINuL5MEz/vZuLXx8byQGZ36pExlWRmHxtiJ5+2NK1G6xRLGYzDhZFkpIOlLbi+OiIo8NjYoTz8wvOnj7j7Mk5q6uVEGGJgE+I5ogKjropxW33xolYsx8taJqauqlRwGe+5TO89PJLbDZbUMILG8dROGtOOE/bNsUJdD3DOKRQRzd1+0DauwJ9P7BerdhuWg4ODjg4PJhSqKuqpjQaP/S0qxVt23MBqdmoxEG6qSf+W0yHu0+OpAFZBzdu3qKsG/w4cnF+RqFlH5K1YhOqqMky0whTGCK7dysVA5HMc4IUFrn3fu4XLjlcziYybl66uwIprQEUUYUdLqgAZVKyeMrXCWIXkA/K/cI3y9hDCFxdXfHFN77I5z73OZ48kSytfN3LsmA+n7FYHKCN5Wq1YrVcpXDI7KYs63Xoh4nLorROEQESRtoPI9u2Y7PtaGYLNMjeQ8QUBTZERp8K7CgIUNhdpXTfiv/IxBnLL1sZlLYp7E+Jj4z3gCFEKTqjMjLaiYLGe+e4ulryznvv8cZXvsJsNuPGrZscHEZmZYnWhtC1YmUSlNQ02krmlFJiCplHquyKyeynkzcXlbhhxOybs/eeIR8bg6fzI72KKOGjo1Scpjshr4Wv4/ENXaDYspg2t7Is0VY8MLQxHBwdEryn7TvGNNYJIVDVNW275eLykovLS7SVw/X27VscLI6JQaOUoawrzp4+xhrFwWJOXTW025auv5RO0pYMg+Phw4c8eP8BZ2cX3Lx1Q7qbqmK93nB5fsGTJ8/YbLcUhWWxmNH3SRceAipKd1E3zQTNxxgYomcchDhXVxWbtcx4xVTOSIcWNaUpRDqrZcvGS7EWiFMctuTMVKjRAQUxSqexXK6mbltrMSdyzlE3VcoAEona6Bz9KAFo4uPhaA4Oaaqaw4MDNqsNz64ueXpxvpt7FpoqQdEqBrZty9PHTxkPOgprqWxBWVfYwgrRbz7Huch601KWhRR0rqcsZxS6hNSNllWDNTL+iUpT2orKaObNjJOjY7w7x7qImhuq0kmE/eDo+gEocCZ1m0o0/aN3Qkr2gahFQVUU8vsrW9B1He+99644+SYFzsnxIbOmpKkLutZwdDinmS3Ytp1AsUBVlZhC5rJaC2cCYzBlicrIltJoW6CNxRYqKa00RVFibSHFibYURY3RFdITW2IQG/SYxkqZg5XhdW2yOVWS0ys9JSN7NxJjYNttKaokRfUOFRRt3+KDhJt1nWzoq9WKkIp/72UDzzb6eaPNIW2kzbawlrKuBOXTyeAsdd55DKGknUpE3pjIoUIIldol/y3/HUJAmTTeJJvdOWIUdZW1isW85sbJEf2woa6POT09xRhxEH3t1Y+jtebNN9/EjYpu2/Gp1z/FvTv3cT4SU9hkIBKcw3nPxz72MRYHc+pK/DzKqpSU576nHwa8D1SlxRYaa2ZToSVScTmoSCOd0Y3irJskpfKq8rukcoMNQSXk07NtW/F1mqTl+f306d8ehi2bbs3yWYq7qKVYsWVFUTWYqhZUAs2sqWiqSrgDIbLdXiHEe1JRqFMRKIomMeDajQr3Sb/7D4VKSNHeWIapyU7Ih0rv725sIXSkJLnd++aYQjuzQ202LLR5rafiLq8ll0IFt9vtFIZnrWW72fL+e++zWq9kX6slvX4YOq6uLgSdVoZhcJP7cowiRR/jgEqke0G4JYpBXIUDKkQG59FFyegCq9WWupKiUMjMllobdIoUUEFBGnftQiQzKpVHPLumI2AIKuCCfJ0PyXdHGaIyGFskIr1KBQ4MwXF2dcXDx094+uwZt27fZvCOoDW9l/ThiBL+TmGS7ULAqAJS8wbq2ogyJhL5JJH2snfm6URIvk5Tv6cMoxtZt2taPxCsJjghvpt0X0cVr5HRf73HN3SBslgsJt+IxcECSQ7est1ssEUhN4dJ6ZWpODHGQKclrbXvKQq5mb2XKtkWBU+fnbFeXqCiw7uRxcGMdtOxXm0JIXB0dMwwjDx7esaDBw/oO9lI2q5nvW65cUNyWDbrDZvNNm1oMhfMhlkqcR6sNSwWc7TWLJeXXF1dCRF26GUunez5Q0JhtFIE5xkRDwWSYsAFz9BHqpSAHGNMyb+OMfbYokzclgKjLW0nREJFpO/F+bQoi8T6r2jqeiLgtm2L1obZ4hCrYV7PhRzcPiX4IN+fAuQALKIKUSj6zYYwDhMRaz6bMW8artoVzju0Nkll0CRFwwhaMpREYmpQWnxSjC2wljQ2sJKCm8Z4s/mCg36kG0aa2RylDFpZQX28x/lkjpbuKJX4JBLYJyRZVMq2MQVVWRFC4PT0iO1mBSnQzSgk3M0aqrriRJ+greXi6hLnAnUzY3FwQFlJwRxCyscoxaegrCqC9yjnyDauShtsUWLLSkLGypqyrLBGlD5Ky7UQp0e5JjFmQlvqXxK8rhMmoJNcdLPdiBlaDIKeRIGxM/HRFhajTSpOkyqm70VW7b0US4nhv09aVUbMo5q6Yd7MwAex2U7jRaWliEKLgZd05UoKDaRbi8pLERN3YwPI/51kyvtdnUpZVem+kQC2UpCO+Tdx794NHj/6gK7ruH/3Pr/p4x/j+PgkcWZqPvX6p7CmBsTlWWmT7OBHQSS1IYZA1/W4GFlvtrhxYD6ricGLpHzWoBCTx+AHrEnyYSf3N9ET4piuk4YYMBrqukBr4ZaIYZ2/Tkx0gUBAI1YCVaFpyiZxdFI4JCLFFfmzEI6Lopj4IiD8AGMiVouZuhyaehJ7KiIqZt+oHWFX/EkFjWPKArrOR9i9N3nJZRLlcxtzjLtuXKalUxLu7vvSvah2UvmpSlF6h7alMRUqoWtpHiQRAp7RiZfOxeUlq/UapRTDmJLSE+lX0ErS/puQKx9QKkxp3hP/Ru2yaUCM0YJPY7oodYZWhvOzZ7z31be5d/s2ldVp9OghraEQkpReGfo2rbEo05Rc8O2Pp/ZJ7vvjV0iS7dS0BB9wjJRlgc8jmSj7uDWaxaLh+OSQuioY+g7vRoiV1L9RBBpKie2lOFiTzAZVGguLyk2ckWMqMBMHNqY3O4bkpxenMVAM6b30jmZW8NIr9zk9muG6LTpGCmtSTpA09v/kC7/C1/P4hi5QtqslIL4hm2XysUhSYz9K/LS1BUVmb2+3DAmKJXgKIx4Ly+UlxkIIPX27oiwUfuw5e/qY4Ees1RwdHKO05ejoiBdffJGnT894+uSMYUicCSAMnsePn/Ls2Tl1Koay/4qwtEsUadEHBYhzZdu2GCOQ7WKx4OLigkiSmVrLoIVjsm+gJQWpzLtTnZugSUXXDRMxOIwhFSEt4lLpEsksYHTSuqdxgLEJeguBIXEQKluga+mcXO8oZw1Hh6csZo7Hjx/TrjdUZUk9q/Eh0LYbIWkpQX/8MFBUMk4jbR7i8qiTVBa6rhWEJpYTKa/rOkZGtK0oTArIs2BtckFMB7Y2mmYxZ961dMNA3HZUZc1svsDYgq7vGJyjHyNq9MRRZqoq7cNW2cRHqohG0w89ZVEyXyzQwWOLktOTUxg9meRlbEndzIU4HMX47dn5Eu08dT2nLGtApcTdnbS0rmuqUhRNFiV3vpH8ldnigG3b4wMoPeBcZBwDoCnsLiNDQZLy7TZ7laB6McxKTpBKgxF0ohs6lJVDyjsZ2/WjOO+mUx9tDW3X4n2YlCRKW5wPjK6nKMXrIsvSxxBQad1UVUX0HlsUlAk90oUFo9k7z3aHW5RiJXiRjU6FqDJp6qD2vj79ScZpRmkKU4jSo5mD99RlSVgccPfWTb7p9U/Sdz0omDUzjhYn4vWhoNv0eHrKWkikOnoZbYYRhawrNBgdiS6gfCK/Bo9VEUOgKirsvMYaiNR7Y1k/jTdysaCUSkjmbq6/nwhsjE6vXQwDczJ7/t7MKcoiAOev8y+ydNkWJcTkFA246AnBoUPYKT3SIRaioKC7x0cQFoOgivl5XHvv9j72tX7C/nue5xY5UkHtf0Hc/175gpiRnFTQyhBB/qCmU1L4b05iBDablqurFavVhtPTU15++WWMMbz77rsE7zm/kJyfqpL7NQfo9f12yv/JzrPPG9IFH8QnJ4ja0qhIReC4KjgwUPkOM2zAS1EelKCjkmElKqXBjbR9T2EMpRJ7eBmRhIRY7V2qGMGPqDDurm8qoKyxFFphjWboW5QST61xHBi3G7QfWFSWO6dHYkqIQ7kBG4WjqaJPBYVwUIzRKOdRWsIXiTuELCDPL+dJKb8zEIwJeVdKrDFGJ75YIVEV3DhwMCs4qE/x/kiQ2xCTwrNEpRiWr+fxDV2gvPTiC2lhIT4VexDVbsEzJfxmAq33YjyDUtK1IpLlse+4uhSJ6qwR/srtWzfEyTFqDg+PWBwccH5+wQfvP+Dp0zO8z9W2FhvmvUyWTNqCHbtfpecjqoiWq+WS1XrJbDYTYuVsJpk5Yy9cmaLE1/W0iIdOCFt1XU+tS1QK5z2Dc2w3a9qhY36wwKUN1rte0jELm5CYXrTs3qO08CqUybyInirJSce+k+s1DmmOC+vVmovzK4wRJKfvO9YrsRcvrEURsFbz+MFDDhZzrM6J0l5m8T0TotUly2nvPYeHhwCJ75Aq+hBQygsJMjno7gCDnVQ7hCRZtQVFGSmqipPTG1TVjM1mK9K7bU8/Okw/4nzAR4WxwrSXea9CF4aoipSCqymsIGoHs5rtZk1wI8ZakWnOF5jSUZQVoLn/gnjEHB4dcnh0zI17dyjKUojcCbnq+46jo5NkyCUzalvUIvGsSg4ODtluNiwvrxiHgWY+oygLirJIJFK9K0YmAB0EaBc/neiRDlTMkjk8PiWqgvOLC7phQJPs5JXF6EjvRjaJAHt8dEpZVizb5XSgZuZ/JvJOCqSoQBmUsWhbyFihrGScaC3KFGSvCyARBPeOsr1DO6MIz7tY5vc5xgg+ojGpm1Q4B1E7jhaH+GZOCA7vR1ABdbRH+oyCGgUfqIqG+eKQsqwnNYcnUJiEFiTSpQH6sccqBOZ2IzpKkaKiRxOprPgQaZU9PNJr0ylVMD93xfTe5euXIzny+6m1TuPeHVJljJkKHblcgtL4uDNmzCOlnWIogtIoU7DtHevtyLbzMk5MBxAhyqEbP1xo7P+u64Z8uyLla33P1/vY/xnXZLapKJnIK/LmJd4RE8ky7exT45dzx7LCLMvgP/OZz3B6esrP/fxn+Vf/6l8l/uEuQE/Wi//QGsxoymSkF2HsB2JKVLbKo4aBmYrMVaQce5ow4oPCVAVeKbrkLhyiFP9VZXHO4IaWEJLX0sSf4VohqkJEe3ltWiV1XLKW7/pIF5MJoyTyoZSiHwe2my3L8zOePHyPq6sr6qrieF7jTo8Y7M4YUOwu2onYH4JDm52btgThhh3/xCdGdRAxRk4IN2naELLPT5DzVyWXW6WZEtnRAlmPURD51X8oYYH/8Q/9R2IvHsIEeYaYA60E4nNunDYF2N0UUilK5+ij+FsoAioKMVbFSJpYJItrhXOe1WrNu199n7Ozc4ZhpCgEsh+dn1xDfXpT67pOc9wkKw7SvWYYHCq8k/GP0SLpbGYVn3j9E0TnWS4vabcbXnv1ZY4OD1kul7z7zruM/cgwOIZxZD6f8cqrr3J0fIy2BaN3bNqN/L3d0DQLjo9uUFUVbduxWq6SlbSaSHxlVXPj5k1sUXD27BlXyyV9IpwdHByAUjRNw8nJKbPZnDF5yICoXnxKdx6HgehHVHQoFSmthRhwQ08Ins3Y0/Uic6sSVye/N13XcXp6yunpqYzHUhCkMZZ60cjstSgojZbZvzFURYE1mr4f040v4zytDXVVU1cNp6enLFcbIhv0INCvdo4QFY2uiSi6fsD7gXJWYssaoxTOCYHUJpO50XvqqqKsaw6OTzg8PsEFCV/zPnLzTmBxeEAzm4sPzsEhZVlNhNhxHCmbGcc3bgFCQHRREj77vqeZz7lx4ybtZkvfdmzWa/zoKMoijXjUTmac1r+ahvd75Lv0+QwjW1Pwyiuv8ps+8frk6uqcoypFkusT4bvre5GSKsXtlOPhxnGaP2834tFyEqMk1JalRAZo4Ti5UXKMlJHxm9JC5o1hTyWiMuKzy6IxtmQYO2LKtyEdpHIwZSJmcteIMY0eRNlQlTUxHTayjuReyt4PYoAmG3NhNVU5oywqufajk2LN2MlNNBdHVhtKUzBGiZMobYFRRtKgEndGxxRLYRP52u/MINU0TpHXbHIsgEpRFKYQBcbuTdztPyYd0gasEVQkIytWFxRqnxwqh6100lm5aAhojI6A7HmRONWGcj7vCo59RU5+CKdgF0SZH/+fFCcf9b2/XsGTpcm7JKhp5U9F1P7BmhvDL3/5y7zzztu8++5XWa/Xwt3bK/hiFD+h4CW92uOTenEXMeJVHoPlDDcoNDRFybwsCduWd7/4BYazpzR1Q7m4yd2XXuXWi/cwpRXZevKeWa/WXF5csLq6YOjbFOYZJin/NdWpUhRpjSudzf9CWvNSsBhjkppJGu6iLGXMXWk+9YlXyWZ3RhvC0LG+3Dmoa60hBMqpINOEMGC0pA/beZ24bUJBKIpSggjTx/aLmKnQlDeLMhXiAbFo6IaObhxwYcQFnxLCwXz9AMo3doHy5OEDynInY/wQgSsFsOUbbjdDlxmbUgLp+rjbBFUi8eWbIsviYhRn2QcPHvH221/l/OIyzQt1InaJfDiMcqMUZYnVyZuA3UaQF1k+T3TqeJxzPDt7xvhooJk9ok4x6M6J+mLohaXuvWMYBrSW2fKQ4tSNLSjKklJXNItZgg8lj8FoyQcxWvwcVOpUDhaC1vgUElVXJa+88jLD0AvykGSlTSMW5GVRylWqKg4X82nBrtdrrlJw4M2TY2almeBcpcQOexh61us1zo3pJrNyaJeiPLp9+xbHx8ccHBxMZkQhDKw3K9rR0w2BqplxMJtTGsXJvKEpNWEcKasgYXPJIhsUUcOsaVgcHnBwuEDbgrbrd5ygAFpbbFGiN5LtIUoVk1KtaworIzE/DhTGUFWlkFqrCluJiVvwoAo4vnmDqm6YzebMjw4pqibB0zICCols5vNmawzBBUnM1cLNiMajrMFWJWaQYlMIu2KmJMm11W68w268E9ImljfyQEhfJw61ZSlGfzFKIRlipCpLqGuIEtbX9T2Lg4PJgyffUyEE9O3bUyHp05omygorq4oxrUOlkzeDTn/QU6aLzr7x6YDxMY0btSHq3BGayaU2FypSaNlENIxoNCpqQlBTanSMUD7nf1GUuyTvGGNSMInnDcrgo0/kw+yPk6iCRoNKIZVpcuZcEMWaknGRNMdC1o6JeI1K1ysldIsgKb0XydMm9e+JA5MPJo2PAyHzDxICNh3gKavKpGtCYOKvyesVFEdSmKWoN3sImAAncdrP8mhl30dk/wDLnJHJTHLvZ113Y/36HxMSlp8DzyEoU2GdClkyGZOpON0p1XbZVFmyn9GTEAJnZ2e8+eZbXFycATtU1iUVzhRHMIjTsiQYy3vl01g3kk3NIGKo6oZKg9UkrpVhs1rzQdcKl61+xqbt8Cpwcu82tirpvWPstgzbLZUxzE5P8WHAWjELDWGHpk3XIUZsENNO4TV2U2El6rQR5x1t30ktHySm0epK4kXqcnpPC1NIJhmSXh1ixIpHfbpWDhU8pdXTe6+1Fh7yFO0QRPaeYjyMjhT1vidOXhvCPRSxThTTuqbCRSlMPELA0Wg2y+3XvW6+oQuUojAUxe4Gsva6vlqyInJ/uWMnC/FsZ5RDIo1pMlEukykVOn2/j3B1teTBgwecnZ0RArKxJgxSkeLLQW4mH4iIzwlqr1tROYMh6fYRfb4tDMpq7t17jagiD9/7IEl1HUsE0SBKgJekFfsdAU4b5ouD5Czr0sxWqtgYQuruBNWoKpGuAVSqQKt5ssCWFNWs2sjGTXlm7tyId2O6RnpvwxopC0tVWbq2lXljYWSeGQLgUSpibMHJ6Q12e1Kc4NgQAk0zo+8H+v6M8/ML4ZnYgC40q21HUYp8db1ZgxtZXQRuHM45OjyYwrLK6eZUKKMwpWW2mHN0coQpW+ymSAeQ5JI0jfBFcm6GyJkzMU4UYJurS8kDWcxoUsRA2dTYWkzYgkwfqOYL5vM5VTMTV1v2ckD21tt+16GMBq+J2hCNoDHaFkQntvqmrCjT6CwET9M0FIXIzlWGu/OMX8nRp5WQUo3Koystn0vkx6wywPtUTCSEoSxFzaCEPEra7EMEa4vp4yHC1dUVyohJYF7/WTKrY0QZnXxcCpKVYLoJ1TRa0NpQWLFhH4JYyked01ZVKkhyzxxRGEhFd54DFJo05pQ/0cV0eO860jg1CEIcjjFiknR0llCT7CMyzRMAghLZsVIUpXCAZo04gxa5aCvMpCrJazqTlicVRLyOFGTE0CdJqgvpTQyGvDIykd4Yla6t8E3EzVkOSJD8GHGKzaOiSPbEmP6otEj30YdpTPg1kA1IMQVx2kd3RoBfuzjZL0Lya91di48uSq79yY1clGcRYybWXufB5PTx/CcT+fNB3rYtT5485uLiPCEVQhKvKmmGYhzYtmLoGHwihGImJU12BJ7P5xydnHL7zn2ODhYYAkO7Ro0jjD2u22IV1FXJbHFEs6jwYWS7WRH7gsE72vUG3/UU2qbYhMT9iEpGRsYI8dU7UX+FgI8Id24Y2G63jC7FYyRPIVsUHFQl2miGJGlv+14k53XN0A+s12sIgbqqaeqaqhI0dxz7qRiVe1TjnU9j3zyFiBSF7Atd203ih3EU87WiLKiqasoUk1gDjfJi2aC1TC/QmkoyKwgIDSGGwOy4+ppr6PnHN3SBYgwUxc5RUF2jk6tEvEwzvpQIWSRiJiox2jUUamckpKKezJMEFRGIbbta8/Tp02SiVdAPI9GHKdUVdoiNSifHR0GYWmvKQkZPnfeM3tP1HQfVgbz5xrI4mHHx5ClD32G0ZehH+lbQDEJk7IXIJRuuoBMKmTMaa/DX5JgCgeb9SUh5qTNJcLtSCuclRnuH9GS40zDFpkeRDU+wFFBYccA8Orwj88ogShIJwcs+B3lDydH0WS0jBxkRCmtSV1hMjqPaeHwYOT46oOsdy8sz5rM5hwczKqMoqwJTFkSPeLWMpXS6k8ZRUTU1zXyGtiVFWaGsodi2OB8pyxpjS1BwcnKKKUQerlWkKEqaxYIw9hwuGm6enBC8o6xEBmwK6caRpp7FwQFV1aCNlSwMk4uR/fd/XxUhXgRaR7ROc2UdMEUJw0jUFpSnHcSjZz6XQlJMkzJxUFpuNVUpTIdsjCSJapodpy5RDpG8XtVULOdCd3ewyc/TmoSw5eyYgrKs8FFULc1shroBi/kcbS2mtOIsagyFrajsDjLeP8CkcJ9RzRfc0Gm2bQS3zA6kuZMGUgJ13J9kYaya1qZSER2N/FEq+WcIRyTP6mOU+yKkg18nGbhOKrG90lE6QX/9sJWfEaaR7a7jVxlvnRCf6ZBN93wMYfc8SIVlHlsRid4RnBPCY+r2nXMEH9LoagQl2/U4AcUmbf7ilzNROBRErfJTmNZh2hUmdFX+e8fzyBc3xDB5juQrkK9dlk+nH52WyfUC4nkOy/OFykcRbyd3mxBS8rK8EIUgayE1PDFdsnx9hmGYEBJjxOJexudx4gBKKOAu/+b09Aanpzd48METVsuW4HMik6B/VVmyODjg1s2bnNy4yeLwhLK00ojdvEGhFYZIUxXcPDnh5ukJ1hoGN9I5kfYqU1CrisNa+IsWI6R17dN13Y2ovJNx/TiMjG6g77YYbWgWM45OjqfcqpB4HuKoqymrGqU1zjtpqLpOksN94ODoRFSLLo3AQhAqiFLJX0UmB8F5qoRiSyEnvyt7yjR1nagLO7R2GB3D6J4rMDPVJKKyc602WFtSFJUg1VG8tUb3HwgHZbW8YBzK6ebJyZz5EUKc0JB95vK1x958PFHFIWvTMagosO2DR4+5urqkHzpilIUSQiCogFY2dUtB4OPIroN77ubUCsrCYDR0vaEfBgnR854YPWdPn0I4JVs3G2XYbnrcMIgRVl4wWqFTZ315ccHV6QVd34q8FEFQcheHStcmvRZxJb1+rZyPiIRRNo+8B+4HLRIcxLBzMUwzW+e6qROpbIWKCqVyLlIEFbE2k/uEhV7aJtmie3QqVHQevemUz1KVKFMT0RRa89ab7/Dm+Tmf+NhrfOLjH6Ouqyn9U0hf6ebVe2MVazFlhQ0KM47Ywgqvw8vhbqzFliVPHz5CmSTpJbJpW5qqJEa4ffsOL79wn7NnT8FK6GA+fHKfaQtJbxaUwkwdKgmiR8nGK4eZfLfeK1JigKAMLgwoYwko3n/4iK++/RZffectrDF8z/d8D5/85CdpfKSU4QkgxXTmbuyOHiF+hqBxXhRBIRUiMYrvU/DXx4/ORbp2mHxwcvcuLrvZFVUSX5VJRW4Uub9Km59K1z8gBECjksplCgNMBlVGyHY2BoI20/suG3AeC8nzRaUxbNoIc3EtCpXE0YgBEw2GrHZKo4I91CoEkd1GrZI0MgiC4SMRn2ra5NIZMm9tJ3fOBPvMSYgJwcxfkz+/f7/n1ztJRqd9YbdE5BvkXq/qBbO5mX4nkNLHhVTftVv6dCCHZL5oJnRWJMkhkkYTeeAXp+LFI5EBUSWlTBpXhel1ZlQpiZJVKoRzIfM8ghKvoyb59zF97UcUI7nYCXEaUyqtQGeVWpIpp2+ZlEvJiTXva9L0SFefx54HBwccHR3x6OGDCYGY5ywfK8rCl195mcV8joqf56v9+wzjiFYSSVGVJTdv3uTGjRtUdZ0QjpHgI0FDNCWjjzgFNhpWvcddrCiMjFF0dp2OAaPkoNaISsuFQMhoKsJz1cqnYFKDMQXW5fHTQNtLkVAWBXXTUFWLabQyOEGlowId5b+b+UIKWjdKU6IQE8q9ay80gZzvJv5SGkXfiz2/3OOefkjFsgvMZg0FZkLSZV2nPVurxGnUycofVJCjQmkhCodAUpxpXHSs25av9/ENXaAcHNbJgEce18EKlRxF2dsYP6y9j6RRUL64acCs8idT5T67qilKK/bT44hzQtQzybZddkNNjOLQGNMTyiZV2RStAAolRjzWFBSFox8EkqurAoXCai1cjRRBbnTBtm+JsUehKYwIBWyaow9DB9FTFgaVpcIqdztxStAkoUmTzn0PPvUm21gzdUmRiEyo5DCSOzRvMDI+6gcnN6YOqdvzqJghfdlIlE7iQSUHslcav5enMc0+jZ5gTAC/HVFGLKDLsubmyRzXr4iuo9suaSpDWVaUZSGS1Sh8gRAVxlYUZUNR9hSl+MIs7AJblhTrLW3XMzp4dn7O2dkFxpbJCEkxOMfZ+SXb9ZpZJdlFAajqGhdHnB/wYcQWFVYbnEt8n4RA2GT3nrvpKKcXMW1OEaQITmNBkSZKgWhNSTBywDx8+JjPff6LXF6eEUNkfvQ5Tm/f4cadO0RdELVlt5LTmHGyz04HNJpxBB+SKkDnDjei1L5SQ2NNlQ6pQLolZFymdmvFGPFFiYnMqaIgNHK4J+SiMFOhlvknMR1WuUEwydslqtS75oM7r710IOZXZ5DnMo1zYmQc3OR2TIySiaSuW6Dvd/OT0sXoCQGJUQiuxgqy6J0o21T4sE9F5l/sVChyrUivXZROJnlmpMYoFeD5UMiHvDgW78YeeWSX7wOt9USmz7EH1hiOTk+mROi+7+naVkzdknQzrzV0JoUqClsQMuoQPNpaKeijRqus6JKjQBsx1/I+pjiKnMOy4yPtq3C0VMXXrtMuwE/WWAjC9YtpDzDGTPlhWksBGpLsLMYIetcARSD4VFAhqeHBDUm6mhomzbSuq9Jy//59vv/7v4+mqfnsZz/L8fERTdNMhNShG7noL7lxcsqsaiDCbCYigMVigVKKqq6Yz+Yoo9lut3R9h8LhB0FayqLEu8hm3bPd9AzDSjgdWjObz2UcawshgiMWEraq8GbH48lZOEQQirTchweLBUPfMwxitzD04kIcZjLmtYVNI2M5e3RqOJ1zxOAhRFwYGZz4c+XXDaTMp5Gu7Vgnh93FbA4Igio8nZKTk2bK7SkKadqUlgyiXIQXZsct00rjo8SX6KgFsdEuFZIjbZcahBBYbzd8vY/fcIHyz//5P+cv/IW/wC/+4i/y8OFD/s7f+Tv88A//8PT5GCN/+k//af7aX/trXF5e8jt+x+/gr/7Vv8onPvGJ6WvOz8/5I3/kj/AP/sE/QGvN7/k9v4e//Jf/MovF4jf0XKyBwl6fa15/KEBPzoQhwfF5M5UbQJz6JqkZ0u2R/AtiBINlcTgXRD968h4wdTmp2JcZfoZtdcrckcekLtKGshB7/dxGBSKb7RZNw2q5ZFaXE/obQsDaAmurNKOMmLLAWNmsx7FnuxVreWuOSIio3OTpsui4S5oNexLI/etkUgEzfWSv80x9HFrZaVOWA8fjQ0F2wdVa+AYqZoqxoDfWGHQaqU1Ve/qandQyZ87s8mai9hgrN4C1ltunx7z+sVen8DyiSKYhZZKkRM+IJBCTTN5iVDI/jX6ybh5Hl1wZLZvtFu8j5XxBIFDXDbPqCDe0mKrgcrXmC1/6Em4cOLlxJHlEiUjX94ME4iVEJqRwvBCliMzFQFB7EuH0uSwxjEnCF01BLORjN27e4H/8P/2f8C2/+VvRRnNwcMDh0RFHR7LZ2nQdFSptQlKsxGvvauK9pM0sInkgCiVkuXTei/FXJkQGcctUu9FADqPbV+P4/L6hhESHdPohG17s+W/szx7ywTWGKAfM/vhhb2yyX1goFGM/7rrt9BxCkmOS1mduMTIXQUikMZkk7lCU/LptIgOHEPBjJiI6vA+S05RMwDbbDX3f03c92+2W1WrFerOm71uGoZt4Wn3f45ybRg7jODKMYpcuTc1I9i+ZHHXTa8oIUw4HzenR+8nTZWGZz2qOT465ffs2J6en3Dg95f4LL3D77p30XLcMLjCutlht8CoQvKMfRJGFUXR9R/TiWzG6MWW6yNhVK0ns7cc+EerUNTlutp3fJ9jGXFjAtY/v1mGcRgf5euemZCp60vujVcQHBTa7Dsv9mwn5wQ0Evwvc7Pt+IsxqrWnblrfeeov1ak1T17z04oucnJzI36cSjOjSe10Yg81rX2vKsmI2E3O8qhKF2HK55Omzh5yfX+BGJ47zUVEYsb4LLjvkGqq6pChKikJ4JaIEEgO+foys+5beeVlfeZytSMVipKor6rJI5mqCthPl/QsOVs6xXa9RWlM3M4qU2KyUQkWDTgW6LY00bFq+P78vkAFdjZnVNHucPZDpQlHYtBahLGcJmYriB2aqVFBFnPdyHk2qWSUqPl1cQ9pCdChtRBGpDCoajJrz9T5+wwXKZrPhN//m38wf/IN/kN/9u3/3hz7/5//8n+cnf/In+Rt/42/w2muv8af+1J/i+77v+/j85z8v3h3Aj/3Yj/Hw4UP+8T/+x4zjyB/4A3+AH//xH+dv/+2//Rt6LtpqtL1udLP/EL88O+2PWoXp4u8fFgqTus38RkHm9QnJTiyzTaEpKqlex8HjEgs8F0JiBSwbtPcJfiGSJZ8asYsf+k5Mp4zFJFM5Hz3z2Yy6LpnPGnSh8S4wdI4xOrkZvBcHVGuJUQzi+tERt62EXWkr12MPHJn+U2WmttrNnafrRErOvX719iWGkPmAgRgTYQ6DjRJxH5PkzWgjrop7m6/RqUNM7rlGKwxGiGIZPdHSXZtiR3D0Ich82Ag6opOxlaBeCRkyYLSispreaPrRQfBEL9dMXldMhxUYHSZTvH4UKLVpaparDavVCqULzFyhmoa6njGOHWfnl7z2ykvcuHkbdMBHgw9iB25tjcGALtC6TJ2fsN7z1VNaoXwmK6cPpriCQgufRStNrFI3f3JDCkbFhLjkUUzuuEKe1StQVhyT5TyZcEBQoi7beajohKKka6zVVCRm+aIi4sNwrXi8fndNMxaykZZPvzHqKF2UD8IcJhcfuZDfqS+EgPvRB9z+18jLUBIUmJ7C/ux7P8Buv3vPoXHZJyd/PvMW2ral6zratmW73bJcLqXwWK+5ulqyXF7R9z2bzYblaiVf33e4QQqPcRiI0aH1jksAJIfSXVJs5gvEZNq1c5LePX/v/URWnkj8H9F0STfqpq8vy5LZbJbMyV7iO77jO/m2b/s27t69y+HLL/Pw0WMePnwi68bIQTO4XpCAIHYAGuGnhXTYRKWJYUAxpGZDEca0l2k1NVoqLwUgahmdke5LeS9j6r8UKqYGMY3Bszw6j2VkPSa+n8zZMaPGEOkKm0bSevf+9S1d13J5ecnFxQXL5ZL1esViIcnjq+WKJw8f4t3IJ157VYrEoSe6kboqCUZT1zVHh4dUlZ04F94FVquLlHSfCe6ButHcvSeZUloZkc5nB96opDGa7o8dX8S5cfr30Hdyn2iNSUGkJjXFzaxI9hQBN2xRjAQ3EH2gtBEzK8hwYlkUwj1RhrppBD3OxQfJvyUV+yLYELfc0WWpsUreTAEyUmdtKiqY1p/I1lPLk1SemVeXyd+TiCLJjrP5YOZC7o9pMzoaQ2Sz/h9wxPMDP/AD/MAP/MBHfi7GyF/6S3+JP/kn/yQ/9EM/BMDf/Jt/kzt37vB3/+7f5Ud/9Ef5whe+wE//9E/z8z//83znd34nAH/lr/wVfvAHf5C/+Bf/Ivfv3/+6n4vK/5s6tOslyv5GJldUo/VzG4ACpRJJMd1UecasIJHzRCFUFoamrvE20NLjxl7C86IoJWJWrGjhBoSQ7afT6ERFRjewbT1KS+GksgwTRdf1DO0GhadsaiEquTi9LJWt0ZWScKskJXVOxkRKJfWDjtM5Ml2njIZEPaWe7j8K/dEpudf/OwK7/JdMTPZBC4FLqeTamX5XSpmVh6BLSpGCDlVutAU6VIDORUyUZFBjyWmoxto0ptqx+41Ryfp/RMGUmpoPqp0pmfjYGG2xFrTqpVgIkcVizrOzc4rCUhUzlCkZxoHHj59Kgu3REW3f8aUvv8XJ8RF3799l2wVGrynKRszPjMUHQzcGiJpIIgSnCmX/4NFpqpLueUIO/koIlrZyfVzmbKCSAqGSoiAEjNXYdF1k85b3JqNQO5WV3qEoSk28BJESSgG0U0YkAy8VJUadVHhEtZuzyC1CjOBCTCBjIi6yQ4Mm8mWS5+8XDtf/FrktKpF6py4vIS1hL14tjNMIJH8+h3bmuXxWyOQC5HrRcTX9O38s/+m6ThCShIBkRCQ/l5BfT8y24mmcUFvK0op7a0JzXnzxRWazGbawU2rvjuQYpueeD4aMFmY0JyO55Ou5V7jJbZUs3pMSKIfj/czPvMe//Jc/w+HhIa+8+ALf/lt+C9/1276bT/ymV9j2A++//wFt12FQ6Ojo2yv6rqSvoOvS2lS7Ay6EDqIluIExpAPI7Mz0MjEzxkCIKak5ypjKp2vh/S6R2ns3IdcZdbbWirmjSihNigWIQTxAmrrh7OkTUYuYZPPuRoIfpve+Kkru3r7D3dt3poT6RdNw+/iAq4uLFJ8hUmKjFf1GMtm2yysunj1ODZ3cH9lN1haashJrdlsYIsJFikS8k/fDGJvsGxLHyMtBnBVVIQSGsd+tpVS0qbjj38SEmkzjQ6PwTrFcLmm32+nQz4VA3/eAoqoqbty6hdHiUaIyimHMVHARk39X0IRC4725hlQppFiCQIhDGk+zd09J1o534mESYsCPO98ZkPcv329eSG3SeKf92ugdgpv3bohs239HJNm3336bR48e8b3f+73Tx46Ojviu7/oufvZnf5Yf/dEf5Wd/9mc5Pj6eihOA7/3e70VrzWc/+1l+5Ed+5Ov/hZM7ZR7RXB9b7HdmwLQxwG5mun8I728IKs9F0/cNY0cIjqKQkVHXCRyZHQZjCMkme9edAilTQg6QDOEqpSTK2wU80m2VVvgt9+7d4dVXX2aIjmEYOT+7ZHR+6lyM1dRNhTJS9WsloX5D3+O8o0pdfEzFAKmD2d/0ni88YowTTL//2Cf5yr/N9Dpi9KCyeZAiRrF2VlHM79IVTzdCqqKRDcgYM/k0GLVzVcyJ0ZlMqnVy6tR5NBCmNGkfgthPJ88ZZQK6G4hKDtac+2KLSrhCukgpvI7WjsTY0rUdykh8wTA6olI0szl2LBi6DmMrbt65z80bp9y8cULTNCwO5ty4eQtbHmKrmnklZEOPoe3D9Frl+e0dtjGKF0HaIGKe2+dxRi5QElm0KSVWPYY4hf1llEoM29J6VioprTKtOcNmOzJmSJEI4uth8DFO3j8TdwBBabIiOR+qMWQ+xQ7FiSEyuh0qkcCRvR5yV9PEEHeW2ck+fVKCJNQyCz6uE0v3RgUqUmhJs86eF5kAuVqtuLi44OLigvPzc548ecLFhXTBm82GdXLJzYVHnqvvc0nyvpAPqrqup/GKoCCyLuWQ09Pf2oAPbjpgLy4ueHZ2xuEoqqvMNdj37Nj/XXkfep5Qn0c6+w2WFGF+h1SmUZDWggZ8/OMSiOjGkX674R/99E/z3/zf/q+88sqr/Lbv/u38j37rb+X0cM7P/fzP8/Zbb9KPLRfnD4TPEvwkLdfaSFyBNhS25OmT9+U+0UKGztLUHWdICPaj2zmzZh+dcXQTH2dWzyRqIcmCx2FM6DPT64le3IBj2qPqepfRNe1f3jEO2Z5eIirqusIYix+dKByJFMpz+8bptf0sxuQRk3yYgop4tUMFsu+KrNswPQ90A8j7Uxqm5jUj8IGIsXnNC79Ixq4aa6vdHhs9ePES2vZb+r6nXUmC+Wazoe8HIFCUpHGS35mi7Z1t3VZxcfmUoipTISH7QF63md9isASXGxdpSsqivKaWC3EkkkjX6awKRLLow3mP804CbpOsO6QbfmpKUmFqUBSp2M7ZaxNykoqwEDzb7t8RSfbRo0cA3Llz59rH79y5M33u0aNH3L59+/qTsJbT09Ppa55/5O4mP5bLJUA6eNJLUDu6YH7EtAHmqn//ht+fc3/Ux/P3gCzscezRRrE4mDP2nqEf0WiC305kN5FWye/OUjKb3iTZXOTgzqFxvdsSA5jSkNUux8dH3Lt3j/PlBSGKPl4ZNaEwKtkGF6UlxhLvkqIkdcBGa5knq8wLMUlVkyrnj0BJlBK/l496XC/k8oa+65ozOIVK4wRU4qBAPrIyQqKVSQWKGPYodvyIjL7IjWSSWRYCK6eR3JQpYgpskd9XGScZW1DUNXoM4B1RWzyaqC1VPadte7xPpnq2pm4OGJyi7XsOj465fec+9eKEey+8zL1791gsZixmcw4OFmk2a1KQmBQg1lpxIM6vUmXnVCB6KQgyYpSee3BCGty9B0KorRPnQBAwc92jR+VZdb7QO6vzCWUQaGHv4Fdk7wG5ZBGiwqdwuFzchBAStM+0hiJx4kjkxNOp2MgFQypi8uw6Q8MRJkKovDo18QXknvDkcefuXtsRdV1yJFYKuq6n7zv6fmC1uuLi7DGXF+dcXl5yfn7O2dkZV1dXEwqSrc5zx/r8uGQimqbDLh/wuRjYb1w+qnnJhFfv3K4aUwEXxqnxyEjOcrlMB2iRDp4+vf4P28fnLjnsEeTyGA6VzCdjisrIzwumUWJ2F86HQlUV3Dg+5JVXX2HWNKxWK/7pf/uP+H/83/8+n/nMN/O/+F/+x7zywl3+23/2D3nzy786dbcxwpiQhrIssUbQoRgD3jlJHq9ryrKkqSpsUdA0DUdHpxTlHKsMY7J5sEb2YqsMlGISWZoyNUGKkA/R5L2xu+bC2VB7Y0hBJPb+Ow1XJm6VXMwJEdDpv00cpwTdvM8YI0F++b4aQ9hDy3YBgSrV+BpB0L2T5yDXPk5ofYwZqVb46BKSdB0pBCaH29Bt8eNWxoVty+hGiJIo3ndyxvngKIr8nDPSHCdURGstuVljz/ZyOWUHZW+SIu0VRVFQ2ZLSiIGnVpYQxV8lN9GCxLX0boMbxTYjv7yQRvIhxhQjsytQ8hoBktmhvNbCGmpboLWD6PFObD1suq5jGBnCQPD/nhm1/bk/9+f4M3/mz3zo4xJ6Z8nzbZ5DARQfRgv2/37+sd/F7HdUufMyxlDXDXGuGZ3n/OyKdBcIHzQTyKbfnwICVSInKoXYgIuVft6g3TjSu57FrGK12rBaLUGBLUyavSqMNYQoowP5uE0DLj1BiDGkhFSrCSSEQ2liuP669qH0HcnqOpK/f032RwTyMabXOXUc+d8R4siEgEjlL+MdrdNIh0ySlb91KlCyqZfEcxu8VgQtBKxsLhUTFCl7hBBovbK0XU87eJQuwCg8Go8mqMgQoZ4fU1c1VTPjvrXYomA2n0u2TlVTNw3oAltU0hWm9zskSfGQcvWIKnUtAutnKSapG8xndg6vT097KgLkMJNNuUwmSmVZTodlSL4eGYWQDSJM4428wvNhZ6xkB/Vux+tQSkEgHdTp3YmkOfRuneciZL9ASVvwVKxkxCQXmxkxEblUfv/3FHIwqTNsKlYyZCxScD8VCDKK2TKM0kGuV2uePXvGxcUFl1c7fsHl5SX9dsVquWS9Xk8oyD5PZb/wqKpqryApZB2qD/M69kmbGdreb1ry53YFlnxcJ8RWGXB+SEqHYtq427albVs+85nPcHV1xa/+6q+yWq2mcUN+Ln5vwyf4a1B4Lq5CQg5lQeRAxR3yY42duERySkfetdBUNfP5jPt37/Lqq69SFob333+f/+r/9F/yPd/zO/h9v//38uzZE95/733aruPq8op333uPs2fPKBQQHH3XorWgDiDkX9cb8DO5Lv6AO7du8PKLLzCfH8hrCrKfdXlkNjpiZJJ/SxEfpnHQ/j4r6nzZM0xGUbNnk9a7/84F8TV0d68JA1SUUdV0AypwMU4uxTK6U0lxmNZ9SIGRSskoJkaEgG/SODMSoxeUFDEVlCZE4aKbvEIywpfHH3KfOXQYIEo0iDIwq2qKomC73eLDSMCgnYcoxmlFWYopX1orIaMXgK3mNLEh+/JobaYmJwRpVAsDmpEQPYNjQjFEQZjuXZWiIoJLAZFJvp/GdAFBb4wloUQRYwJlQTIMFZQshICJnhgHOW/y/RUGfGrSRXHnMcWH0fqv9fj/aoFy9+5dAB4/fsy9e/emjz9+/Jhv+7Zvm77myZMn177POcf5+fn0/c8//sSf+BP8sT/2x6Z/L5dLXnrpJciR0Wnf+fAGlNfn9SLla6EI+//eh4DFvjpSlAVNM0OhKa8qsRCvCsbeE1RMrp07PoAxhqZp0qYXE6qSYHXv0zgDiqoCPCjNxeUF5+cX3Lh7g4ODBevlhqEdUXUl7PBUSVdVRfCRqqzwwVNYKwsgFx9prIT68Ob8PGIEfCSCsl/Q5dclj/w6Qxo97RwXFIqgsyonFyhKAv8SomC1RgczdTZa7ULXjBYwQmnS9bwOde/7t8iGGIlYynlN6zf40KOKgmZxjK3n2FrzyW+5RanrXXGYyH5dPxCIOGA7RhQjetzB8iY5zuZNTlAgJVk9Y5A0YGQsk+NaY64s4o4fpfL36gwvC3F1dI5htZo2sEl2Saq3VVJ9lRVlWdE0NXVVCXKXUD7nA5u2p/dIxovaES/3RwshhDSW2RU+ce/zMRUxchDujPx299JuREGMmEgyiHv+61LyrosMSFEqsQUxqV4GlqsVF+fnPH36lIuLc548fcTTp09ZrVacnZ+zSUVIti+PMSaSbJyKgDKNvVCZi2OTyZ+You3s8ndFx/5r2C9w9ouR6evy0Gsq0HaBnzoVA0qJXf8kuyzEcbauazabDV/+8pf5pm/6Jl588UXef//96b3JiEduFmRsp6f37fn7VaB+T/Dgx+tyZ+cc0e09bxXRFjbbnmcXFzx++pQvvPFF7t+5y2e++Zt5/fVP8vkvfIF//cu/yA//yI/wff/zH+Dpk8f8s3/2zyiU5tapELRDCBSVEZuBvftvNp9z88YNjk9OWCwWHC6OuXF4SlPPIKFvSim22w3n5xf03kszpbJHkNqNBPIYSxbRhJjuv/4pGRq1KyT2xn/7PI39teiSWWPGfVX6vhCzUWH6jEq2BjmfKCRSesi/I+Ujpf0uEnHjQEZcnBd1lg8jy+UlV1dXKSakl9iL+ZymqYWI6h1ERVmUjOPAcishsXdeuENxXvKFL3yR1dUlKnrqpuZgsWA2n1GVMiYKKpmrhSBO0MkvSC5NSIpGWS8KGE0EfD4G5HUnVZsPQcZ4haUwGud6gotYbQBRNxV1SYhCfMeIClJr4ak5P+C2/R4pOvsM7d6DGCJea0zcEcZLaxnCv6M049dee427d+/yT/7JP5kKkuVyyWc/+1n+8B/+wwB893d/N5eXl/ziL/4i3/Ed3wHAP/2n/5QQAt/1Xd/1kT+3qiohCT732B/JSBV5vTKT6nL3dfvjnOs/KF/UHSE1d7sqwazWSBZL09S40WONZjGfUZWerW4ZBkdpzXQTaaPQVjMMEoQmnZMgLEKeFWWJj/I8y6rGFlqScG/dYj5vODw84PzsEtd7lNVpxtwBiuPjE6xZC1vbaA6PDiY7Y2F7AMlhMurrr/dat6F+7RHPteucx0bsujiJpA+Ip4aQHk2RoFK9c/PVKuYATpnpyzqXokXLCEtpBUYJEKajkFt1sYNxlcI7qTozL8DaAlUsQBmObh5xWlR4H1mtW8ZoWSwOAYX3BqfMdKNGZTBNSbZP10pjU6FkdHZC1NPvyWMolUYmPghhD6UmXwKtQaXxVWXK3fdMa0xfg7RD9DKeSqhQiGJNHWOW8YmTqIw4O548fkY39BPSsVgccHh0SAjw7GLN1WrFOI4cHBxycLC4hhDkdZ0Hobmb2t0LOy5Jcizcu4/20RNxE1ZaTQWKXD9FzAoMq1NuSMd2s+Lx4yc8fPiQJ0/k7/NzGdVsNhu6rqUfRFFDvN5B2yLPsi02vSfpiaD31DkhBLpxQKd7bL8YGcdx6tiD98SPeF37H8/7iQ+O/YdSijgM03hBrqtLrzlOSMhsNmez2aJQfPD+BxwdHfOJT3yCw8NDnj17No0U8u/Jyd27Mc3uXs0H+MRJIaOhTMVl9lNx4yh8geBZt5vpeq43PcPgWK3e5AtvvMHHX3uNb/qmT/PC8Yv8vb/z9/lXP/NZ/pP/9f+K7/++H+T/Vf13PHv6lJdefJGPfew1Dg+PUtGdJeC7BsvaROx2AeWgW2/S+ylpuev1RhyutaauG2zZUBRSWJqimAiUexdYTPT2MtP2OYPTl+2t4bRpyPPzsi/EBA0E9N5X7hCmoBI/DyVNhNLirBr3VEcA01buQbmUPyVE0BhH+qFjvV6yXC3p2paXXnqJb/7Mp9luN3zuc5/j/LwnhB6ra0FNxgBKzPZW6yXD0KEUDK7j4vIMpTTHJ4dUhRFuk/cMbqS9uJi8TJpmRjNrqOpKjDgziTXxVED2p5AKecnPHXeoSToDswReKUVhDCYGhkFIzUK6F95VVZQUqZDW2qCtxdsU8zD5aCVlbB7Xp2uY7iyxWvCBEN2UhTW465l5v9bjN1ygrNdrvvKVr0z/fvvtt/mlX/qlJHV7mT/6R/8of/bP/lk+8YlPTDLj+/fvT14pn/70p/n+7/9+/tAf+kP81E/9FOM48hM/8RP86I/+6G9IwbP/+Fqjm+td/0cjJSiZtUmoHcLxyN+jkopAR8rCUhdWFlCEqtAs5lKshHGQFOREWHLeoTAYZSgaCVLzPmfdOIJPnQ+ymaNlhNN2LaMPuKTUqJsaY7SQmbyog2KEbbvF+0DdVAQfmM1mHJ8cS8qstRijiFEnoqyaeAnXkZA0t1U7CHT/6j0/BoJECk5oiVZpHhxBqZTEivAhfLj2kyaIPf+3RkE+5FLUfYgahUFhgCTn0zXo7FqqQOnphsl+KtgaZRc4H7FlyeXlkn/5L/97/p8//Q+5d+8+P/Zj/xtefuUVIgpjS7SRm9QFkdkl13NCEL6Q3RsTFEVBvio6q5wUDH5EeY+yheTG2KScMWqCosMooXZkBIZEPI1pnBYiMTnyyv4h6y/gpusekBu6mUnGz+IgSiqoc2zaltEFlute0L264ciUbLZbLpdrzi4uOTg4nIwMY5SCcP++CCEmBVAq2hK3YpqzT5wWJhRBpa8NMSRTNDlsHYGua3n29AlPnz7h4aOHPHn8iKdPn/Do0WOWy6tkS94n2HvnuKq1oq6kyxTlVoLa2Zla5aItj2KAaVyyjxjl15e79FycxeRJ9DwRdx+Zy+tqeh4mh6fJ+xpjxA0SdunHcbpvuq6j7zqW6xbnFXUzZ9u2+OB556vv8sIL9/ne7/1elJIE8bOzs4kvo7WmaRqOT06mXKrtdjuFxE25PQmFlYMVtq3IbFfLJf0wYP1uhDL3h6L66FrWmxV9u6VtO5qq5MtvvcPjp894+eUX+fQnP4n3I3/lv/4pfsu3fxs/8iM/BMHz8MEHqAA6aCAleo8d7XbLerPl/PKCq6srmtmMm6en6DQik3T0DmsL6rrhcDbHJgM8Y0uynUBMybZqGsknwuW13fr6Ws0FtmSLuWnfyu9jXptTU2DMVKwwfVaaoJgL9qgh8QLFI8mlcWompQpa0vcrxlHeY0E65bVu2zVGK8qy5Gr1lPfeh5OTE27fPqTdnjEMW66WnSg9AZuccjWeuhDlJ2GAEBlG4V/VdcEYxByt1o0Ug4mjZjNXKkYKAzH76/jEbUwIrvcuFSlSjMVk3JbRpjz+FCQmEHqH7wfGLIUvCjCWaAxF09DMGsZRPH+ed0qeisnc4ARgLx1cLn/E9XLP6+SV8vU+fsMFyi/8wi/wO3/n75z+nUcvv//3/37++l//6/zxP/7H2Ww2/PiP/ziXl5d8z/d8Dz/90z89eaAA/K2/9bf4iZ/4CX7X7/pdZKO2n/zJn/yNPhVgby6sv/Zca/+Q/RD/QkNUe/D1nrsjqcusqoKDWU0YBgyi1S+sxs5rnAsMbYtVYFLXvN6sMFZTVZaooO9bOci0lt8X0zwRhUoJsGOKti/rhsPDI4rCcJLSfTdXLWNwNHWDoBSauqqpZxX90HFwcMBsPqeqq0ntAYj/QEyS3D3y30fNbvc/Nr3+vb9hpwoiZt6K2RG5SESq9CcTlOVnaLTaQeYhqiQvlA4oIFwibSqUKSXTxZTEaoauZpRVORUIOs/bU9Hjo8HHKnUJBbY8oGyOuHHrBQ6Ob9INgW4IaG3TWkk25UolNjqkPR8XgajwPtBvWqDFmGKat8goRxGSQ25EZujd6EDt1BdaG4poyEhE3jiNTWMtcgceJ9QgxkRcwzAO4/Tzgg+MbZeQvChppiGkctAwDOnAThELRVFweHhI13Wcn59TFAWnp6JmcKO71rnK4X59oyFEUR/trYV8sE9qiyhe1qNztO2Wq+UlX/nKG7z91ps8ePABZ2dPWS6XDIPwEDJnJK8zrTVV1Qg6okW9lNEClw5j7wRp9F4Oi22yx34e3hdPoKwSkBk3MI0a8poXI67UHWrhhu2IpVVSQFRUVU1VVsznB1Oxcnl5yePHj5PJ18jDhw/TehD563xeAOI4uu160BpblIQ4sN5s+dIXv8RLL73Eq6++ytHRES+88MJ0/fNh4RMOL0TEbOImSy97Fw39QD8Okzvvcrnk/fff48GDh5ydn7FZb0RKbAqKsmA+m3FyekLbblmvllLMdC2XyzWbz3+Zhw8e88lP/Cbu37/HL/2bf8sXfvVX+U//0/+E7/zO7+Di6VO+8sZXuLxYMowjbduKwaF39ONIiJF227Jdb5glP466mXFwdJzeSz1df63F02mfM/T8PiQ3iU4Gk7v9er9A3Y3sdq7XGSHP4768YnP2UW6oYkJHQ0hKFB8wJqGVyZU2xJGytPTDlm27kiJkvSK4TpAK7ygKy/HxETdvHLFaKlbrJSGMtJsLvnz5WJ5CjHSdxBJs2y2jGyiLgllZC3EY4bKQRqCispRRblGWzKrFZB+/T7h1XgoKYqDfbifX5JAQOQ9CPEbQvXYr/lqZ4J0VVXndFym8sKREewN+BCyjV3gVcdHTj2u4WuPdhqurC4y1HB0eTiTwzH+KUXy+dPb8UYlflCkNKLwXdHqI19HJX+uh4vMn0zfAY7lccnR0xH/5f/zPaZoaErFnV5HLWpX55c5KPXdb8vl0EyiB3kTPn2SAGVUg8U9cAA9XF0vGUeS/jx4+JkZFYUs++OADxmFk1hxSlRXr9RpbGg6ODri4uuLRo6f4ECmKmllZouOIjzCicEEOW61g3lTcvHHKvTs3eOXVe2it+fyvfpF33noPP3qODo9ot1ti8Pzmb/sML778gpCOkiV2lkbu9yH7TPKPKtL2/07fsfff1xGpqIR4q7Bo7JQFo2OAOKKUJLSOcbc4QySRyUQWmH1JfCbD2pKirCmKRkzPikrGXWWF0waffDhErhol2TfGqWN2PoIq0oYom1S73dJ1PWUpBNSYws/Y2/jEqyPzL0idDRNvBNS08U0EYyVkXRekDBM+yW6kIIe9XMKqKCcUIkPHWRaaM4mi1inh1ExjpRjjdGiOo6NtN6IcQZyKvfNJqqwkOHASf+ycOnOX1Pc9T548oaoqjo6OKKzdm63v1sA+pK5iZBKJp+cfApNfxSTT9SPn58/44he+wOd+9Vd455232GxWdN2WvhcDtMzJyMWxfk4x41wiibJ7Xz5KBeGDT/D/9Y/n+zkjKcYycXzy9c7hcU3TsFgsWCwWnJ6ecpyK/3myJW+ahvl8LoqLYaTtRvquR2vN1dUV77zzDsYYXnvtNT73K7/CL//yL7NtO6qqYjab0fc9z549Y0wSY2ttktN2NHXJt3/7t/E/+52/k5OTk+l577hBnqISw61sHpfNw3JKb35vJQdKJV6PdNBd1zOOA30/sNlsubxYsVxeEXxKni1LQvCs12tWqyXrlSTdejcyb2ru3bnNN336k9Sl4atvvclv/+2/jR/7z/4z3n/vfb74hS/inJe06xip6pqyqqiaWSJlZsWTFkPGPQXaNd5S+PB+8vxek1PG87gl5gokf21MvBKt8uLc+5lxd98CRVHtPQ8paiY0Lf8slBRf2w2r1SUXF08ZfY9zPcZKAKmKHje0UtwktO/mrRvcv3+fs2dn/Ntf/iW6tqVpKpqmkvF0jNjCTHysnBdUYLCIXDxEJ4R4DWXZUNVzyqICU9AHnQpp2ZGyP0+MKa5gHFC+pypt2n8iWXYtBZdPAZNBRs65eY+7kMW8z9S2wHrY9gOboafzjsF5XA6IDRC9oypk0mCtndDl/b0RwGS0a88VOY8DBdmRomy9bfkL/5d/xNXVFYeHh/xaj28IFc/XekzTifTneRAl8x8+NNbZ+5sEQU3/yXOjIK1RRkzD5vM5bdulWZ3FeyHOzuYzxmKkKkoW8wXGgDZwfHyAD55nz87wvYRCaWNRwTMOI0NQBJWkn9FTFAuGruWtN7/M6Le8cP+e8G+akh7RyNd1KU60KMl7KM202CbYbm8jeB4x2if/Xv9b+DFqiq/P36t2f5LUJ2MmkIzZJOmOGJ3I00yeDUvRaLVBmwJjxdsjYLCLA6pmRlnWoCwoizIFPirWURFHQZpiGBPSIL87+G6aPoAk7fr0NV26LmOax4/DmfBF0gFG3pzS94s/yK5QsUZu8GEc6NKmwP5owYt7qy1KVNqsjE2Fl8ldSSVR4+xu5nxI7ktdjZFQPWVSiGMIEz8lb6haG2whKJVMirLUNJGD47Ri0fG6GVgeH9y6dYsnT8RN9PjoeFoZkwooOZjm9zv7H5AL9kCCxG0irQqEfPb4Ib/0S7/Ez//8z/HgwQMg0PUt3ov1/M6O31zrbvMMfAoPJMuLhTRujEDYwbsJNfMIx0LpHayfi8fKVhSpAKnqgqoqp8C4o6Mj5vM5i8WCo6MjZjM5VHMs/eTTkF7/5eUln/3sZzk/P4doPzQy2mw2XFxcUBQFR8fH9MOT6XrnIidb3c+aGVYbxih+IG+++Sb3793jW77lWwghTJw6cbHdEJAiLJvG5evUdd2EtGitr3FYcrGrgLqqOVgccOf2HeIrmrOzM87Oznj27Bnr9QZrLYeHx5ycnNK2Hc+ePuXq4pxh9Lz//gesl1e89MI9XnnxZf7NL/5r3v7Km/zo7/0xvu8Hv593332PJ0+eUDczQtQCMmcEaY/4CoJcZdTj+r6zd9NOm/H+PyJ4LyTWnKK8N4JL8C15jpD39axiyfe3SiONEIa9BiE/F0GqXUqL7ocNfb8RK/k4UhaR7XZF129QyjMOBdZqvJdE8eVyxXaz4Y2vkCTXFc6N4mnVrdmuLIvFjNl8hgqB0hh0UaBUJaOpwRMGJ8RxI6nfpihxQbHuHdurlr4PjEHuced2o0tZA8XkzlpaxZgUkPI1Du97bC7KTSUO1fq6eaXCSzxMQj4cmmAMTo14MxLciFWaUonC0qRBtXfbBAIIUTd6Q3RxKjqU0ngvaKlkqtnJiE97da0xUeWH+aRf6/ENXaDsd8TXPywfy4qPfZbxhzkoSm4KpumOpL6SCZHJcTMEqZAVeD8ymzfEAHU9I8ZbiU0fOTk6pOsLfHAcHh4wOkdVVXg/oo24ThptUCYSgqcfRrSWBefGgWAiH3/tFV589T6z+Zzl1ZpZU1Poklnd0HctbpRKNc8/s1Pi/mt//lr8WujJdW6O/OzdZjIZtpPMk8kW50px3Yo92HS9NA4JlivLhqKoKMsZdS2y3oBhqxTeGLZR4VwihfqR0QeG0QlS4HqGbsN2I9D1OI5cXl6KjK8fGIcB54MoXpMsLrsa6iRjzU67pTGTjl+lzVVliDTkkY0UAmHvOmUpaEiz16ziEbo6kzdDjHLTm1yc6R30vH+t67pmNpslE6oZs3SALhYL5vMFdV0xm8+p65qqLCnqYo9Ma9FFgVYWSEToRLyVzWcnI99XhBwdHSX31BWzZnZtfTwPoStAxz1VSEarophxaa05O3vGz//CZ/nsZz/L2dkznBfSnShrRKKtE18qz73z2ss/N3MriBJHICTTQFnOKMuS7XbDZrOVAkpJN1uUBfP5jNlMrs/x8fH05+jokMViPo1xqqpiPp+LwsJn+3tFVv1lqF+6u0jf9yyXS5bLJc455vPZNMrMz7mu6+nAODo6Sjb5bSImS1GUXWzHcaCphRgaw8DV5SWf+9znmM2aFEgn12QYBrZtz+hlY8/rZB/x3KFuu+uYIfZyL48lK5kKW/PKK6/QdR1Pnjzh3Xff5dGjRxOqVRQFL730AgfzGU8fPyL4wMXVFV3XslyteO2VF2lHx3/1F/8iP/QjP8QP/OB/xMHxEY8ePUEFjZIKBa3FJyUTLmMaA+94PjtH48lCOT2k00/S/PR/OS9qv3nM+Oa+Io5pL0tNaL5fYxqbEiGMSc0l4xwffHLm9hOKEEKP972MW1SAOKCVI7iW7XbD6Hp88MITVGIRH1WkKMqE3o40sxkHBwfUWhDTui6whZE8HRXF36QTFMximFU1dT0jqEg3DEQ/crXuOb/a0g2RSEFRzmiaGWgY+i7taQ7nepSS4qawIizwCYUU24ISrUasHSbUYhp1pXuvsDaRz8upOWn7nsF7eu/xydSzrmYsmhlGGcI4oos6IUI+GfDtOy4rikKhVElM3EtFgVIFXTvQJUTQiCQM5/8HJMn+/+Nj//D9WnyKj+Jd5O/Zwfn5azJfYu9wVwFbWMpgKQqplAXWlJyIcXQY4PTkCOdmdENP1dSsNgW2sGgj2vSIonOBqBN/w0SZjxcGoyJh6NAEylJjTKQoNLOmoZhX1FXNxUVg6LfiuLg3vvkoZGT3+q5fiw8XJUykxf25/Y7kJA+jzOTzAREffZo5KtA2bRSaaErqsmE+P6QoG0LURAwbp+m3I9tuy3rsWbctq+WKzbaj7XtWmw1d37PdtHR9j3cdwYufgE9uullNQOJvxEiyn94ZLe13m0rJ7Nmr8Rq/SKnrbqKQJHz53Y/ye6wt0FayMLTS2DTSUqgUUBgkzTh6ok9qAmBIBka5+JH3yQKXe8XAzuFxl3YrMPrhwQGnN045vXmDuy/c4ZWXX+HWndtE54goyqqG/H5oDSFM/hzPj3AyetN1/ZQWnQ/BDxUocW/0NSFoevrTdR1vfPkNfu4XPsvTs0f0/YDRirouU7dmUVGyXVQKDBy7bipU2ra9xhvJY6edWVfk9PSY09Njrq6WaK04uXHKiy+/yK3bt7hx4wbz+XyPxLxL2c08qTziEomzcGbEq0FhrTQe4ygS5mGIk99NjJ6mqRidyEid89fGw/vW+k0j6bfj+GQaweQCJUfaC3+tZOhkLPb48WPefvttPvOZz9C2YlblnMOaApdUQ/syamstGjX55FhJRr1WPD7/t1J6OjyKouCVV17hzp07vPfee7zxxhucnZ0RoyRBH58cYq3i8vKC9fKKVdvSP3zAut3y8ssvcf+VV/i7f+/v8W9+6d/yR/53f4xXP/5xvvr2uyjP9JolOFOQW2uyysrvT15EOBCuH0oxg6JT0SEFyuSJpHbF4f6eFpKaRtaujEn2UUCFYhx6+u0lfbeZghuzv5BSiqKUYlf5ETduhWuy3dB2G4a+AxXQBPww0I0DByfHUjxqwzgOtH3PrJlR1jNiUgHFoPCjZz22cjsmjknXtTg3YoyV/cD1jAGigd45tmPHcjNwtRnxsaCqG5Sd0w8KlSIwojaC8iiRD7so3DMpCUXCraKi2wbqpqRWFcbWJGhWrl2QVPnee1zUeCzaa3yA3htcVOjSUjcN1hSoqIVV6BUiIhlxcSTqiCoj1gZUCMRBfF3GKIn2KI+PMHSRuB1pu56u7RmHYeIC7Zuu/nqPfy8KFPhwkZL/+6O+Zv/zMUZyAvBuc8/fkTf5PC7y2EIzmzdpxj/inHRhxEBdWqrKUM8sphP4ftY0zGYN683A6BylqQjKMDqPD5GmmVFZjVWB+azm9GDOrZs3KAtNU9fcuHGKHyNGFRil6fst69Ulw9AzupEqVNcIws8jKPsd/K91zYIMZ9AxomLelPOmn1EVpgydGIMk1xLRxjIMAa0L5rMjoqkJUbHaeq6ePmWz7dm0A2cXV5ydX7Bab9hs1pLvkNxKQ+aJaIVK0HHUoHRBNWswNn2MODltGp30+ip7qqiJQJgLDOnMAvE5x1TxpRElQSa/+pQvk75qp1zZWzeaSIFMu0KIeBeSGZjIhn3KrRjDmIz1wnRYZavnzL0IzpNFY5Jf0hOBoe9ZXl7ywfvvy/NQkflizuuf/DS/7bu/m1c/9nE631NVtRheWYUKQk7eX/fZoVQpOeSWrQTg1XX9kVyPCYWZ3F13I9I8/rm8vOTLX/kKZ2dPgUBZGikeg6R8Z6RJCkfhJN25c5vVasXV1RVVVU1FcC7OFk3DdrtN9vUtXdfzXd/127h//x7GaGaLOUVlKcpd9knm/ux4ZvkpRyIia+yHPLKKkzrPh5GQ0mxldp/l0VGsAVKU1Di6KWvled5aCIGyLCcr9uxkK86qR1xdXdG1rYxhZ7WghsGz3W54//33+PjHP87du/ekUBhHlDISMqp3iqLp/t3jQmVvl5zFs29Yt3t+mhj0XsEiBerJyQmf+tSnePDgAW+99SbBO4iBqmm4VZXMF3POzs7o+pbHF5esh5HzywteuneX1WbLn/6T/wd+7+/7fXzPd/8O3vjiG6xWK+FqoMQG3QXCKMq43R4qBa6s4efm7yr9n9ob2z23P+Xnvz+6VEqCD2N0EET2LXwalxKnO3Egbs/o2zXOORnHVCVt38v95wv6QSfeTidFjBvR1lKZBudG+q1EkQyj5/JqzTwhnAcHyc8jIVE+BMZhxA2R6KTIMibZ32tFUc1R1iW0F/oQWA1rsKAKcT9bHM1pDkt8tARv2bYejRaX9GhARZQxGCV7yegDUe0d3WnPsrYi6poxWnQwFMYKUu89o3NCBo6iHHQxQhQEP2AwVYUpLCEoojEiKvCSEC8sCE2Iu8ZCJvyy56T+cEJ2ALq2Y7PpGEdH8JpAuZt4mH9HRm3/v348jwZM9t8TxPjR4599PkYgTPfJR/+OBDBKQAlKCaLR1A19n2WTDucMldUC8ZUFtrREDCEYjo+POb/YsN1KsJyLkTEdXNY7bD3jeNHw8v3bzCojLqRKbMKPDw+Y1wcoNN22Y71Zst7MsGVOirxemH3UiOd5ROXDYy7Q0Uwuhbt9Ix/M8sHgIyjZyLPm3RhN249U9QJUwdOLFedXT3n4+AlPnpyx2rasti1eKerZnLqWmPBbh3exWiTWIRUoZK5FJjQri0ftMikSlJnHbwopGGx4zv49xmkjD97jgziu5lmsHMIysLqmENBMBNEQJSY9E+vyBqq0ISq9+3gBYRpzGbIxZUykwHwQZ5fH/esevU+bqxw4/dBPI6oxpYS65BmwvlrzCz/7c3zxV7/Ep77pm/m+7/8Bbt++iy0KohPSbpbC7v+OLAvUWnJ9hmEQk780Anr+mu34R7v1ItdSNrhnZ0957913pENUSYlgIDsf7K8zEGTuxRdflKToPSQzE1etMdy/c48XXniBn/mZn0mKmadcXl7yyU9+ksVigbYaH8fJSnz/OV+7nmk0JR4NOgNLU4JxJhqWpbwXwzBQliXz+XxCb+RnOLK/hshid9djumcQns1sNpuIrMMwcHh4yOnpKQ8fPGAcRyovB1nfCzR+dnbB5z//BU5Pb3B8fMwwDJDytJTRExowFbVpTLH/eqe1Ha6PTfJjH/XZv/9v377NyckJx8dHvPXmV1iurqRpqkoOjo4p6obHTx6z2Wy42rS4YWRoB15//RPUteWn/s8/xTtfeZMf/pEfYXVZ8/jhA7rOMXpRLzrvwAWMtan+kNiKSCRkL7T9CxllgBPTvaWTb9X+a/1QIR1H/LhmGPqJZ1UU4qY89h3r5RXjMFBYODw8whoj19A7mrJmHAdCiAxjTzsM+BjQRc2smqG1ZttuicqxOJpxeuue5HxpS1WVaGN292rf07WBqqqZNXP0zBK8pBiPbmDsO3rnmM8WzJLVffYaITqUiWl0pOl6aU6cH/HBQrCoxC3KeWRu7x6NURqpsNeEaa2pi1LWrVKgxW0cL3tr9AE/JjtsF3GDFE1tGlHOj46wx8eYZCURdCLUu0hwLkWsqEQASNLltCf44BNi7aectK6TlPA0NSeP6WLiZH29j3+vCpT8sfzQu6uz+569/2VQMFf610hccfoGFJISHEhR8nJiTfPu+Ty9bcEJAdJaKm0IaKpRZpaiYw/TgipSOGDXdijviEPLorSEoznzWYVKHhjWWsqiQGHo+56qKjk6OqRp6sm5diq20pzv+SLleSRp/zpdQweisEvE1y0TZvM1Sr5I+d8xElB45xlc5KtfeZt33nvI2fmWftCSYQFgNIc3b7A4OuLg+JiiqPHBJzlp0uyPLhljpQ2L7FkRpBuMSOKvUeJToJhye6RokK/f+X+m9y2pbAxJQqx24YOCDgjOnMOvVBQmemTnKnrtEJSLKeOARJ7OHaIgMtnBNJsmfVjCHWHKAwneEZOsdB8Cz2OpmCWao3xu6DouesfP/+y/4sG77/NDP/wjfOu3fis+CIqSw/jkZwiaIanNYQpcHBNBMK+Ljyridwdh/kAgB9U9e/qE1XKJNQJ3i3RZ4hUy4RilxCJbAUiqa4geazNxeudvcnxywtn5OZ94/XU++elP80u/9G9o2y2f/+IXePnVV3ht9jHi4LClXD1BMgOjc5LxoeT9kFGChM3lLKH8ejPZdFI2pPdFxhNW3KET9DwMPaRiz+RCKGNTcXdN8s+o65qqqiQAbrsVT5Pj4wlF8clJNSCKtn4Yefvtt3nxxRf55m/+Zhk5WIvHSoGOmtAopRBzxIRUKiVjxuwBtH/f7woWhVZ2el/zdcgmd0VR8InXP8GtWzd448tf4s0332KzbalqkVq/8OLLnF9ccnFxznrbofyS7fbzvPbay7z88iv8w3/4D3nzK2/wX/yR/5yXXrzHBw+ecHY1YGyRED25N7OV/S77KZnh7d0TMblQ76IUAvq5wjOjcBJQOeJdhx+W9H1HzgQzxlBXFUZrFrOaUBcQM89MoUPA6jy2FAKyNgGsw8Xd/aq14aCcC4qljQQoKskQEzUgaR1tU0GaghBnFZ0LhKiwtqIoanQ5I0Yv/DAiuixpao0PkXHs8H5EpdyhulKUVrNai29NUR2ilBRWIUgDUCqbGgqIQTN6ByHu7rkY8W4Qj5lREt69KTAxObw6R0yxHXmvGvqOodsShp42jIRhSzWfYataZPimwI+ermvTWWQSt0zWW59s/LXKfCgZYw19y5DeHyF0Zt5X/NCe+us9vqELlOcf+yiC1pJ381xjtzuQ079FUrwbg0yb0d6+LcZVecGn7jlIpy+bbnLlTEFNoxeegNaGfhjZbltC7vLR1JVYcpe2IHpPYRTRj6zXW9rNiouLM0IRuffCfYqqxo0OrSUgcDZvQB0xm8/RegcFf70Iyv412L0+0a+Lpiw5wpLToRVTarTKvwt8DLgQefDoEW9+9QPOL7do21DOFzRHC6LWYAz1Yk7ZNNIRGMuYq39bMDpHH6J8LP9WpVBaSKBWCYt8/z2UrmKXKGuUQgc56KXj3ScT7oy6VGHSIbPrQifEKP1tkMIAmFAdMceLE/+FKVFY2O0xSQmFfDcmUz6PG/u9zk82mpAQHRd8GotIcSZFg0fFSN8P8nVBiuHgvXQ/3tPUtWzj3vHw/Xf5+3/nv6E0mtc/+Uli3B1KuxFWmP4dfToE0oaslMImE8DrJFnpoLJKK8/tjVYM3cD5s2e4viP6gFZmgnRjkljHvVM8BCc230ZNOVHy3ACl6Pqe84sLTo6O+ewvfJbXXn2Ng6MDuqHj2fkZX3zjS9y9f4/FYg70iSQovy/7q+ybmcn1H6cclEwS/ihp8v61uboSE7nMa+j7Pj3fYvK12d1n8lp3xFshJ262GzbbDbawifA8p223sokTsbbEOU/X90Dky1/+Mi++8AInJ6dstxsJtkyo5T6ZUPYi8U/S7JQ7++oM9iT2gvSJCiQETxjD9FwzEkqMHBwd8S3f8q0cHB7xxhtfZrlcodSIKUtOb9yiKCpWF1dslyv6YU3/pTfZbDa8+sqLfPDBB/zv//gf54/+F/9bPv0tn+HLX3mf84tLtNG4YZjUVnJ/OdlSVJyMAnfVXiqoQx67io/NxNuKonLKnJ6iKCiswg3jdL8751il5OphGFNiuSVGQ2FFQaeNIJzOOdquA8AWlmg0prRCNNZ6ihTQSqNNkd53EVH0g6DnZXVAWR1wfLLbJ4qykDH3OMhrSEhkYc20FkPwk7eJVoqi0JRW8tTk/YHl1ZqHj59yttwQtMZlcr5SUoCnZkNMEiNKS1MmG6rDjz2kxnfoI33eQ/Pv1UxjwXTh0WmM78eefivIEsZIxldCYEaXuD7Z4C0VKMHviPgSVlhilHj5EMXpVu25d8u42018x6/n8Q1doDw/yvmog/f5BlGpPdY3pOTdOCEqKqrrUNY+/J3MsNQeMpN/fuYxyPeKJMy5yLbtWK1WtG0L0RCjEhJsUYL3tJsNsSqZVSVXl0uKAo5P7qNVQd+NGIYpi6EoDIdHR9RNPcmK8+P5jJrnH19r1KNU3kwSgqQyKSqTJpNKJR1YpIyhvut49OScN995j00fmB/fQNuGboyoouTg4JBqPqeoG5Q1uCiS4HxQd+M4/Vuef0FdldIZJmOq6GShK7K1vU7kWEG85KnLxhGi2M/rpPGWojEQk0Ea/2/y/jTWtiTL78N+EbGHM97pzVNOVVmVVV3V1c0e2Jwpuk3CIMAPtAEblkAK1mDTpCTSBEWrSZrdpNxlSrI+SAK/CRJsQ5BFmzBgEJBo0gRhNbtldpnd1TVkZVVW5svMN913xzPtMSL8YUXsvc+5NyuToi0g0Ttx893hnLP3jh2xYq3/+q//0uGeteqcmBjF9SmcgZalk/yASUyQf5YqINe2jPOc0ShjMs6ZjDJpZ+B80HrQYXMRYl5T12Jkq5KmDtBw2bc3L9YbinVBvVpRVSV1WXfk244D4yVtIdG9kG0VnhfPnvIP/8Hf4/79O0wODkGbDva+jmSYZxl1XeFs2+nD9Jo/0blx3eagwkZijKapajarFeenLzslT4XumropVCcE5X1fJpqFLtAyg4KIX/hc6yyL5YJRKA/+4KPHJKkGJZVcv/Wtb3L33h2++MU3sX5DUaw756IqSyn/bhrqppZzO7oAIjooMQUQ13vswhor3yLiGHk5SikePHiAVCGYriT6+fMXHB8f8/Dhw5Aik6BlNp/z+S98nm9961u888470qEWT54LybUoS7QxJIkiSTOqSgjDjx8/5nvvvMOPfelLUtLuJW1qAsE7tlkIWtbiUGotsuHOhZJs0dMRUDbYLC9NIbsoVcna2U4POYyR63nzzS9wcHDEO+98n6dPn1Kt14zyMQf7B0zzCadJxuLinFVZ894HTyiKgi9+/jWacsO/++/9+/yP/sf/E37+f/DHePfdH3J8/IK2ddBUISWS0jZtQPPaPjig18nAxyWjwEJbSdVH2woajbPCvfAt5aakcC3O1ejBptc2jiwdMZ8fkJgk6AVBlo9FAwaxDWMtQpgRvatdS9M4bFt3m3hqwvxopErHOVAmkfvQijwfdeiV9MHR1LUjy8GoVFLAuIDMQlE0PH32jOVy2RH90yRhnOfkWUaWZjgrQU9d13ilmUzGmETGrkNlXWj86j0oOi0oay0p22k9F5rDGqVJVIC9QybAJFrKg52VFDYerw15PiLJM3zoHo9XuNZ2wo3WObxqA5rlusq+KNtgbUtdiD0RB952Qa0ESwprJThRqt+rPun4TDsouymeKxtzeCi77/GBDNiRynx0POLbBlBB0IQwpp8cQ6clfhljSFKB4TwW7xVnF5ccv3zJarXBWSslgKloZFRlSROiNmcty+UC7S137txkMp4xncxIEhFHil5QkhhmswnOTUIklYTL9D+SDBtvBa5WOfWRckywhE06kgtJJEKTnAk6TaST88WSZ8enYHKysaFVCV5pZnszjm7cZrq/R9W2lK0V5dMASzVNy2q1xIZKCaM0WZqgExF9c00TRLnAO9EM0MbgLbRNIH4GkqkPz8dZye9XVYXRCbPpjMlkijEJTSu51iSVxo5ZmoXSaN9FYLLYxKhEh016AgWXJYJIQZrfhjyz0ilJKuQ0DeBDzwqdoFMjTcboo5ZohOLm6dqWpqrYrESK/Ptvv8P77z1msy7EaIU0lA7KtfHxNk0dSmhbfvCD7/O9t7/Lj/3kT5GPxkRycBRLGs572C613+VxyDGQkQ2gi2uFULleLVkuLgUqVtFfjxH79rrz3mEUZIkhSyTajyWKIIqhgnQ5Xrx4xoMHD/Dec35+Fgiwls1mxbe+9U3G44w086w3yw4Nqesh0iRcDdBdJUkcb+d80BIRMvSwD4lUzOSdkmx0KqRUd0yWiVbKZrPh8vKC9XoFwFtvfZE8H3UOdtM03L17lydPZAPfFAXTyYS9/T2qupbWFc51Yny2lZLXd773Dndv3+bg4DAERrqzRzam5lRUrFXS7LErJ7edpo7qHMw+UBs+275Cii7dY20TpPU9h4dH/PiP/ziz2YwPPviQzWYT+F4JRzdvko8yzk9PWW3WfPTkKW1T8aU33+T2nSn/x//D/4kffviEf+lf/ldIM8OTJ09JjGzSZbnCWkeWpSSBy2Mj4mgtlfOMxtLRO01TxumUUXYjxEmKLM8EwQxp8Q6dU/09dgRaufFuPlRV3Tl6cYZrrWlaQSulCZ6nqkW3xoVxiYKEXZrXi/J1UzfUIahAiTJ3RBQU4OJ6COR7F5z/R/ce8rnXPtehKNa60O9L7Le3jrqqef/99zh+9pL7jx7w4M5tTJLS1A2e0BwyNpsN24GOyK5zW+PBIDiIAdi2WrSXtFlAhW1taSrpYZWNiaUwFAABAABJREFURng8rXMdkuytk2BJmlDRWktdV9R1M0BdCSlRwHnKoqTebLCtdH6OfC7hzQgt4NMen2kH5ePIYN3fr7gn23n3+N4fnRPblocfojZDEqJ839LUDdqkNE3LkyfPePvtH3C5WGJMHjYmH7pbqiC/nZAlCRqHaxvmewfcun2PyXjGZJR3OerIL4m5ZO+h73Hzo4+Y9w8/AQGViL1iPIDDKyeRrhLZeiWQUgiwpcqlLmsuFmtOzpdULTidkqYj8mzEdLbH3v4R2qRU9UaIwM5RVDXL5ZpitSHRSXDSWqlyaYWP4pylbhphxAeORGY0eZaFqMXgHB2EXzd19z5ra6yzJCblcP+I1EyZTaUD8HK5YlVvqK0l0ZOOxyKsenl/FA1zSGlfB6EHQ9XGaEFyRtJ7SSXAGK1VqAywaJUQO1QnSWwM6eiUYlxLajRZMgqkVakAK4uKLM24cXhAURS8/94H4Oicpm2Eo3/uSonc+fe//30+/9aXyfIsIF8OYpuDgSGPZbK7yMr2XJF/u0aALsrTG1EhXS9QxnfRkCAs/doaGi3vPVmSkmc5iQlESBWRSVk3LhBAnz59yv3793nw4AHvv/8+sfneBx98wK1bN7l964iqKkI02RMnrbUdFO6hIwo75zq1SyAgJLDZFCilRLsiaNLMZjMmk8kAXbGizRPKdU9OTjg9PcU5y/Hxc549u8ne3h4ejdYJbdty+/ZtHj58yHvvvUdVVaKLcnDAar2m3Ij+hkkTjE4o6waTpHz44RPeffc9fufP3JZxUwodxeOUog79uqxztNZi9EACIDzDuq67tM8uQjqs5NklF8co1nvbVfn8+I//OHt7e/zgBz/g4uKC1rUkScZ8f48kMSzPT6k2K54+fcHifMFXfuxLvPnmF/j7f+//wdnZCf/q//x/wVtf/DzvvP09yqoMUuiOelOyDptgkmckacpkOuXw8JD5fM5sOiVPUjQNqe6LHeLc3Sbr0zlxw1TdFmdMicMQO3Zrej6KtVaExrxUH/Y6TmztJVtjFdIyw/MQ5lpEraTCMO4TfUo49leSzwkIVhvSrF5+LtcbUmVZnB3z2oP7vPaFtzBJEoQie62i4ZptbNunygaWncEatN71DmEcn8BZSZJUqk+Rqq+macLcj0KAwzG2vUIwvuN4xbXoAofHewkGXh6f0Dx9SuuKLoiMGlOo/jl+muMz76B80ga9u2iHv/84B+U6h2V3scTvh6kV7wkMdk1dlRTrAo0OmgYZCuGwlGUl+fK6RuOZTydMJ2NwjqqsKDYbjLnV6TwMRbf6a++/vxY9unL0UtCELbPXnA3kWI80lyL8wYhuS9tNdMPF+ZLnL09YFRVeJWR5isnGpOMpSZazWq1ZXa6ofUvjPWeXF1wuV7RNi7ee1JiwMEPPlND8ro94Y+ddT0Ekq4UcrPddek04FNL5M0lgMtnn5s2b3L19j+l0Tp6PWCyXXJy+5OXJS5y37O2JtHkkT8b7jJEtJkGZ7EoEOhx7UXRxaJ1R1zXrDYyylKhpkgT2vPSFCfoniXBpooHwIX/icdjQKLBpGm7cus0bb3yOZ09fUDQbFNLwcXseyr9lWXbz9/EHj9kUG+YH+3S9hqIRHkTOw0Z7w3k9/D4apI4iEJBF7zwXFxcURYn4adtdZ3fHTPYJz3Q64ejwkLIouLhYyGbrevQqekRaa87Pzzk6OuLRo0e89957XarmyZOnZGkSyJcuVEu4sOFA0wrPQmmPNr4LGnTgFcTvDw8PuXv3rigwxwZsoSXAarXqxqtpWppaUNCyLPnoo484Ozvr+vKcnJwEUuAY0VoRHsOjR4+4uLjg4uKCsix78bZSUDNjYnl8KC/ynnffeYdXHj7k7oNXBF530sjSh9SM875z4qwF5XzYVC1N2LB6FGW76iWO0a5Y4PBZRUXbqE3x+c9/nslkwve//31enpxQ1yUYw2w2ZZwlnBxDtV5StQ3ffvtt1sWGL7/1Ft/91rf55V/6Jf7cn/uzfPUrX+Kbv/mbLC7PyLKM2WzO+OiIUT5hMpsync+FrxBaPGglGJy3NqRgdWcPhsKDcj9SOdjpBg3mYFe6bgxlW6NCKkxMmaTDtNYkXtLCwvoPqbRgY1FRm0h2Uh+aYnYN4Y2Q16MtdaENg44dwHsYXlJLdQmI1hWBZ0To/K6RSs3EWyZacTDKefXuHR7cvk2SpsJLU73q8zAYbtoG0eHSXdrFxY7T4ilJJ+GA+HeOC71tEFHBEqOTTvBP/hZSvdCJ3JkkwQdnyQXD0KWZAiLigaIocW3L8xfP6ZwnFYoTALTCf3oA5bPtoOxuzNdxUHZf/7Gv3XE8Oo6KUniviLL5uwZ+q+RRhY3UebIs45VHrzCfHvLt736PFy9PEZ2QqeT/ncUaQxZqwquqRHnHarnk/cePmcxT7qnbXV+PeC2RqS/s+IH37P2Ve+rvbRfu7xUrw7u7FE+g2QgsF76sM9TOcnmx4sXxGZfLNcqkoBOsVxSbkmZVsCkqVss1tmqoXUvtGlphE0uFiXVYo/EBYr2iMBqMslFxrIXXEDd/IQa6DtZ0VoP25PmY2SQH23Jy/JR2/4jpdM7yckG5XuLbRnLuCvIkIUkMLs+7ihMVnmMbegTtpu+ioffeo/EhHYX0TLE1ZjYjTbLBeoyNBa/mWqVNeoRmFa1tJTXYWmzTcOPmIZPJiGK9wdq2I+kOjxgt60Ce3KzWkr8m8HEGm9Nwfggq0TvlQySlf10s5xzEZl7KjC8vLzti6nUIzHDMCNyV6WTMzVs3aFvL2cUlRSCgOi/VEUr7oAHTdDn1O3fucHBwwMuXL9Fac3x8zO1bd5jP99BGSaWOC9wGr1E6I9EAFm18CAjSDiGZz+eMx+MOgbS2pShK1mGMpSKjCcqysQeKQSvh9Gw2mw7BHBI2k9BbKo7lnTt3ePbsGWdnZ6zX63DuPS7PF2w2a9rWkqUJaZJSlxtGec7Z2Rk//MG77B/dJB2NAgcsUJUDubTTOXLb6304/vGZD4X34t9353EMrOLzj1wdcc4abt++zXg85ofvvcfTJ09YLSUlO8pT7ty7y9mJYbNasKkq3vnBuxSbNW+99UVOTo7563/tr/Fv/Lk/y0/+5E9wcXGOUp48GzHOp6EqRjZ+kwiC6FobomshYivYCliGSFBPbC63yqyjE9Z36JUUpDHiuGkZxtCBPThtgYjcOI9rG7n/xEjFTYRFvODnqSKkbWKHbKlAVOF6k7Chy6MIvEdPOJcP1ycOi8z7wAdRoNMUk7UYZ0m948Z8znycY5JUSs9RwSEIjopQksBm4swN9q0OQQlzpPFO7O9gLcfVap3sNb5tGOUj9vb2urmjje74b50t0dFZjrWSwilsrcghRMdaa0U+SiQzkCfYVij3XknAo5XG5Bmf9vhsOyh8MnJwJe2zoxWxm4ffRVlUmG0ulGht/56djcwL/8AY2sYyysZs1i8pNjV1Ld5wVV6QJVImmGcZ2JambTA67STLbduyWCy4dfuo9+xhsJlEyHaQe6SPIq5uGpKfl2vXMWglVLxLOseJg+UDndE5hQuGuqgsJ2eXHL+8ZL2uaa2nqUuq2lE0LWXdUlRNVzrsQu29VS7Aow6tLEo7kVH3tnceOwchuEjOYpUKf9ch8omkV0EAhsqR0+mU/YM5SinKYkOej1itlpRlFfomWbRWJKkJTc6kHLFtxYhppYXA2jaQyL1b2+tMDCXGnRP1xLpoaaoN9+7eYpSPqJtGkB6v8NritTRV7P1jiUq6qiikM7F0/Qz8EiL0aoIgmevEtCJPKB7WWtIkRenotMZyQ991OBVIuZ8bzjla25Lnk86gR4N0HcoY7SCBLN02jTgodXOtoz/cHCMnwClPPsq5ceMGt27eRicJ7be+xen5BXXdQ8qRkG2tNLQDuHXrFpvNhqIoKIqCk9Nz7t1/yGw66/rdxI1MKRVk8HPG46zrf6SNCZFl/1UW0mFZSorrQUAiRO0kNN5UKtm6r2GaZL1eS/VOlgF9OiLPc9544w2ePHnC6ekpeZ4znwlqt16vaJomlGqKmmlVVaTG8O6773L7wUNefeONfqNRUik3jLFUQBGHNiraswjNx/Vx1Tb1VUe9ZpCcaGgTk0QIxXt7+3z1x36Mo4N93nnne5yenrIpCkZ5zvzggCzPuFxcslmt+PDpU6z3vPHG6ywX5/yNr3+df+Vf/Zf57/3hn6fZrPHeUxVW9J2QykkbUgpxKjkHLih+DW3e0NEapivjHI5jsJXq19JI03mHcpKm1V7E+lxQB27qhnQ8kko2F1L0XuyPU331Gl5IuNH2S9Y7jOsACVCdzfKdbTNKE9XJRUtLobqGoiEI8GKD9/bn3L57m2yUkmpxbqLcQ4Rv/OA5qei0duu2u5LudwZpOdI3CA0Ch95T1y2rxQWLxYLJ3bvkCRACL6m+Co6tU3hvpJGjJ5Q+B+5XpAHgOhJ0XUvn5/E4l8aWyuCANlS+iVX/9Mdn2kGJx7XogefakbjOIO8a3Ot/98nXoZSoEa1WG9555z3e/u73OX55waqoUNoIbNdU1GVBnmdMJhPyfIJrG9q2AaMZJyI3fOPGDdI063Lxu+mPK7f7MU7W7u+i7PpwoDyqExZDKRwGlSQon7ApG84vNxy/vOTsckNRiSBV3VqquqVxntZKK3DnPK0XCDobjxhlKXt7cw7292iqkpPnz1ldXspEbh1JKlU7NvRFgZi2668tyROy0QgbSwS1ZjSZMB6PuXHzBnfu3CQdKapCNpzpZMbe3j7GZCwWS1qlydZrkixl//BQhLXKgsrWJElCYy1WzEFIv2yTyuLmLJt/0CdxjqKoOTs7oywycJajg0PG+RhvHSMVm5hJlBX7YXQpB+9D51FpCOYDIpQmgoopRDpfqSCp76O70DsDbduiMyE5bvWcUlcd6Li5RiTqujnS/xyN7ICPgme9WXNxeYF1bTc+u0769qySDzg6uiGN6uYHfOUrX+FisWC13kjH1bqF0E+kQ26A5XLZ9dqJjfOeP3/Cz/zMT/Paa6+gdJDLDsNijGgFeSxtW3eITF3JJhgdktjYLJbdxjLimCKJyIIxhraNcuq2+110VCaTSZ/y071qK8DBwQGf+9znOD8/D/cxFhTlckFRrAVByVJs23So4WK54Pvf/wG37t0TdBXQiZB6r46qChFsrNrpg5Orz3Lbvg03+Kqqwn31JNu4BuO5tFY8evSAPE/57ne/y/HxC4qyJEkM+WzGTGucUqxWS37wwYdsmobXHj1kfpDyH/4H/xHnZ2f8T/+Ff55isSBNpbt0URRonWLU8Ewy64bprOHXMI09JPwOf79t0yH6AHHVKBTeOk6PX/Lr//jXOT054Z/7wz/P3YcPQod1WSOmk9qPF6YkzRrXoCIEVbtovfD5vO/lC7Tqn5/38o7Q/z1oNnl0arCN4taj++jZiNH+LACvdmAHB0i36qvglI8J+qv7AYimk1ZKKhgDjNLNW2dYXV7w4tlT7t68SapFMwoIbSEkyIwyBK51nXMmelkOa2toW3zb4NuG1ovjNN+fc/feHerG4tFY72k7kq/HhuDk0xyffQclBqrXOBCfBmEBrhjb/9aHA200603B02fPOT49o3ESmTknFSxSMitQMUC+vydpDZNxsDcH51gul5yenjKejDg42AcI5aO7ZdNX7+165wToWCd9JC9ESFl4zsWKJi2YSqso6pqT8yWnZysuLitWRUPRtNKczyssIu/ukbLqPB+RTiaM9vaY7Unju1Geobzjo8ePWRclXhkcFoUhS0ddCqtpGzbroDyogoz9aMR4Nmc0GtO0DclmQ1FWqDzj8N497j96xHSSga/Ix2NAk2U5WTpCKU1SNyR5hq4byeknGaPZnGwyxaxXogDqWrxOJGU0WERDw++9R3kRVdIKvFbgVKcFMB7leO9obc1kLLyEUJQhWT8lXJvY9EsFB0abWNKNKOp6x2q5oCo24qBoj4ikxSc5aGmghUjZti1plpGkSXBmtqt0YtTfNJIC2uZMfdxcV/0/Xgiyq9WK5WJBbMa2uzF+3LxzVlCootwwmUz4ia99japuePfd9zirzkOVgB1ExTI3F4sF4/GELBMRtKLY8Bu/8Q0ePrzL/v4+SkV+ltxj01aB1Cp6KHVdU9eNiMm1PRomlXSmWwe9bk6PcolcuWxYo9GYg4NDjo+PaZqG8XjMbDaXJoCerWg+OjivvPIKH3zwgRBN24bxaBpUY0X6W7pWJ6RZTlvX6ETx+PFjPvfsTV57/TXRBLIOkthjK4xn92j6X7gBwhZX8+78HW7iEanaTQ0N50ScN8Yo2qZib2/OT/zE13j33Xd5//33KcoS4wzZaMSePkIlGXVR8PTlKWXd8OqD+9x78Ij/83/xf2G5XPMv/kv/M7QvWSwWUn3WtGGfj7otsoHK80i3Z6Ki41X4kF5ITO9QRoc6zje6BETvxCkfUjwobN3yzne+y8XlBb/vD/x+qVCLEgIuainp0E5DAjauoBXRSRj8Ti60ewbRuXHhwpSCJCAo8rPGKY/TmhoovENPxuhJhkl3ztdpGvnu7kB1/DQVB6r7y84xmDOx1Fk5h2saMpOQaE1ixOYC6CQ6WqZDX5owNoT0lEcUmYdzrdUJtVPcvnuHxWJF2wq52zrprSqkZekK/mmPz7SDEluYxcHffTBxEcTjn8n5+BRHYqTmPEkN47lUjGg0oyyjKiWySwJUpgK7+/zygixNpI/PeIRtGqqy4Jvf/C3qpuLNNz/HaHQr3Mcu+qGv3PXVe5QdUhb5QIRNRW0Tgu8ieUKH1MFXtedyVbEqHKUzNGRY5YQgpiFRGp1YxtowyseMx4JqqDynMRqTpozGOW3bcn5+wflyg0tGpKloaiTGg85orWy0SmfM90dkoWonyzNckkCSoE1C5j35fB/vPZPJiDt3brN3sAdeSnWrtiVNcpIsJ81HgMYkhTTbUoKQFFWDXhUCc2JoHdSx5M2Ds5EgJmZGeS8biA6OSYB7vW2luaNJuo0pSQ1JalCJwqSaYVTnlSYxoDLVdwFtLbaVlIwojfogJX/CarXq8s09aqYglK8rrUM+W8zV3sF+aLFuaEPHUa37EnQQ3QOIZL2deeK7mdAhH4Of8N6xXq9YhTLbrsT72vnWfagYbaU5Pj5hUxR4JLVxeHTI7OUxXnmWiwV1NL4elBInIlbc6I6Do3j8+H3efvtt3nrrre46tjeqyF0SxVq5NKmUS5LkinbQEPmIn6GDzk+aQlXXGK25e+8+i6U4aLdu3eLW7TukqaR34sYwRFT29/d57bXX+Na3vsVyuSJPpUfPer2kKDa0zpGEEliVJFKuXJa88/bb3Lt3l9FkImnSTqjN4RWh6k53zyxuhCGoHzTyjC+RHXM4Tj5UXwznZyRGW9tXCgqhV6qfjDEcHh5y//59bt+9w7e//W2Oj49RSpFlOftHOevFgouzU07OF9jW8uDeHY5u3uH/9n//O6yLkj/9r/0ZjvKc89NT8izv5ljnHMVUdXjWw0DMI45YRAGs80T9I8UwrT1Yv8G3iPu5oBdShj6f7YnjPNBDimlJhQLnsb6VfjXQcc62xvXKbB9yvpSQQa95reoQsN7REb2UCutaNBq/yyJVoLQPqSWkkGHIyY3xxG4wHmyICkGfUgqdGozJWLZL2qZkPMoYjfJQGh5EA7R8qMF0zyIPz6hDsFS/G8W5VDmoPcznU4729wVVR9AjF6oSvYfVanNl/D7u+Ew7KBEhGfIwdo/rIM6tz9h5qJ+EuFybTiIaCc9mvaJpa+7cu8OL0wtevDhFAaNJJpCc96GkywdlRKkfT0Ju2yBlxcpnSNv40VYU1fvo/er70WMQVCY7rVaAoDMiKx+8MOlj/rtxSKMsr0imM0bJBJfvMbJBwj2UudrWkqVpF9FY21JaR2MdTjlGKqV1lqJyjOaHzA9vSQMrD3VR4SIUX9dS9ls3JI1j7BXTJMOkKZBKJ/RQyjYe5dy8cYP5dIz2FhWiEO89q9WSzbogH42lLHaxYrMRWWqUYbVe46DTq6mquqvnl/tXQZUxWrUQXTorm2040uCYNE1DpRxpImNiUoP3ohC7G7XCgBsS0z1NK/oLSuEay2ZdcnJ8Kkx420ezerj7aIKQHbTOoYzh4Ogmk8kYAY9VqL4KpYxa5o5rW8mJE/PgfS+i7fnvO00HycELEe7s7IyqLLcg+I9bVzEfnxjFbDaj2GxkEwbWl5dMJmPu3LmD90E6PDyDWBbc80JiJZKkV5rG8c1vfpuDgxtBl0jOlRhJn9KlKmVuG50ymk46QmjciCIpVEptt+9DoWgbh6Mvz5zP57z11luUZclkMpFKMLZtxbDcVSnFw4cPefz4MaenZ5Rl0VWQLZdLuccoKKg9TWvJE8OTDz/iyUdPeO2N1zGJCX1OHCpVXdfwoSPp8TvlrXRObXTZYhsHHxzartwU2/FRjA76MSmdIyfPonfYQBydr371qxweHvLrv/7rPH78GKUa8nzCwf4Bynsuz8+5WKzYlCVvvPYqBzdv83f//j9gtV7xb/zr/zo3795lcXraNfwUcqUN8yXDtm4QcsXiA7pNUzZM0z2vOBZukCL00WPr3kEPa1jYrDYYjIhlEoHCq6n/jpR7xV9QW3FhAEA7R7/nLfquXF95qdthgDhowNUNtihZn10yn81IBh3Rt86pxOHu72WbBK9Ud8vb42JjUYXYfOFtaaxt2GzW0hU8M2LrOjpBb7vi2onqwBGt6aqD5LaRNDLgIFEJiRrjQbRjnCCdNrYUcL9tSLKS51NKonDvrj7Y7rWfItUTj+s2+pjHH/58Je9uZcPMMkOSaumjYWSSpCbBKI21jlSlQQMlQwX9E5MYmqaV9EHwdpfLJavVmjzPyLIIfQ5m6Vb0d/21q4iUdJGEvM/50N031KIpLfyL1jmK2rKxUFnPsmpZ1x6rErSRclrpGAwKR1U3VE6kkJVSOKVJ85yjg5tk4xFt65jN97HTeRcB4WEynnbGNBJSY1NA7z02SfHKoDEQ+BPjfMyNo30OZlNyrcA2kgZJDLPJlCaNfIEU76BKE+nXgvBI9g8O2N/bk8ZxdSNKi9p0lVEC9Cu86h2JaLyE2BvGtwWjpUFanueMxmO8d0Hp1XdlxXHzUEp16RLfivppa62IP1U1eSb9Y46fv+Ts7IK2iWJaYrhVZ5l6KD9JDM5DmiXcuXOHPM86aWmNEOFwvuPMOCcKlsN5cr1T24HUxOjJO8fl5UXHFRJndIhe9PNuuNknSUKWj8jHE3QrzhgKzi4v0EY6/U4mE1zr8UUhSJ+T+e8DcdE7j8IIoqDh/PySF89f8uqrr8gzC7yeprZBZK1HtXa5MUOtjKi1A3RVcn2ViA8GuF9Xs9mc6XS+RcjcddSGa25vb4+HDx+yXosI32w2ZTabkWVZ0C4xQdJed6BIW9W8/Z3vcvfeXdJR3hEaterPZ+P1dQ7JdkpPxMJc98yH9x+v3RhDmuWd8xHHrEtvaH3l2cafbdPy4N59pr/v9/Mbe7/Jd7/7XapiI8hnmjKdTqnrirKpeP/DD7l79w43jm7wjX/yT/j617/OL/zCLzA7OGRzueiQnCzLKYqScrPGGCknN0Z1TUnFtdVE/twn8W7kGXRTWOybkuKeOjTtm06mouI6qAQaVuvF8fq4YHTooYhNlYBguHoIjn48OpvrCSkn4YmsT8955ze/yeuvv87DW7fQebbFWJBqna4RWnBI2+66xcYT9j/VzQmlFDrpkdThXI3zfzQaSfopkTGPfKteHj/MPRUc3Og0ekFlIhqkUGivMdbTtqC8tIORoE36EcV2GLb69HvxZ9tB2fFiUSpMiMGTHL7mRyAtn+pkUV/5Y5wd5y35KKXVhvLpS8qiEu+7k88XSLI35iIj7JxoO6R5HhQXLWli2KxWXJ6fc3iwR/eohrglQCgjk+9loQwP7weuNVGZI96DwmvZmls0TesoG8uyaFgUlkXRsK4cViU4WkxAS5pIMtQanUjPiizNGI1HmCzDjDOm83kgQ7ZobUAlou+ARH6Jig4dZFlAYJzrrhCgtiJx7X3LKDUcHM45OtpjnBqUF2nzaFgjfB+dE69V2Hg8tmlBSY+OqhIlUUmBSMrEhohF+v5EHZAIo/ruy4fx9s53kuOdEyEqTNi2oWkq6tADRaor2lDhFQW1gm/pNba2WCUiVsvLBavLZZfSENPXQwI+PH8hsInByPIxN+/clv5Fw7LmwTyPDmCeZlsEw+uOYHtAq1CaqWiamvV6uV2lM9i8riPJQqgIQeZIHjZBUyfcGeU8evgKp2dnfP+d74M7Rmstip5bn91zTCLqUWwK3n33XV555ZXQd6XvFB1fVxQFVVWFCiG15fzGsdBanEshqucdSuCcI82yzuEe8kuG3I147P4c52OSJNy8eZP333uf9WpNVVXMZjMODg44Pj7eIt9GOLO1lo8++IAfvvtD3nzri8HhCtLhzofCsBiYiMFvh88AeU3qVUDnnFQlBQ2ZJE2C9ovBZNL0bbgJD8uQhymr+Jzj/dZ1zY0bN/ip3/E7SJOE3/zN3+Ty8oLpZMJsPme59NRtw+Vqg3v+krZ13D/a553vfY9f+sVf5Bf+yl9h/2iP1SLIv9eWkMeQIC0RaQKU7sTM+gGXNTgsgJBnFL73kZjqQspCtEdaL3L3tfLk+3uMpjNq75l4P1AivuroeO/ZXSlDC9tjFX7nL9tHRCOHKIhC5lRTlSIrELv87pxT+cj66Lc0F+5Tdf+BUqZ7levOs12mLUhkw+npqaDXTYPHoY0mSTJQUUE3NCoM6L1XfiuFqIJAZTdO4bF4F4KKMIwmODEasckAefrbROp+1yZuQV7d/4av/2/pnITP1mGadJG1c1un8ErLJuE9m01FVTZYh0TAAZrXXuEaRwtkPpES2CQhCq85L1LmXgElLFYryYUnpiP39fcTmdX9/XXRRTcOTjZVQlM4FRdi2FR1gsdQOcOmtdQNbGrPclVRVg6lM7QLEtzWo/MkwIIpk/GY2WyvUxk0RsrRnIaqrlgtF7jWdmMVhVE7BACJarrrVkGR0Yd+I0qikjRV7O1NmM3HSP+qBu2dSCsrSbVa2wZHw9DUEukLKTUYKgVZakiMpiqlakSQGdctZKVinruHd8GB6g2PViK85r2lLC2ubUi0Aj+VkkJvKYoNqQopB++3EKKILBhjSFQi7Q6CONjx8QvWm5U0AYuktGCR5FkHjCduph7GQedD7UT1w6g3VsJI9+1eInvIx9g9nO+NQ1kULC4XUmkG3eYa59zw3+EhjgNdfhulGI/HbMqCpqnZ39/jrbfewls4PT3tZOWHxFOtdVdlE5GPJ0+e8OLFC15//XWUUqzXax4/fixVVWXJei0OQXx9/Boa6iRJGI/HTKdTXn31VT73uc8xn8/FeVUKpc3WJj0Mbq5DLHfTXUVRSEfjUA692QhJeG9vj8VisaX1oZQOTqyUa37nO9/hwSuPmBmDSnRPkPTbzxd8t7HGezNKgQ5IkhGUNqbOdBAlk3RAl/zYRo4GUfaw/DiOW/x7URRkWcbXvvY1Dg4O+LVf+zXOzs7I85zpbIY2hsViwTI4Z7qpONyf884P3uUXf/Gv8hf+4l/kwb17XJ6dYxRYL6rKJNHKRoK3pBdihkbGeGj7h52mYzQfUBcVuHchveW1Z3o453f+/t+NUhqdJ3hi6ezHOxe7f7uyzwT7IpV3veO++74oANepNIfPqtuGqqkkTRlSOX5wsz5U/g2GIKRLrs7F4Twkfs7Qv9PShDBJE1559RVQivVmw3K1ZDwed2rKsYw5EpRb24p91tviecPDWpFPcGG/6fNRnthDTRyZlk97fKYdlCseyMf86v8X5wlLlojWx6feYxNSrVNUNUXVUFUNbZB618hmjBK9BpOmtG1fuuqJ8totSWDut61Ha8v52SXrdcF4PEE2vDgpPS7ySnxM5fQs7/ivDt2AfVz0MRLHAAn4FK9TLsuadeGoG8emEN5Imo3ROqOsWibjKZPDPSYHc/LRCIBslHe6Lx6BT62zuMZyeXFBEXp6RCa4Eg8EBUEaHkxiOk88pjVkwWu0tzjXMJlMODqYM86TUKAnsvxe9R1IQWFbT10VgETNm00hqr1Ni0kUq+WCNE1DyaksrmGfHOf7aFuuw4XSOyHlgRiB1jq8D52sUWzKAutakkSTJobRKBceCjEa1V1JpwidObROUFoaQColQn3LhTgBKlyXVA1t69ygfBCyk6qHg4MDZrNZF+l2rxv822tgfPrIJc5pjZTpLpdL0THYgf53v4ZHnudkaUqaiOCZ856mbdFKk+QicDadTvn85z5PUze4gDjVdb3loES0oyhEpr4sS77//e9z48YNvPe8/fbbvPPOO5RludUOwjkXnNRe7yV+nnOO9XrNarXi7OyMpmn48pe/zGg0unJPu7obw2MXQYnnqeuaDz74oHOUiqKgLMuu7896vaZpmm5D8IAyokd6fnnBu+++y5e/8mMYnfbaJ14MvWzIoZdKaA6ZZSlpImOdxy7MgV8Sd3RJNfaVYw6/9TyHjsrwd3EM4vfC36q6Jqjz+Zyf+qmf4pvf/CYvXrwgSZKuFPvs7EzaBVyc09qGo8Mj3nvvQ3753/7f8Zf/0l/i1Vcf8fzJR+KEWEtq0gD4+rDu+g3bRyckRDqegcJrWBMqoo4di1QcFYs4q6VrmB5OBS0w8rkxgBiOxSc9494ZgmgfdiUcrnufJGFEbcqGBqPrlaCTk8kEo0OH8fj+gWM4PCLCt3ueGCh2ejdGB/sj/1ZVyXQ+Zb4/5+ErjwR5jj2FQvB0HR8n0Yk4eoM5kiTb7oM2Gu3omhuqDo3xQfhNxq2uf5sgKIJphH4IfLySKvyzoSewWzEA+L7OPZ7VOY9WhqrasFyuwkMyQebdoUYwzvMuzaOVRIZGa2wrJahJoqnrhiSBUZ4Dira2OOuxrQ/9E0QvwDrpmRCb0jnvhMzUec1i1LQKkF1UMQXKpgYlTtWmrnlxWVJbT1M3NLXDJzkmzdEYJqOE6XhCGuSQ0zQlzUUIyzlAaxrb4JTHpCnlUtqf2yhdHWIaMTShe7TqxY9i/5SYFxUSnAVnyRPNbDImSxOcszQuwNwEsqaTyFJy1CFPbh3eq9D110hprLMU5YayEr0TbRJp/CUnlIWnBmW8neHzREE8QdFig8OMNE060T3RJvEhGvYkeCKXKBpZkPLSqMaqCc3Tas/L42POTk+xTYsnimiJQ6kCHOi9D31FNK1zZKMRr7zyiiAoA/RErr8n6NahKWVsePnx/JM4j8Vha9tWNszzcxaLRUiX9AYzcheGm9fwM5I0xYeNoQ2GShstPUKsRYWy31u3brG4XFAWJVHjJaZU4r3EFE90Xp49e8b777/PZrPh8ePHXQPAOI8ilN0/z37txs+PP0eHxxjDV77yFdE82eGbxXsa/jw8huMedUaicxJRrPV6zcHBAXt7e53YW/fMtMI6ceZpGn7wgx9w/+EDbt6+jW2a0FTUBdIjwmEzCeMsJwtNDsWWGNJODbd3Nracyhi8BP5OTJPFTtjRCYljOBS2K4qC1UrI55vNhqqqGI2kt9RoNGI0GnWO5Gg04ujoSHo4FZVsyDrhYL7Phx8+5Rd/8a/xF/7Cn+cLX/gc52enodS3DdfWX3PTNF0X8liNpoIliUUA1lq0MUEMT2TZdQgOYk8ab6SKZVUXzFJD6+2W8OAwvfVJe8kwFRnX53UOyfDf7nvvQ2FEJNVLVZdwgq7yXobzZAvl0n0ApI3ukLJOiG94DSGANWmKAvLxWPoU6b6PUzzvUGW44yUlWlCUcAzFMrvfKRW0ogg8Pgk6o2MT7z3Pfps4KDpud2HRfZL3OxzQHzUBh6+99v0BRnE79l0WdMt6uRKYuW5oG8SJUAbvFFVV0zZN2NxdFyE752lbS2pCoyYHWiXMp3tMxjNBYawHo7oukVmSYoOKnwuQb5+tjKmo0Pbat1jbUNmauvWcXaxYrGq8GuHIqPI5yqSUjQcMo7GgIwrFKM3Z258yOdgnGY/EUTGS222Q3LmCzkBsilJQBhVUDCVBOlgsml2uDGznu72Tkuy92ZjpeALBsYqeuBvki8RohxSWJ4ifeZrahs6l4sCGGqTwOa6LTLvn6h3KSzSUJEbE9ZJoOIS0ZxSk2pAFmfOkMx5OODnK0LYeTwu+ISqOxgWtlKJtRRW3CRt125Scn59xeXnZXYegHeJsDp3iuAkbYxjlI+7fvy/iXoNofzjHYyohTfuUUzw+Dtb2AdlDa7y1neiYG/RNGqIUQ0M8NKCCDqjAl5GUUiULooOzXXD4XnvtNdbrFe9/8AGTyZSi2PTifYnpGgTGr/V6zdtvv81kMmG1WnUy58MeLdc5YbsOHEgqKqaJbt68ya1bt1BmmygKXOll1Cuy9nNo2BcnTVOxE4GztV6vGY/HTCYTRqMRm80mbCSS3iQEPM6L/MAP332X+Xwu1xs2NKWT0Aco6ypt2rYNnZm350GMpqOz0a2viLL6vv9V1KZwTirrlsslZ2cyJ1erVff+JEmo65rFYtE5A+v1ukv5HRwc4L1ns9l0pOWDg0MWFxcUVcvLs0u8VxzM93j27Bl/+S//Jf7qX/urvPWFL3Dy/LmUmFspeY6pxMQkYjfbmiRN8EaIwzK4giW3jSXVBp2m1E1DGkrxfWgmab3HKgQ59QaP7gLE3ed8ne3fPaTtRpxHEKtkhsduCrVzEp00ENVK0SLd1pWWCkWjTVcxuItKdiieAm+kTH2X0OoDstQ6QY46hD+uUUJll1JBHXY7HTxM5Q3nd3ROPk7osfudE70ZH0i9Magyoc1BTLd/2uMz7aCE4QY+fjJdZ5Cu+3s8roXz8F1w7buc51Vo2zlpo35+dsZqsaKpaqwzUsGjU7DiXHQaF1qT5CMSk9Eag5hrify968tglRIC6eLiEnDM51PyUQ5IJ9+40UiaYphwVFgs3rdYZ2lsQ9O21M6jjMip163Fqdid1tIGrZY0z1BeiLCT+Zi9wznzvT20SXFAY1saKxGXbetOK2Cz3rBarSVaQsrROu6Y4Jay7QaEYLi5RaMa8/F5njEaTTA6pa7bMMaDjQqH9nQpDxc8xqpqcNZTllX3mW3rcF6JVo23oiuxo2+gfSSFKUyiOtRB69Dwz0ilTxJQL61FmSI2PRsaLOXabsEXRQHIhmWt7eD9PEnBK9arNS9fnnTS61J1FRwT36ODSvUl3kprRuMRd+/eHXS4vhqxxU01EoY/DZCowkZpAnH19OQ08Fh8MFjbxMrdc0aHKE1SNkWJV5eCDmYpJhGBL5B8tUJQpHyU8cbn3mC1XvHi+LjbbK21gj6q7fQM0PW7kc+yW1yfuB4+7v66Zx423aZpuLi44P333+f27dtbiEP8d2jIh/ZkmP6J3YXTNCXPRQco0UmH/pRlydHREXt7e2w2mw6Z9dCREJ331FXFk4+ecPvW7W7eTCaTDoKPaaskEU5YnufMZjOm02l3XZ1ycTiqqpIu4G1DVRWdE+icoyxLNpsNy+Wy+z72JorXGFsITIKSc5IkzGazzimL0XhZlvzWb/0W77//PrPZjDTNmO8dsV6vKcoNp+cX4B1Hh/uUZclf/ot/iV/8t3+Rr331K5yfvKQqpQUAQFNLUNW2jsvLJWeX5xS2wiQJ0/GU+XzOZDIlz3NsKwR3YwxG9ZwHjCZVGqzHVhZfO4w1ZEmGSXS/1uiJwp+0PpRSg/WuQkCxvRbiuG1VA3mPThJBQr2jdaHxZ3DoWyspclRfUTNENrQOjskoE60Vv21Du0BQBersNfvbEG3d3Rd3K7iapqYsKyyWLMu6poLXBjcBFA+rQl7nh4GFwyvPP02m+TPtoDglX/8sx8dNxvgQYx6wG/kQpW8Rj7oHJojBcrmiKisIRFRPyMt5qdCpq4I0Tdnf32M6m9LWFbWvu2jfhNK6qmk5Pb/gxcsTppsxH330AXVT8vrrr3P37m2Ujnomcg/WbkOJzlk0KlTetMKPaRo2lcWS4XUq6EcibHnXNhgFmTHgWlCeJM0ZTzNGkwRci20sjbXUrcUiZF+nhLW9KTYsLi5omxbtwfpA61SiB2Bip2QCUSx8bUf/YnxHo5z5bIpWCU0jpFa7pQ8QSta8OFjRQfHed7X/HUwcxjRLUvLRSCLH4OEPGylmxgRYOG46cVOU10mVhEPHfLUPpXfWSSWO70WvlLddSqUoCuq67qpFImnVGYe3cHZ2wenZeYBh1fbkCj/pYHB0kKe11nL71u2OhxGf+RYEjMDjw3zxdWmKj4WUkYaIkfEvDTPFQdlFDoYk4AgLr9cr3v7utxmNc0wqm1iSpuhEDO3BwRG3b93GmITWNdy4eZO79+7x5OnTLoKTzViarg3nSSSertdrptMp5+fnW9fzSRD9rsOTZRlt23J8fMzFxQVHN466p7A7puz8Pt5/dByiPZhMJlLKavtNL5JmZ7MZo9GIqqq2HJ34wJ13nJ+fc352xptvvinPJdEURcFiccl6vaFtZDOOKT6tNdPpBOmSLQ0NnfNS9luWopzctqFDeC9wFnsbDVsCiOMz4ujoBnfu3GE6nTAajSWtmUkH5KG69e68unHjBt/4xjf45je/idaG+eyA2WwP7z1lveHs8pK9vTmvPXrEkw8/4Ot/7a/xv/mlv8qPfemLnOGpNiXapJyenfH//m9+nb/3d/+fPP7gI+n4nGpa79AmIc8yRqMxDx8+4A/9wT/AP/cH/yBZkqBsEZAKRaJFJbVtCp5++BE//MG7fO1rXyO5edSttuGGe92zvm4ODRGKoXjhYCWJjbLbEvUAKpD0q6bB4iFJyMZjsjyHrC8H16HKq0u1aI3SimZQxRjtnNg/F4LNoHx9Tam0976rdlVeLI6OzZ1VQKgHFYxJokM6PPJsdpDdcIhWysAOEbLm3gsX0XuatuHs9OxHju3w+Ew7KHEAOx+CfoGr+OOVdvUd6DWYUMNc4vCzCZ/vO94I4eEOfRbnnIjuKI1DU9cWF5yTiGq0vkVibAtahWgyYblaUWw2tLbBWUuWZmRZAt4yNjlV23ByfkbRTLhcLVmuFigj+dO9+YQkbIJRwjjmqm1o6CSN+5DqGqWxXuN8Qll7LhYFTWuY76ck3tHUFYkxGCy2blFak4wyxlmC8o66LLG1l0ZcUdBLK8ZZTounrWp820oOEt9VAkadANVVE6leQCo6Ki783XtSo5nPpsym0qfIubaDNqWDaFBj9JI+02q4SYA14oDYoEvTNBX5eMJklDOdTcL7pCw8OiNK9X12JKqMzR8Dx8KH3LdzEBAenKSZFKoTQbPWYduG1gqq1Dm6JqGsG5LEd42ztPJ461ksV6xWG9EAEXckOCs9CVCMpu66imqlePjoIbPZrNtQrkRT9BFhhJs/yfBurYAQWV9cXEjVj97uO9O97przKuDWrSPu3D4SFdIHDxiPR9Rti8ezuFzw9Okz3vvh93n11TeCpP0GaxuatqEMKrIxCqwbQYIimdxaR57nXFxccu/eXV6+POlQjKGw2HXI6Y/iGiyXSx4/fsy9e/fI81w28IAUivPpu4qxquo3/rIsaZu2K292zgUhw4x1ve6q9KqqoiiKDu2oqpJow8S6B9vjYbPZ8NFHH3H39m1xxsoNjWuoqwoPZGku0PuSLRL2cr1guVx2m1qcg9ZZ9vf22TvYp6oLyqKkKAuyNOXwxhHT6RTnHBcXF2ituXF0g9u37rC3t9c5XXowByKhuFuf9Hyhmzdv8rM/+7Pkec63v/1t1psVeZ6TJAltk7LeVDx9dsxP/+RPcOfGAf/k//OP+Xd++a/zb/5b/2u+/KUv87I54WKx5L/+1V/lv/hbf5uTkwtefe0NRtMZ+WyCThOUSUSwsG14cXHGv/8f/k3+q7/79/nX/vT/kjdfvYf3DW3T4FE4bbFVyQc//AG/8Y1/zOdeewj+IbuVUUPUbRclHP5umDKJqGcv4BYxhBAoRhsnGxLeW+qqpthsuDg752K1pvWeRVEwb2pGuWjgdPYDFeyA6tI/esAnkxYAPRcyMbprkyC2rneOJLCIistSaaNRW3tf7/A4lBIUJ1d5N0ejDENURY9IldLx7z6YxpBUV+LkeA9Jqrlz8waf9vhMOygiVmMBE6I7AjEkitdcLYUSkmmcZHGiRW8wGizfPUDnnAhg+XoQ7UfnQwiYQjYy2NaxXlcUVQ3aoFNPYz0oaQoWNZlSnaMTw8n5GXVVoUKpsUdhleh/OFuTjXLS0YiirtG1oWwbrILL9YLkOGG9nkqdeZwgSgis3nmSNDRQU6lEGyrFJDlt6ymqmstVRd1q0myC95qmKHB1jdcKXxvyPMOkCZk25CaBtgVrUGiMEsfAOhv6MTg2qxWr5QLbNJ2X36VtgsS+RVAdF9RrI+wnBlm+jFFMpxOmoxFGSZWPRO3CVYhRi8hcS/7I+UimjD1WQnlqPSAL2pY8SxnlGbZthYymQ9ojbAg2VF31HAaB5d1AiM7gwYr6rYsVKdoEhVZ6kaxAs3FB68WYJCBAHm1SmsZTVS1NVXP88oSyqrtzbuksKEkrWWsxiVT84DzZaMSdO3e7yPk6pyGiGqJ9keBt38L+R6ECwwqBzWbDxeUFKCnljuMb19WQ+xGNWkQ+ppOcR/fvSBfpRJEbQfO898zv3iIz8L0f/JD33v8hn/vcm0JkRET1mrbFu6brDzLklQw3yaIoWK83zGYzNptN99ohkhPva+iUDCPL4ebknOO9997jzTff5PDwUFIZocNxfB5dnn42o2naDiETB0oIumVZikpu03RN2OS9jtVqyXw+Y29vLgJ41mJSeT7EZ6IUvml4/vQZi88tePjwIRjfW2yvUEocuKIoefr0GcfPn2GdpWxLRnnOwcEB08lEnNrwjO7cucPB/j6LywuSW0nnKMVqovPzc4qiwDnH3nyPvfl+V/3VOyHRNsbvt9N7cUzn8zk/+7M/i/eOb33rt1itLmlbcF7TtJqLizW/9qv/DX/sj/73+bmf/R3817/yK/y7v/y/5d/6y3+Fz3/hLb799jv8w3/0j3h6esKjV9/g9quvgk4ktaE1GINRilwrpvsHTKZ7/Oa3fov/4D/4j/jX/uU/ySsP7oUmgNK53DUVvinxbUGWIDIFg/TpcE0M18hVZIQOWe/I1IN1NHx9P+d0IIh7EmVEawePu7zkC1/+El/SCcloxKrYUNOyv79HlkoZNMEBIVgrQIJdve0ISWVksI8gzozu53gMuOJzci6mkrsrD3/rUchd3STvPSrMB4XM5y4o0VLxqE3UpenTU30lj8PobZvzo47PtoMS5bwVSM1YmGASahPRDxe9TO/xXtjeYqAG3JQ4qWL3xhhJWysOSqcnAqDl8xobuoFqrIOmdZxdLDg9u2C5XFFbSNIcZTRGK1Fr9dLye72pO0Oq0fi2laoDrcky3ZFLW2e5XC5pXcNoMmE0HZOPMkbTKWk+RnnhQ0TBp1hCa11LVbXSW0drnK9JUsumsqw2NUXp0MmIJM1oraMsC5T3pDrFBw95Pp1ysLcvpYoRMVKK1jpa12LyFG0M6yJW7bSdBLn4ilG5Q/5VCpySkj8XvWuiiyCckiwdMZ9NpX+KVhhlwmtlcXRRcXynV91CiY5nr4AIEeYyRof7EiehbZuwuFxQeHTYtk8TwXBRBkKuEuSou0EvvCOH6nO/PtyJFxlraU6XBqMnn2mUlkoLr1mcLyg2Jd6HnjzuapLHB8hH6z5fPh6PefjggSBeg6qTIf+gDXMqliHbHWf949CUKHntnJA1pQfPECHxWwYLtkW+ooOqlOLo6LBDeYL9wnmPbWqyxHDz6JBvf+8HjMdTXn3lFQDSLA28nb7iRDoMt1tOSl3XjEYjzs/POTo6oiyLrhT64/gn8Zp300FDp6eua773ve913I+bN2925ctDpdpYPh4dwDjvIv9EnkHTnSOec71es1gsyLKM8XjMahUq/qDb6CIEX1c1j99/zO2bt6hcg0U22zTJul5QVV3jgSTJ0DjSSU6aZaSjMSoJlR1ak3jPqijZlBUSajSsVyVKnQjnQQvJvdhI9dHx8SlVZTu1bqC71059Flk7UTQvPp9Itk3TlK997Wt41/Bb3/oOrW1prUOblNY2vP/4Q37t136VP/h7f5bf/XO/k//Xf/0r/O//3X+Hf+N/9W9S25b3Hz9mtn/A0Z27kGUSmYdZodEobfBaigH2Dw85PDrkN771m/xf//bf5l/8F/55bhweikidVpSNpS0rIblrg7dtKHTYLuUfOixX1sZgnsc9xTnX6RDFORCPrXmTGKog3Gi0Zu/ggNneHq0VmYTxaEyWpzRtjfeOsqqufF43OVrPtpVAbI/qtbo84qQM5150IIfl40MC9K7GyRBl9D4Gc/KvViFQUYRgve1sdf++7RYTeC92+FMen3EHxeKxAUJzSFM8he72kJhSiMp4QpQUVZIgjua8VMeETSeiLrFaJIrqOBQ+JGl82BCt89RNw6YoODk55exixUfPXrJZF2i0kCkltg4lyeIo4X0n1rUVkYUIzGgYZcLoruuaqirZFAlpaqT7rveUN29y68YtZuMp0jZehz4ameiChAVjPVTOSVrBa9ZFweVyRT7eYzSdUNtGNk4tG7g2JnRw3efmzVscHB50+hTWCUfG4VGJRAFN07DerNmURSiJjSW10KfcIjE25DuVwhC86rjIlPS4mYxHjEejYOQkHTDcUHZJmeKgRtJgFEYTI1IGfRKtwbqWsipJy7QjBoqDE7t0uq5ZYB9l+EGpaqwa8qShdNqkGQqp3DBannN0nuq2lvLexGASA4PPNSpEgFaxWqzYrDZ4Gzd930VAYZLTZy97I3r79m1u3bwZdDHc4A39EfknkXCqrnvRztEZWaWw3nH88phNsQmGp0/LGdPzJnYNuaAogsAtNyuqVvg3KpEeScYkuKahbkMfJG343ttvc7C/z2w2pQ1j7oIxC5joForSQ9CqKz3OspyqKj9xk4ljuPu6+HPbtjx//pzZbMbz5895+vRpxxmJ6xYiwTbdIinH9282G168eAGd89yfN6rd5nk+cFB6wz7UDUoSw7Onz3j//cds6pJlscZ7T5pmkgJTCoIaskehjKKpWtyq4uJCKnNi+XK81zzLhAweNVWCzWtCObN3HqUVx8en5LkgK7G8Pd53v5G1OG9J02TLSRuOF8D9+w9ZLDd8+9vvoLXqKu+s97z99vcZZ4bf+3t/Fz/10z/NN/7Jb/ALf+mv4LVhvSm598rrjMdT6dMT0cKwKMTCxusy5OMRHse3vvsdHn/0IbP5nEme4a2jKWs2yzUphpwEWztcen0l23CuDZ/d1jpRPZE1Br3DMt+tNKJSfcNOYzohNBXUcp0LPYnauAb7lOwVpHOA/A+PXUTQy6BsvXeXBDysRopzczdA2zoHXroo+9AuhdiKoe/1FD/3yntVrOK5fk1ed3y2HRRv8ZEboKKypYhoSWQbHBSuwnRCJgLtCF0iB5tgLE2L0tje41BCDq1bmkaUKdfrgqqsKcua07Mzzi6XrDYVrfM0jQUSLJZUSV7POgsDZnecyNB7nGmaBAjMUVcVZbmhtS3GTNnf28PjefnyJR+8/wH1uuLVV15lPBqTj0bcuHED5z2r1YoqVr2gUd6xWK45u1iw2lSk4wnj+Qwdyves8+RZjkYxmc+Zz+ccHB0yns3xOglRUnDMnFSSGKNpneViuWC12YQITvrD8DHlq7vHUL5ZK8V8NuXgYJ805FfRV/tvxKqEvprHIVoCNpDDAsYVnLsYdUdtiizLOmMcnRulFNqAQneGYZi2kChIBx/BixaK1hh6A6TjjSABzjgfkRgpyWybVroNB56I1poEIU6vVivqut66x6uG0YXNSEpSlda88frrjPLRIFVxNcVT13UXvcWSdvwnGwfnPanWLDYbzs/PRQkUz3CjHZ5nuNFHLZsYMda2wbeedCSNI11wSpRWVG3F2eVZILle8v3vf5+7d++TZTmbgCp5H2ojnEVr1bU08N53Gh1ZlrFaCcdBeiLVW4b4uvTX8Nq3NS3E8YkCZFVVcXl5yXw+Zzwed430+k1ou6IpfkUnhB3bE8dqvV4zm806ZdmiKPpnGR7nKM9p6pr1es2zp085uHGDsqxo6pYkER5M62Q+iB0JJfTKd8RcWScuIHSapm3J0xTXNNIbWfdockQPOx0M35CmQTdIqa5aZ4gUGKPJ8iTwoGyY54qz0zPqpmE6nfLwwQPu3LnL3t4BSTrm29/+LutVTZoYmrZlUzU8fvKc9h/+Cl/96lf5Xb/r9/F3/qu/z8VyiTI5WhnpHq00dSPk/d5rF+csNQbljUT11rEuay6WG9BGglJlsNbTVi2TdMwkHWOU7lSZO0u0szyGSEJPUhVESsfOz3qgdiwPuXtPv69IEJGmaTfnhrY/jjtIKjXanaEmSXcoach35WIHczo6KMPntWtfonOiB+XGw7XMzvtjirJrmDJwSOBqCfKuQyf3kqDMb5NmgVH7IiQUAskwaAlYK3LAKsRfSgl/QovGSBs9Retom1pIS8WGqqqJ6YKIaLTW4UyG9R7voGlayrJmtVzz8uUp6/WGsqzYNDXWK7wzoFPydIR3TrQzjCI3kgoSG+6wtsE5uTbZSEJaQnk8UilDiKRSk/HKw9e4dfsWp6dnLBcL6ZWiU6ra4VRDui7I8hE6yUmVpBWUSak3FcvNJRerCpPlzA6OUCalqFoqjzgqHvIkgTSDNMNpQxX4FGmakWaKxCuaVkp0rbMsFksW66VsQkTO6Fb83x27kzag/VJFpGEyGjGfTkiNVDp5v61pERfDLkTpvUXUIiWXOkSkruMYxJ+lfDhBqUAk1IQmiP1rhk4KyMat8KIBg7CfNB7tPE6FrromEcekKtFZ3hmYLKBNbduSGoPTmnK9oig2nVEYKp4ORm7gWDgUkkJ4+PBh5+Q65zqEagixizLxoAT5Y1I6WxsoAEqaRhaizxJye1sIzPA6d1Ml8bxSUpx3EvLLzRpQLJcLRqMxrXNsipL1WipZ3nvvPTabMnxuaHnQA2wdyXL4fNu27XRMIql1KOe/GwXuGuDhtQ+NctM0bDYb0jRlsViwWCy6SqyIDMg5toObYXpjKBQ3nIcg5cibzYYbN24EsmxfEi/8AcDZoK6acHZ6ytGtm9IewbU0VSvpDa9wltDnKqQdBmXWPqTU8B7lFMopGmcxAZ5vmybMa4VJhqlvQZOttdLSw/TtBoZ9jmKbjoiExW640SGqyoayqJlNcw4Pj3hw/wEfffREOphXBakxrKuGJy/OsU5zvvjHfOnLP8abb36JX/8nv4HSCWVZsbi4FHExT0AFwqxQUmWXZoa2qDDakGcjcUy0QSWZoJVeCgna1oay7CwgzNsBkFHbm2zk5nRpvMBhVNCldQDqoO8jBFPdrUeZT3Rrb3e+DddRXD9p2oug7TrP8YgIzu4a9oOvePLrkJDuGuTNW4jHcJ4Or6v7PPTWfQxfO2yBMVyD3e+dpm0+vdvxmXZQnFM4F24+MJNjWV1d1di2pfeKBb6PDHvnpUOuyDaXW5MgpgiSJEEZg9YeS0pZlFxcLFivN1RlzeXlkvW6oK4a6qam8ZYkS0lS+UpNhm9r2rbENsLDSLQiHeed19q2EnXMZlPSNBOj7Cx5ashDSZ/RBuc9P3j3PZ4+fcEX3vwCN45us7i8pGmk38/IZDSNR6lWNEi8sKnLquLFyTmLVUmST8jGE0jEAUkmGSbk0bWHPE1JR2PMKIc0hTTBjEYkWYrwbDzGOpq6YbFcchwkwmPjOuelrM+ofhMZwobbhjzweLwjS1LGo5H0pKnrUL4rzoHvnrXbchj6z3do0y/JGNFa20corTDzRN8lqC126ZRYZqxClUzYhJXWaJNgTJ8vlQhJ+Eixw6yRqdUFddY7vG0EgleKxkrUGvO8WmtUYvC1oCdFUWyNy/AQuN+hjMJ7JSQ7a7lz8ya3b98mSZNuTIbtz+M9S7m2oCyd8/MJayo6MtZK6en5+XkwZBKR7RrUeN3RUeqvQVFVDZeLNdYJkTOmYi4vL+QcbUtZ1cEpFIfq6dOnlFWJDgrthLmSmF61djiftNYd16Guq+46hoZ9F27eNdi7Dkt0MNbr9dbvm0AA7+99Z9zYJonulq7G98Xfr1Yr9vf3mUwmLJYLqrIvOU60xrahVLi1bNZrLs/PSY1h1TZYD0onWI98QZcu1S72tBo6vBFNCYgc/ZoKj0vmMYq2Eecjy0XR2TlH69tOHC5WL0Hst6SDvfTUddMRs7XWFEVFXbdUm4Tnz46ZH+zz8NEDTi/O8Y2icY5EpxQNnFysOb/ccHy2pGpaWisE14vzBdrkjEZjHB6dZCiTorMUlUirDe0tmfIh7W4Zz6agNZW1NHWNTQyLquB8tWB/OqW0LUld4ejJzwAYpD2DEqRsNBrJOZXq0kvec2WtDuUutOJKaoW49gbByDD4GaJwSg3TzP1c7r60BOBeba/BLQI88iz9YE7uzv1u3g9Q/at2ur8u+VzHx0n6X+d8JUnCarViuVyGOTLm5LTk0x6faQdls6rZrAX9aBpRH5TKCWFXJ6FMMT7kqKUhAy/wJiEajtLxAoUL4zqWr1oPtfcslgWnZ0uKokQpjc7GjFVOmrfooiBRlvF0zGQ8IzU5qU5pqgKtWvLckCYiXEOSkmV5Z3CTxDCZTAJ/RCpEstQwzkfS98YDXrG4XPLy+JiPnjzn0aNHTKb7Eq2mCaPRKKiFAoGtXdU155crTi/XWJUwns3QWYZOR3gt/U2SNKNpW4wPfYGCAzWeTYNqo6ayktYCcVKWyyVnlxdUbRM6EA8QDhRK9ZUw/djvsOKDKqlWmjxNSYwIvuGlHNKG3i3sbBxb3nw4ZB/r9UuUEqcyLpCuRNRuw7WxB5CQ3CK5OvJmfHdfQ3gXpfC+77MDQlIW+QAhQLfWYlKN1xqNQV1T7hqFwcqy2hJ02k0HCJIn1UyJSambigf3H3B4dNS9xutt9EUp1VWVRIKukpD4kw/vIQA25+fnXF5eCpKF78jTSumuMmLXWRmO72pV8O4PPuyeAYgOSF3X1B1qWXTdh0FaAfiuigCU8hgtqc/hXNp1KrwXYb69PUFrrus8vD2ug/mjek5LR+ajb0k/FMsa5ujjZvVx55HP6ls6DM8VkYjYRDBJEiqqfhzDJjaeTFmVC6y1vHj+jNc+9zpnvsG2lrp1Im2ghAPhu0yfIFB4OnQteqb9PJCHHHumKCVEftlIPWmSkOcpzjfUVU1Zl1hrOyQwjnnbWrT2W7yLobPdpVaNYTafSwfp2YyHD+/z3nvv0ZS1PHdvKBvIUk21KlhtCtI0IzEJZdVQVTVpmoXeZsKX867tOuQmSnG+XnD64gWNbZnv7XH/4QOy0QhvhT9X4fCjjGQ+g3GGyhKxd0kq7QKMIU0kfRcREOudOP8E7aboBkYzQSgw1qKs7ZWSis1BYNw9e0/3ucM1M7RpsTrK++uJpBH1iI7McLx3HaK4jofvHR7dOhigHcPXDW1u9zu2n+3ucR0SE8UEq6piuVrx9Onxtfd23fGZdlA+evKSPEh4R40IcR0NxmTyO69QWrrW4jzauK6c1DpwrafpyAMGMNRVgwtpC7zA963TrNcF2mSkKWyKQhwhK4JB49mcxtU9y91I51yjcw72b3Drxj7jcRomfO8dx006zcS5iNGowgmrO8sF+WlEw+D119/AWocxCVmWkSP5/ixLg0GyjEYTmsayXF9yuS7wJmM6nZGMcspatAEwBovC15LHn47yoHC5z3g0Evpx25LGjVP3jfHOl5dsyhKMFs0TN8ip+qH98zH5Fr4PuVgPbSs8AemMbIQDosTJ8F5hYZBb7yP33Zxw3CTkdz16MtxEnHOSb1bbaQqBHWMUKc33OuMUUnxqoJIpi9QGik0wLIHkZgKx1GupNqnqmizAyEkaGnAFoqG3js16zcnJiXSu3tlw43X3h6SjrPPk+YiHjx6R5yOss9IMjKvvK8uyqyi5zpB83KGUyPm3znF6ckKxkZJT29SdQyfRZO+YDFMqWZZR1zWz2YxXHr3epXx8cDzzvA1l3lIx8vLkmMvFe0HBePtalZK0WZwDQ1XUIRlPGka2KBWbLPYG9jrnYTc9tZtG7NZguLfo5O3m2K97VkMERZwZd8Vox3uz1nJ5ecl0OmUynlBsCik5Dg61MlrUmhPRJ7hcXtA2JYcHM168PAlrBqkQTKTxh3PSriHqZihNN/fCFYb8TUj7aOHHydKVNhuSYpbKvtaKM2lD2q4sy05BNo57n9qRNRKdmIikVFVFohT7B/scHd4gHWXcPDvj5fEJF9W5dHC3HmqL9aEHk0rwytC0lsaKsm2WZWLjbYt1IZ0VbItODevVSoj+SvFTP/VT/O7f9/uYTkQrqi4Lju7e5u4rj2iqiqPbtyT4U6qzSUqJuGS8V92hgrJ/dMiJ3ynNlfxw+J0apFh2HOGgfB3tnNaCcsv7AvoVnsWunYvf9wiJR3f+hdhZG51RebHwkXbm5jCQ8CEoVYOf43mGBRzbCInstRGx2T2GdiwGdbFLsrUW24Iyoyvv+7jjM+2g4FOUCt1APbS1Cw9JvHrnCD1bgt8CgWlse0NoDD6UacaeGcokKJ10E1cDWWI6YSR5HbRNK+qvThTyvBI0RCtpj5cYg7PSx0UpRT6aMMpFA6UNCxgFaZKSpAkxtxk3ziiYE0tptTZSoeMlX+wVwnHRMvmdE1TIes3Zcsnx+YrCQT6bobOcTSkNu4wR+f0kTVFaMZmMOdzb52B/n9FkgndOeuk4B9qFpnaeqiy5vFhQ1w0mSWjq6MR19g7vPNY1vbF32z1vYppBaUWaGCaTEfkol7LUIMIWlZB3EZS4KIYaFlJrHxd3JJRtoy1SVRJLQBNSlRJLQLv1q8TJMKG1u/K9KBJE0S+Bb6MKgA4hipaCRzSKNm5M+E5QrQ0ba5aEDdhLqelyuQD6/Kzcw45OSUBQpMlgy/7hHnfv3mM0HknsFvLrKrzXhedWVxXj8UQUNNuYmvikBE/czOT9F+dnFOsVWZpSO9sZZaWuJw9G3oVSUgY9m+0xnU5DpN1uGUYQhGI6m7MuChaXC5y10p7A+pBuiLl2cbwjWVj6z9jBNQsxXilFURSMx+POAbiuqdnwiE7vlfz+wPgOHbDtv19FjyIvaEhurKpyC52R+SiO7GKx6CpeojMnjoOMaWst2ThnuVjgnOX05IRHr7zCar2icS2YBJPkKJNKeqNuRcnZ9E3gGN5b/HdAVNBadcRPpaSxYdmUtE2Fc62sb+c60nX83HivMX0UO4MPEac4F1CKs/ML9o+OSEciyz+bz1kvV7S12FSnDSZNqZpGOpCnGVku6fBIOh6NRrTOgtJdisMYzfpiia1KVosLfvqnfgd//I//Dzm6cSNcnycbj5ns73P30SsyX8J8jMKM1orj3LYtZVFKRQ0aF3Q7VKx2cVF8jB4lUSKfwGAeEAK3OOYx2O0Ql/AgkkR3TlAcz6FPPSwzHhYGaFRXyk+4j61UUHe+fk7vBkHd3BggMNGx7hu37qR+iNWP1xWebKNBMQAf/j4dGfb3fpuQZK3zxKDKe+GkRAJP01qcUmFzDHCx1hA2HunFJr1iHJ5kwMwfeqw6DGxikuB4KLSR1JF1tksLRAMUF7sPG0Xs7qiNbGJt05I44aNoIwxwyddKa2yIglhWKlsJZYdK4a1E6TpJcK7BKysKtC7BYlivKi6XBT7JWdUtBQl6nIFJglaHlgS197RNi20tk+mEw/0D9qdzjDL41oVmeoDWtFbSFsvlktViSVMPe/+Y4KyF1Jrro9BdQmscT5D+DgbPdDZjPB13zkM06F4Fg+D8FjQ93Ez6r4ic9AjKMBXQIyK+i+6cF5JsmhpcQNZQvfJtjEiEx+O6Tq/gUb7FN1I1VLeyadZVLX2TqgpnHU+fPeXuvXs8fPiw6wBtWwtpuIcQOVdltbVp70b88XuTZNRNg1Kaoxs3uHP3Lp5eTbKxolLsrMw321ps0zLal35KyksJd9u2n5jlUeLFU5UlL58/FwerqQcibdtVAUN0Y+hAxkoXqYKTSFdpmf+yPhvpJKsNDx+9znK+4OzslLY5o25lHL31JKkJa9uFjrZxE5DIs+/u3W/+saXANidmeI/b6ahd5yJqQgzn77DZXnxe4qj1jrMxhvF43BFpo8Nxfn7W9biJ8zZ+75xjs9mwv79PlmVsNhsh+1qLDp1glU4YTSZURcXlxYrPvznmx778ZS6WF5g0x2NorOgwOadQXQ+pXss5joXWodmop+d5hSAiPtesrlkul1R1GXqHWRLdc3siv6mfr1fTl1orkiTt5pR3Uu5+enrKxfKSPB9x69Ytzk/OaOseYUvSlMl0ynq9pm7qTh1buIKVlO0bkTjIEpFXMFmKqyqmo4w/8Mf+GH/iT/wL/PjXfgKTyEYYtTmIdh1QKpPNVvlQjUdIpUelYEvbtNTVhrpY4q3r0vFpYmibGmcdiRYExll5Tjo4xrt2SotH0+Vcou3qJQ9ikBe6sO8gf0OEzzlRIyfYR+98F4gzsIse1ZX+xvP0mkx9ekcN1u3wXPE649rw3neK2sPX7aZ2h+jL0D5Id29HW2+usTzXH59pB0XrBBUWTmewVZeBRScpFt9FsHETFIdDJrrMyf4BReM09DYVgqAoYopAnJL4OTGaEm2U4Kio4P2qIJ/uRPrae4cJxEyjNSacy1qLdoEzkCQ4X2Ft25HO5HxBudZD0zZsyhXWtSQqRZFQNVDWnqJsaXSKnkwhSbpIPs0zUkQQDCXNvw4ODphPZiQ6DVGrJjWJQJpaSqsvLi65OL/Atg2KHgZXSlCD4RbghwnacERD3Dd0a8nyrCPSeQaVBvE9WpOYqxF/hPm3ns/OYh5unqJRoEP30/C3gUFA0c2ZTkZ/sOCc9XjbiqqtSaiLGpqWxfkFq9WSlycnrFdrVqsVZ6dn8swTQ1lVHN444jAIdvlA5NVKUTYNlxcXIbrY3iS3jT6AaG14L6o/9+/fZ29vr3OiHBYpxO2dvNiZdthB+coRf7ezgasAY9dlwfn52QBt9CG6uoowxLEyxnRRNkBVV9Qh/18UJZv1mqqqWK/XXC4WQdzPgUqles62mCRnlo1Qe2DblmKzEkKm7pGaobEePv+ImERnYssQD45dg7rt8PYw+jCltA1zR+N8NUV0enq6dZ7oTA3n5TA3772nLEv29vaYzWYsl0vaVgipNgQ4MYBqqpbNpuL4+CVf/dqXSfNEZAR0CiqVfzGhBYXuousY2UfH0XtPE8TdhsGYoDoNznnOTk95793vsbw4A0+X6oqvjfct9rKP+lWwU0oJMjubzYLYpVRhlWXF8uSkS5+MRiOaqqZ24qxvNhtiZ+bIV+o2+fD8X3nlET/9Uz/FW299kS98/vNoBXVVsjeb8bnPvcade3eRAoG6f26y1EmSVGyy8nivJJ3lhYsjPYoUSZKRAJl3TNwU3B5tXbFerqjKgrKqSBNDoqAsC7Is2+bfBJQ0rtE4B4ayBio4LK5LR3ucu0oC33UU4hHbdMA2kbafe9tzfpi2GT5Dwj40/P0wtdOh2h35XMZsWEG4a2N2u3zHuS5zz9JUv01IsqPJJCxkG5AN3S+mTFROG9fDVfEw2pAEYSHJp1397F3DE/N+/ST0AnL4IFCkFM62oSmSkNfwGp0kKO1JtCLLUonSXds5Kzghg9ZlRdM2GJOEHgdClq3rWiISY8jHY/AqODvSkC81GXhFYz0mScE5lNOk+QifZVSt6Ed4oU/IRA2VO/PJlL3pDKMUqLAwao9JBEWpypazy0uKTUnrpOop5M2im9blgIfGOBruXXQgVlBlecp8b97lJrc2HDUoSfO+i2q6zxvWnUootOUPbT2v7sGqjt3fhp5Fzkk0jvcoFRwWdOCXyKLFtmAdxWbDerGibRqWlxdcnp6ilcYkhlTFzqSKyUh0Mu7cvcO9Vx+SJglVXZJlOcoq6coLrJZLLi+F+Kj4+BSEpOz6zTcd5bzxxhtMJlNxztGh1FzuI3IXiqLYIqbKZ12jYUIPQfdDKvN8eXnJcnHZIQVaC9okpFUjuohDRy5E1nFzOb+44De/9W2KuqEsy8550FqTZRnT6T43bt1DJwlt68Sp8dI3qW0q8I7zs1MWmwWVb8lVvwnA9mYffxeNdCw9HlYvxevcHeuYkhh+9jCdOESLhohMrIgZksGBjpwcr1HOuX2OiOzFDTdK4sdUT5Tsj+NpwrpIMkm1vXjxnNvPb3B2cUrdOjwG7+VLHJY+RTS8F21MpzqtjOk7Y4evoUPrvWdvPoOm7pzO6NzE1wn/RGOSmGqQGZQkSUjxzRiPRlJlo0TJeLVes16uKMqSsii6tFCUgl+v1x2XyXtHkiaY8Hnz+Zz9vX0e3r/HG6++wptvvME4zzk62Me1Lcvlgu9993t87+238Vne960JQacUIqSMx2NGo1HXAXoyGaOUpm1FERd6ETUfGuglecLIKlDSJ229WlIVBVmWUNViyxVtn3LtNvqwH7igeK4CB6hDR6PW0+A5BAdviBrvklXTrOdmDf8eC0Gi8zh0QDuEemcNdAlmNUC8O8daeqBZ1/QoXOCgRLJ0/Py4dq7rgdUjSUmHrH2a4zPtoIz3poyyvK++CflpYxKBfp3HtJY29HARr0+iaa11IPopkYPf8VyHx3AfVOF/sqDMFuM7MUqgNx8NQ4sP+by4+WolKZyiKLpyvsh0d96TpZnojpgkRMhKVGDrisY6EpP0k9U7mroVYhma2jtqryAd4bWiboUjk2iN9a3wVYxhlGVMRiPGeS4EKedQwQAlaYYyhrppWa9XXF5eElXkdceA3SZf7ToiuznK4WuTJJGGZfM5o1HebSjDDWE3XyokXBHM0wHW3I12h+e7rnLIOUtTl9g2qtMG4TICgRpotCBwaZLg25Zitebl8xc8/uEPef70KYf7+9w6usHRwSHOWS4uLjg5OaVpAin04ZvM9/a4dfsW6Wwa8s2SFqzrCp2PKMuS07Nz1qtQwnpNpDP8XnglMi/v3LrFq6+8Rmyi50KFgVYaXK9EHEXGYoT+cUjClSOiOXjOzs7YFBuSRFMUMU0jRlaM1NXmg0Pk6uDggBu3buF1kH0Pm1qe5zjnqMua9WZDXddYZ1lt1jRNjVIevKNtKi4Wl5RNjTJqa04NHYLhEQ1j0zS9cNbgvneN/DAyH86n4byO54p5+e151m/+Q8O8yxkwppfR33UaI3oaq3kmkwlFUXTojfd9qw5pVCiyCIvLS/Cey4uL4KCkoJIg1ObQpkcDlRKitlYa511QvzUdLyL+Y4yMQ9O2jPJcgqAuBd13fU6SpEeXFLTWY5Tq0kpxLNZrQRZHozE69DPSJsF7xWZT0jSCIKIMJtW0A/6Sc47xeMqjR4/4whe+wE//zE/z1pfe4vDgkDzLuLy44OWLFzRNw+LygizosbjQ2LGyBa3rN2pjTIdOxVRcdLr29/c5Ojri6OhoS0itm9sqAeNJRhNGSYZrG8bTGeVmzeLyAq+c9M1xkTivuuca+9GIkx8QK9VrmKjwTAR1CfvRgD8X19Wuk1yW7RaC0jmhwRmLrRbie4ZfHToS5ntsgSGCnLuk2G3dqbhudhHUIe9q6KAPhTVluiicvQbR/ZjjM+2gJFmGThNRNw0RjQ5iOh4VnJVtQzQkvNkmyGgHJyHmWzsiJvQciBBJmoH3q70XZUznqZsK7S3WSlmeUn1pZN3Ia5LEYJIE5y1NW0snUqLMcROcGEdjG1wDoGkagcTrumE8FoGopmlRQGqMODlJisnHFBaS6RyTpXilyBKp4yf0flAosjxnOp0ynUxlEivVpcms91R1Q1U3rIuKsqplkoUcNd5DQIjiRN6F8nx83c4RF9B4PGZvb58s286FKqW61MDu+3wX6weZ/Z6b1hEpu9cOrgvYKjPu5gGglJFIxdsONWi1p7QNxWLFxekZTz/4iOMnT1ldXLI3m/Pwzj2yLOX582ccHx+TJAmHh4fcvHmTw8NDDg8P5fMTg04SrIvEwpQsG+O86NJcXEp6R2mDt9cTzaBPA2otHYylvPhQtFF0JGlub6iRHxAFpuLYXucsxtSW99v6KFXVcHp62pX+ikMSEqdRptpvOydDw2eMYTqdMp/vsWks60I650Y9mLZpqJumi/Ssd2gdEB1nwVuauqKoSoHinehBDzftrfmx8/Ou4N0wmhw6CbtR3vCz47li7jzm8Lch7W1nJ86zIVIin7MtEhjfP0xFRT2c0WjUEWijkxUdnyxNcXVCVVScnJzw4NF9Pnr6lKZVoHK8C6iIcd05xcFxnY5MXBMqbJRqELkPHbV1vaKpSwjIV5xP1zl9QmaX+ZQoQailfF6QoM2moKrl2Ud156gxEp+HkG8Vk/G4m8Of//zn+Zmf+VneeustXnvtNZwXiYPT0zPpwzSd0tYNtq2lv5BWGK1o6wqXpBCq8rIsI89FMHA0GgXUZMIk2MAezRK+U3y2kSzQulCplGpMmtHUNYuLc87PzvHOMpuMmU2mKC+NLocOQHzmEUGRRxDnnN8So4SI9vR71JVguUPg9JXfDeeu8GWSK3N9l77gnQtVPA4/EGDrnu2Ayxfv5ToHZbjWek7NdWTaaLk/3fGZdlDSIIhmosTxVs+LEFmqyJsmkAhFw6FtbSD+KdIswSgp1VODDozyORJt21bKc2OOe7PZbJGhvPfgaozuIUWtcim5qyshGrZCWmptI6z18OBi9UOEm41JwSY0dctmsw65eottLGmWdsTUPB2Rj0ck+ZjCeVZVgVYG1Tis0iJmpA2JFin7JDGYPGGUaFIFtirZVJWU8gUcobWO1noRfwoRmygDhS63g+6Vu46J933+NToOQ1QjTVP29vbI8xycDRoRV/P7w+M6R4ghwjJYAMPNYrhRdNFDcESM0hilyExC27huz12Xa04uTvngvcecHh/j6pZMG+aTCanSPP3gA4q6QqcJB0eH3Lhxk/v37rG3vyciVqGUrmlbIjwtpXVBbt9a1psNFxeXYdP3bC3dTpI8lrjqjtitlObNN7/Q6ed0yEgYWyM3HuTVezQjjv2Vce3+J4fzvtN5qOua4+NjjDGUZd29RkUYMfQlMiYhNkOL/KJoWF8eH3O+2tD4Xt/Be0KVlyN2tXZeGjCqAD4GsISmrmnqeG7hcUUxrF1oO65Bcd6bLS7McKyGEV2cW7uExuHvdzeY3Q1jaJR3DXs8Iiqxa9SHayameYqi6DoLD1GUOI9j9V3Ttpydn3HvwR0m0wmnZ0uMyXBOkIxYEt6dz3ts4iDMq9ZFCL7X9lEKCBu1C89I5PPoVGPjWtpNPZgkwRgtCtubokdtEtFnyrIUbVLSLA8qrjn5aESeZ4xyqeIzxkgPsjyjrhuqsuTw8JD9/X1OT085OTkBpNWBDQ6RUYJIJ0aTGiOltybh5o0jJnt75OMR8/mc6XTanTeiQfH5iY1ia63InJG0k7xGOHsuNA3VScKN23fIRhkfffCYH7z7Q9549IiDvT2SNMWF8uroJMh6ln413od5pVTXSmXo0ES0xRgTWn0E9GywtuTit5GNiPJd53QPbcGQtNqVifu+3Lx/r++cuyEvM66NNlQ8Da9pWPnj/bCPWb9eFFz5/Y86PtMOSlO1KB8G1ESPt3cqWu9wbYxgQq7fyYZklAIt5C6jxQC2gwqVrtRKiaojznZKkt6DC6jEKB8RKwcyo1ivFqJsaRIUimJdsFquqKoSULS2ZRM2kSzNmEwnKB/0WrxCeU1qUsbjKd4r9vf2urx2lNgWaDLBYWi853JTcHl+zsVqjd1UKJ3iPHgvZbMmUV1aaz7f43J+xng0CW4bTOdzKmUCWRWcl9Lm6GwEIojoDrjeqdhd6EpJhZRzfT3+MBIYjUZMJpPgZAzRArYXX/hMaZo2TNX0vIlIrmVwnqGR2d10XLdAjZDkrMf6FoOhqQsuL875weN3efzkMc5aHt67z43DIzbLJcfPXlCs1+h0wt27dzi6e4eDwwPGo7GgclmKyUTZ0lsRkXLOobprAIKDsri8ZL1aoWI1BUPGeygp74yEjHFV1tx/8IBHj14hDaRnFN3zk2ck35dl2TkNcVx+lAPYjfdgHKuqZLlc7iAR8b1CLpTx7Z3zuNFGI2Wdg7qm3eIjRXLlIHIEQiMkAv1HhLUqKylaTKwZ6IzjEEnZjVbjxhn/FomdwxTuroHsENMdJG44fsNxHB7XRbjXj+xV5Gf4WqUUq9WK+/fvM51Ot8Tmtq5HgUkTVqsNL1++ZD6bc3G5oa4qjBkH1KtGa9X3WAlXEZvbRUfTBRtnjKgmu7bpK+gCb6JpttNaMQUy3Ixs29I2gpxOJxPpWzSZBBRtznQyJR1PGY2nTCYTZrOZ9Ps6OAAFdd0IgbpcU5UbSXe3Ym+fPPmIeegPliSpoEWhotKELvGjPOOVRw+5d/cOWZowGuUBRe7H2nvfkW7jfLhu/sSUVkfg9+I8ey+BTeQhtk3NfDbnzu3bHD97wovjF8wmE2JhRESKoh2T1iqWqCgQUYnh2G47KaoLQBg4F2maitNgQvWQ6yt0Ip9v12GO5xpqIsVzWyv94aLD019HP3fFJlRX5vFoNNAzieuPfq3t6hZ58QQxyW8TBMXVrWiWILnHrcNHRdJGjJ6RLp22kT4y1opXKoPYG9rILo96BEkqZFvJ0wmXIWR3aduGNElIjKYsNtTA2ekFq9WK6WQqWhXOc35x3jU108rgrWI0HgmcS4oxilE2Je0gOVHUjB0yI0ogpYC6I/hak7BaF5ytVlxuNjQevHVgG4wyJEqhrLxHJ5AnKXmSkGhDXZUdFK+UJ00M1oNvQ/dnG52CmAcA3FV+znChd78bGPW4CNI07SIZ66IS6zZMuLuoJHrwg2i/NyidwSbIPodnHt+3hWwBSmvKqqIqS3SekyhNVRZcnp7x4vkznn74IetiyY0b+9y6eZOqqvjh975HVVXMZjMevfqIG0c3mMxnpDNJX8RS1KZtKJqaFJk/GOk01CWnAm+pbVoWFxdSZq01LX1Fkjz33uGL/4rTB/fv3+fw6Egiqxj1DQdPKdpGCKkxv77L7L/uUPTOmwpjeHl5weXlxVVDB11AEA3RMCKLR6yUcrYmypuGBqiSKnVe9CSsaPqgOyF9HGCbhraWJoMqzIFPuo84Z7TWHYoyzOEPeU67h3PbSN7Qud11nHfP96OcPvnM7Yzn8NkOD2NMh5qMx2MWi8UWVO6co7UtSZayWhUYozk5OePeg7GkhGyJUikeqSAUR6zGRBQpjC8hQ21dK5pOziEE2z4i78mQkvKw1m7xekQYMiPLskA2HXFwsM/e3h7TyYTRaNSlUmazGaPxhOn+DSbTmYitKdEqKoqCsiypqpo2oKmxDLZpGkyonIxIWJal0nokHZEmCaM0JUsNHsfZ+TmbopCGpbalcW3YwH13b7ERqIxnj/jF1P+QFJ0kCbdv3+bBgweMJ7kEGEqFRq4C9dVVwfOnT6iKkuXZOaM0Yy9wv6JuUrRxLqCGxtD9vSiKLTvZnduEbVkF2xCRHD2YM7JYOxpCP1djmjUJ49erzuqQypd9LKCEQJKmWw7KbmrGe78V8FznAPlhmkqFlF3stj1AhsDTtj0q+0nHZ9pBqdYrEvo6+SGZTQTbHDYswhgFDpvBDfNhOkRefWdHmdx1VbEBiYpDDjVqGBweHtKEnzebDW3TUpUVTd3QNEuyTRUUYg2jXBjkShtUkKZO0xGT6ZQszcNGvlN2qoy8PkZ3SuFDyVdjLaui5NnpCWeLhaSxtExm34r0s/FCyG1bTzqZMBmNGGU5rmmx3nW5WbTGKy38DkIjPyXpHpTGhI3DaQWuX1C9aN3AMfDCFyDCpgNvO3rcRmnwV6XIdzcPr3zYvAabQcd4p7f+rsMSGObstdYYpcmSlLIsaeuapm3Q3rEqS55+8AE//P4PWF6ckyaGu3dvkSQJTx5/wGazYTwec/v2be7cvcv+/j6j8Zh8MsZqhVOeqhWukUkTqfG3LVli0InBNhZ8lG8Th2W5WnF5ucRbpBQ06OrIM++vXww4RMRhPBrz+uc/x2gy7hxoVCx4F5K3VqojY08mk4/dVD/uiOPnvGO5vGS1XnZj2RvQ8FzYJsTGjWsoygTBWSY4GQh9RdapF6lya/EupmFjejDo6rSCoDgbIkQViYZ9yiSu4120Y8gXGSrLfpzDtpvS3f3c4WdvH9GGxNdcdTzis/0kRybardVqxXg87ngoQ2e7dZZUS/WY8yJqd3m5EHRUKVAWvBBkRcyupa7LLnq2TgIQmV+hQ3lAlKSDbmz/oLrUVEQSIrH04OCAw8NDUb+dTCRlOxozGU8YjcdMxmP29veYTWehSi8nMQnnyw11Kw1GN0GdOF6jVHglYDNwDq09RnvSJCAZ4TrSVByUbJSHdeOoG1nrZVFycXkZ+DUxiLnqEG4LR26X/apASJ9MJiil+OCDD1mv17z5+deZz2fIxu7wrsU2Nc+ffMTpy5fCPalrTk5OmIxHONcO5qh0nZbeYIq6bgDViQnuopuSAu3Rh4juxcKP1rXURRUa4YZ1q/oUYnyfOHWyrobooAkBsO/uRSpO5f77uRoRz246h61ymDaP45okCYFE1gUwwi2L9zFEiGR+ftrjM+2gLC7OcW3dLWYZPMLCczS2pbU9nBtr6mHAjJZcCFVd04YUjrUuqIz2nIfW9hU3cVEVVcnNmzfldUoIutN5EAeKyAJgAixaW0tbW0ySkZuMBs26allXbZcWSdMsRCdpyO2a3vkwQm5TxtBsNpydnrJcrbDeoXQCVlJZaLkna6V7bj4eM85HGDSutWJI5lNG4zEgjcasbbFe6uuJm4ESMTrnhULlwubhdjaFrfSK1HqEAjWJ/pXW5KOMNNWooJDr/XZoOYxY4+Gc7ZwdF4m5IWeOiqCKCmJevitBVkoMfpIYxuMR4AM3COpiw9nFBU8+eMzZy2OaukIryyjPWC0Xkns3htt37nDn7l0ODg+kZBslsvcBMQORxfYEFZIkoa7rrgW7tdK1ODViEKq65PJ8SbGpAQ1B9de7SJzrF7F0WXbdfDu4ecArr7xCnufSN8mYIFEdxi44MjEii5UyVzfL7U1y+Ai8953Ds1qvQzozOk6BQBm8jOHnDMlz0Wh1hNCYHx8QAYeBhHwP3odSf287CF1y9TFQcF1EGtNXsWoAelLgMBId5sWHSr27aMnwuM5RGSq/DhGNrfShi1UX1xveLadt9xnsoI2xgWDscLwNk1tqL+Xmy+UCZXKWyzWj0YQkEcbIfD5hPp8wHo/ZbDadLksc+26dunbrPqJTH0Xm9vb2mE33mUym7O3tdTotaZp2KZfZbMZ0Nmc8E4ckTTPAd6KF603Fy9NLqqqWtiJeevdIhG9w1qOVbG6yXjMpg7Yto1zmHUjqU+lElre1lGUh4mphfoqD1qciuqDLh1SjF2wuCppFVDauMZnnSrgYyrAp6lBgYTk+fkmqPV9864skaSKmx2jKdcVHH37AZrXEt+JgrVarUFIt87aq6kFpfYJznrKMTQIjrygJz0NFsxb2GDtw+AlE+zS83uPpN/44d6OD5b2nUWIXE6MluIxZgRDYxH+jEx8/QxvVOSnOOfCxVNl31yxIdo/8xvWojenW/NDBHq4tpT2bTZ8u+qTjM+2grFaXQgDNM/FS6UNRWZCOqq6kWsb3xKCqqrCDNE4kpUVSk6Q9+kVrjGE0mnSQnfRLCFGJjdL5oJUIqbWh0d12btyQj0ZMs5wkH5PloyDABWkaINM063qrmBA1SNUPhHojPCKdfrE+5eJyQdM2Aj9ai1EGFdIw1jmJYJUiNQmjLO/E6caTMdPplCTNRMTOe1rnIcCsMXKFSMCKOf/eOdmuZtg+fIhurBcV2iQxAdoNwnU+Np3b3hB2nZ1gfeTbwInx0ZHpjLpDB0IbWtI9WknDrvi9UuDbhhdPPuSDH7xDudng25Y7N47AWc5OX1JsFkzn+9y6c5c7d+4w35uTj8eYNAMt4mtGy2Jvqzqomopipw0Ce3EjlW1eU1UtdVXRtpbVYsnLFyfUtcVoUXgV53eXixD7cSR4D01juXf/Pjdu3sQkSZfXHh5xrq7X607B9ZMQlD5t1o+/oCANx8fPqaqic+htHFMXUlaeUPq7XUoYoWDvfeh2GzkjrkN34ka5vVn64Cj1XBZBZQhRrmz+cXxjRH9dlcPwmoYb8Cc5JPH6h//G80QS+3Ccdrkhw/ddGeud3++iP9HGxA02aqJcXl52z8B7j1ViK9I0Jc+l2qVpLKORkHGbtiVNpSnfKOiPnIRqrDRNyUL6pLU2pJMNWZZ2qZj5fM7h4SHjsdiH2WyfPBsznQpSMp/P2dvbZzabdjaybh1F46mrmovFGUVRBrXpSNwUh0BQYE2abpOWt8aaBHzaK9XGCaqlhzhWWlZIMXVASBA0CCMIcGsttizRSjSuhke/JsKzQzSQZB3L71XYuG14NlpZTk9POTs55fa9O6J2GytowmtkbkiLgHfe+R6vv/YqB4d7ZFlIi8gno3zCKBvhXEDefGhP0TkDvnMSsjTtUOgumI5BDND63tEezm+T9hoj3kf5Dd2VVEfnfVhtk2U5ce3JZ4Zr1sN5O3TIfeeEDAP2YWDgnGO5XAJ0fCpB4UYxk/2pjs+0g3Jxfk5VbLpytSFxK0LOkuOsQPWNx1R4YKM0hQCZTqYTydcGaFAip7DZaAVKE2NMIZEiMDRhOzIpiUlIBpUNw0ZjwohOUUmO06IHEA1PjAZ7eWoJbbWWsF8pSNCgDVXdcHZxxrPnx6yLAqfEKet6a6gQqVgRaMvTjDx0Oh6NxuRjIaqmSSroBKGENC6QsHC9t9gQafhgTAwK7d3W5hJRIherNBBEQSlN0zbYVlRjkzQNEWY0EjquUbr/R45LWPgWSbMRDXTMjQeY0TqH8pJ6UyokUpwP/BnHZlNw8uKYYrGgvFywWa0o1htm8wl7R4dUZcFmvUIbzb2HD7n74BX2Dm9IOXeoEEPrbjNuQ6dRpVNh4GNxRu69Kms2G8mpO+fYLAuaupXGjB7KzYazk1Ns02C0FieNGHUPkSNpdijVX5KHf+211zg4OMB735EUdzfXyBOYzWYd52KIHFx3qBgJQae0uymKTixrqxIqvjByksIxvJZoSJ1zIj4Wnr+1bsch6Y1jhOK7ueT7DtSx8qebH95vXdO2Y6cGn+c7e7A7Xrvjcp3jAnSVQPGzdiuAojGO63eIIH0cSjK85mHZ8dAONE3TpXlGo9FWiio8NOlsnaa0zmK9owkdzf1gPSsgMUZso3OkmXTrnU6nHBwckGUZN2/cYr43I88zJpMp0+mE6VSclYP9ffb2DplO511lkfdQlSV103B8fCpdqBtL2fSN9Pq0bsDjlEaZ7Y7Qu2PTpQtlchBod0SIUAJDQXR1sLsujKULYzdMh3kX0x+m7yAMkjIOiIs4DGFOBUuoHd3YRd+mbixLV/P4o484uHEk61VrlDJYK39vGotRmkk+4f33HuOd5a0vvcl8by5j4rxIYYSeXagofa/6nmwAXoXgpK8skkq3NnBL+lS/ipMhHMM11c9RwbHj34dzN+5JkR4Rn11MwV5XubN77AqgDhGV+P3Tp087mygCjVOm8+mVz/q44zPtoDRNIxU4vs89D6XQ0yRlOpkxm8zw0EPDWnebHQpa7wWZaK9qHSgllTVoiVJiLjSyqaMTIrlSTewLA3QbSmISkhD5KJ1hlelJB2zD5L3Bcp2QHISN3zkuLi95//FjLhcLnIpQpSxo5+Q91nu8VpgsF6QmE8gzG42YzfdI0owmTkpFNxZbXwTOge/PH6/x6hE9jZi37KFvtCbL8s5Rg94gb31COGf8FB9SC0rROShaqY411FViOVmCrm1orUM5aKqa58+e8c477/DRRx9RbQr2shF5lrI3mWC85uLkHI/j8MYR9+7f5dbtO2TTGTrJxAgphUoznHK0IXJvmoa2tlTrmrIoOwjee98RDm0rGiSJMeR5zt58jkZz6k86QST81TTD7vfeC5/n8OiAV199tUvbXPd6kOod730ncnUtYjB4joo+vSMdYh1Ga1arFYvFojP2u85EJOTF53jlHOHaq6qiDlVxw1LIXjJ7OAbbaMTue+IxdEyGr/+4jS9GbbvGOP5997qHh7WWPM+ZTCacn5+z2Wy2zrtbrnzd98PP3n2+Q0cl/qy1pq5r1us1k0A2Xa/X/b0qKeV1rpA+RkgJelXXzKYzmsaKcGPraLUgV/fu3CNJEhEiu3HEKJdKwNF40jlBh4cH3Lp9m729Pfb3pMFjmqY0jaMsGoqi4OzshE1RUFch9e1csBvAoHeMUtLIdFjht/sch2M1HFPlfBcExrkmnyHONM5JUz5k841zR6kh6mUCD44Q6EAkQMXzORWrDCMCJ3bDKwnGgulBOy98FhQnJ6c8e/6CV199JbwnVD45Sc+kRpOmGbdu3aSqSjyetqlBaYyOhNUYfNkgvuexTvpjGaOk0WznmEfbP5zrIQ2kFNaazomJx3ZA4okVkMN5tjtXlVIdcTk6ekMO3xAVGdr1XYdIHGxRA9ZGkWU543HOvXt3ZSzaVpCUVqQWPu3xT+WgfP3rX+dv/+2/zdtvv814POZ3/+7fzd/4G3+DL37xi91ryrLkz//5P89//p//51RVxR/5I3+Ev/k3/yZ37tzpXvPBBx/wp/7Un+If/IN/wGw240/+yT/J17/+9WuFun7Uce/ePdJEHkqMcOq67jUMXOgLgaAKJjS3w0v6x3upuvAavBeEZTTOiLt+miRdr5wkzTr2epplJInp0BKUCiV7FqVloibRMIbuxjF1gzIolfQbRYwEBk4CiDPkAxriA5x5ubjkydOnrDYbMQ5xkarQzwaPD7olaZoxGo0ZTaZM5nvMgh6AShLamIMNEW8b5PYjwVXOqEh0FHpCjIOLMvE70HqIUvB0nJP4GkFu8r5CyfUKlPLefpPRxki6KkRhWvmuVFA21PD7EP0I5UTj2gZbNpyfnXH68oTj5885fv6cy4tLlIJJkpJrTa40tqpQPmN/b48bd25zePMGJklYljVNeYZJMozRQUjMUjcNbdvQNNJTRntDplJMaDGfJFlHNpby0FiqLv1O6qpmsbjk5OSE1vb8ERc4Tdf5e70xcdy6dYs7d+5sGZfd1BjQRdpZlnUiX9dulmxldgjgMx5BSTbFhsvLyzAHr6aKZL5y5brjph3LeocN5WBbyG3LgUXQtl2HYxhoxPfGEvuI0gwRi+EmODxH/JxI9rzOOb7OwYko6BtvvMHFxQXvv//+gDezq1I8RIO20z7R0A+va+hkDY9YgREj0zwfdU9MKcHdWyublyeSxxGJ9iwnSaTRXpJmjMcT7h4ccHR4SJJKGmc6nTKfzbh56xaHh0fM5nMhuWZC0m8acUaevzgRYb3aUddW+iThSYzptIsIwRhaoUxf/XLd3Pw4lGoLhe2+p99YfW9YREqePmhScbMOc8T25bOSinSh3064XC82FT9IVQurUyodvSAsEZlR8lIMirqRefzko6fcvnWbyTgnEtxBh67wYGmZzSYkiaIqCxKjUEr2F21AKwfKdkixC0GoChcovpQLrQP63nAy7wbl3j6mBLeVtK9DOeJzGXaglrm2bceHz04P7HcMdoyJhDQfnr0geXLuyOuJ8g59OrJuys65SlNDliU09f+fOCj/8B/+Q/70n/7T/MzP/Axt2/ILv/AL/OE//If5zne+w3QqsM2f+3N/jr/zd/4Of+tv/S329/f5M3/mz/DH//gf51d+5VcAMRh/9I/+Ue7evcs/+kf/iGfPnvEn/sSfIE1TfvmXf/mf5nKEWGWEGFS1tivDMlq829TkQhr18vBjZ2IPvZ5HYvCp6DAYkzCbCnm0S7kEJlaMCvov0zHdIRoXQ2yUBVwxVACdWt/gNUPkJBJ9Hb3Ra1pLUVacnJ5yen5GWTeSRnGq8/otwlPxKEySkGQ5JssZT2fkszn5dIpPU5oQqWitSLQJC10jnT1DqigsfOd9F7l4wkbBNtIyFFDzYZyHm4tioFwJ4f3SLjxGSvK5wcD3A9aloCJAowK0ohHtBa0Uz58+o1qvWFxc8uTDDzl+/py6LHDWknjZmFKToKzFtQod0a98RGMtHz17TuMs6ASVpZg0JdEBaUsMWZoDCWmmmU2nTEYTstB/RxyYOpRLVhRFSVGU1HUlBOWmpmlainXB4vIS73r4vdPl2XEXdvU4Hj54wHw+7wzLbmogjt9msxmofeo+z71z7G4VsQwzXtuLF8ddiWucv9c5O3HPibyt4ca7m5eOjksUIxxu7AInX43yhmlaYwyTyawrU48NB6U7an9du2MXHaSInGRZtqWBMnRk4jnj7yPf5fT0lP39fb761a/ShDLu9XotrSpCW4GoAjssWx2u6V3nMqI5cZx8iPSTROO9oWmkRUUs4429eayTgCrLc6qqRgNZLtyye/fvY1vL3v4ejx49Ym9vj8l4ws1btzg42Ofg4IBbt24xHo8DgKeDTPya9eZl0O2QDr7W2TB1DKAxSUpMKozH6SByVwJf6oFTAd39MLAV8vv+d9s/0yEd8rteA8Q5IUuHLLs4RUQVZbr3hrBF0u8OrLdBOT6gU6igiRXmLV4CPA9BW1o+R2Sm0RIdyocbQYsW6zWr9SaglB5tUhFOxNOGaqnZdMqduzeZzSYdShl7ZokT4vAqtqgYdJlWUhnoPKL94x3Wqph5h9BmIq47raRlQF+x5kNnbwZrSGOM6voDWdvSNIMgQYk9rupQlh8DhRBxeh/tvdxIFHJT4pehVER1krBfWOlH5xqsq2nbbfVmrZNwjh1JkB9x/FM5KP/lf/lfbv38n/6n/ym3b9/mG9/4Br//9/9+Li8v+Y//4/+Y/+w/+8/4Q3/oDwHwn/wn/wlf+tKX+LVf+zV+7ud+jr/7d/8u3/nOd/h7f+/vcefOHX7iJ36Cv/7X/zp/8S/+RX7xF39xS6L7k45YxKm0QSV9SVwkKpokDYiFPCRFz7jvmmYlBp0lXXfd8XjMeDzeMnZKKelsPTBo27nAWIkhFTc+RDu+E3+QKFV+Hcldcuwasbi4daJpvbC9m7bl/OKc58cv2BRFYMQ7jNLdIvBe4ZU0J0zzEdPZHlk+YjSfoUcpzmgab0HSsxivRUgMERJSSMrEdsZlOz/r4huvifjlxSFK0Ur0VAZOizD2rUQlodzOBycJ1UuE70br3nusF16MQhxP30qNUF2UnJ+d8ezJhzz98DGLiwuqosTbvg1AolSQv0ZgTAwqSbB4NlWFz3PGsxl7cyHEJlkmVTpaGjZqpWnrlqZuqOqact2wuTylKeuurLeuqwC7x144DU3boJTDWeFfVEXZEU2jEzdEBrr5FI74/XQ65fXXXycb9AfZ3fxA0JOqapjP5yhlABtQiV1Y/RqHJRgcHfrFXC4WnR5HzCdH6Hdr7WndEVd39UbaVjQ2ovZP3OyjNsu2MzC8DnVlLaQh+pcyTzqo+JOi8zi+10WK0QYM1/Ju+ig6Vk+fPuXk5KSrbomvz/O8I5NGx2Wz2dA0TUdsjfc7LBmN/w5FuqIBl81YNuXNJqZ5cqIqrKCi0q+nrkVL5+GjR3zhzS/wyquvcHh4yN7eHqN8xMHhAZMglqaUEDirquLi9IJNUbIp66AaLUrHEb2RHmNJ4MMJ0TTqcAAdmTMiEbKTqUE0H9du/HebYxT/tv268L7gVMfUTfeiMHN9MJx+kEbuP1dsvMQwuvusYeJYedWbMAUq7g1e2CFO2mGio8PivKSDjDhLi9WG88tLDg4PaL2nalspe45p/ESjdUoSFLyV8kg9gO9S0/GaIvITq3tUQCfaxtK2rvt7f5/D4FjjvaT30rRP6/SK5JLaTDMpTZZu09Hpdt2ak1YTFmsHAfRgPxqyWSM5fxgg9ShLDAQgH/UtTJyLlUiiTt7aCpynbf476mYcoeCjoyMAvvGNb9A0DT//8z/fveatt97ilVde4Vd/9Vf5uZ/7OX71V3+Vr371q1spnz/yR/4If+pP/Sm+/e1v85M/+ZNXzhMXVzwWiwUAWZ4KPIlUnSglToonNDNLUjBJV08v6RhIjDgkeT5CG41XvmuCFQ3TliENkzh4ITCI9LdMvg8PtYcBek8kLCyIVRo91ObDglcBtlWKkIZRXf+J5y+OWayW4vlrhbXR+w8ERi1RudIKk6aMpnNGkwnJaCxlfKjQdyGU/0YBI+8HLb/7GxJnyvW3FS5MgpJrEKJI9tQa46Ft2kAyNjuGyeG8Eq6sd12VDvQRhbVWOjbjqL3oZSgvwnwnx8e0ZcXl2QXHz58zHqWUVcH54pxEa7JEyq0l8oE0T0UoajpnNJ4w29tjOt8jGY1QaYpOM2nIaC1t42irirZZ01SSL/VWeCVN09JUNc61KN92EUZc5KLt4QZE3hhJuzAflRCR2Ya0u6kzMAwROXjw4AEPHz7sKoSuSycAgYTWkudpiGq2Req2zrPzswpERGOE/7C4FCG54XUOHYr+fduoQ0QDYtfZsiwpNkXn2NR1X3IZry06C8MxGI6FVKuIRLn3UgofSe+dSudWhL7NbxpeW7y+JJSD7473dV9DOfBYwt2VVIZrN4FrdHBwwMHBAavVqkNV4t93n+91zzumxiJXK97D0dERN2/eZDQac/vWbW7dvM3h4SFHR0ddxc39+/e5f/++oFStdFSvm5qqrHh6/qRTUJXqRYvWCU2wZ1pp0kw0OXQI5OT+TJjXkq6MCQivQlQd5j+errP17rzefTbXzf2tOebp2i10kXz3OidBopdIaPczdue7Uhq8wwcxRNEK6gnTKqSxVejW64KT413ArlVULwLbtIHbZ/no6TNu3rxJloSO0EmCV4o8H5MlGpNIyifLpBrJxe7FPlYeKohl9VrTNj6gMSHV6iNCFFJog3nsnewLYPFemgWqwR5jnZX7VaEBYNOGzxs6Db2eEXi0pusuLCggwWnpGxbGeR+do+GY98/QoQ0kybbDP1x7USE4y/476GbsnOPP/tk/y+/5Pb+Hr3zlKwA8f/6cLMtEwnhw3Llzh+fPn3evGTon8e/xb9cdX//61/mlX/qlK79XOoGQZhmNko6prgN73eRjlAmk1ky83OhCewblW75Pr8QmblqFUkVC+bD3YHciPa22nJFgFreuMdaQ+wEsqpUOWGK8nAEcL74KjZVFsVqvePr8OafnF1gncHvjLL71eIMIyHkPSCdnB+IkjFJ0nmKD0FnECk2A/xUep3pZ4thd01+9BRSRFa+66GVrggZ/I8rpu0C4jJuy8tDUDW1boxEip45lpAQlWNfrXdimFYcBS+MbcU6alsXlgg8fv8/x0+fcvXWLO7ducnF2wma1wNsGk+RhXghRK0ky8slEvvbnpPkIspTKO+q6QVmHXZdUbUPT2FBt4jtJf++grRuausHW0vAR5XDU9PB1eGxhkUIwjgGdcq2V9w7ImerqEPd/G0Txr7/+OgcHB52TvFuWGVGOsiw7ftQQZfk0h9Ya61pQmvVqydnpaRCV0l2aRu5px0EZ/hvg38QY2qbBWcvB/j62bTm/uNja1OPnDEX5hpc6RIpiwCBplRXQO0K7hOHdjW/oDAyNZJ7nW6W7u2M/RDR2SYLDz/Lei6qodxRW9JOyLGNvPmU+n7JcLKUpZGOJCqaA1HGEiD1J/r/k/VmsLUl23wf/IiIz93Tm4d5z57rVVdVzswfS3U2JMmmZEiT7gwzpezAM2DJg+EEg9WD5yYDhBwMe4Bc/yQT8QvrFsKwHfRRIGRYlS2iKFIc2abJHNqur6k7n3jPdM+0xMyPie1gRmbH32efWrRZlu8QonLrn7J07d2ZkDGv913/9V0aRCdG+0+uGUFY/FLZbYX19g9u3b7O7u8vW1hbbWzvs7N5kbW2NXrfXlN44OjriydP9JpQVjZG2n4L/HhQ+ldborIgxk8CBaJ+vRcib+BCSaMIygR8WkYngWEXxxtiP1/2++Fr6t/c+4hbN33O11Vxcc1zrKKbPLozFdtMM4LUPRpXXlEpCV1qBJlRGj8ZWMLib4JE2EuHBYZVINmRO88H7H3Dw4jmDXpfh+Tnrqyv0Vwb0TI63FQKZBJQYS4wUoXyQp0qQTRe5Jh6jszDebBB1FSdUxlybLtwgfTpxjJrirYJqSrgqqA/XraMdj43HxfGe1p2Ka3B8Ru38n+ewLHu22niqKqIpWQMKaG3IsqC54mmTBV6j/cgGys/93M/x7W9/m3/2z/7Zj3qK127/2X/2n/G3/tbfav6+uLjg3r17bN+4SbfbQWlFkRfkRd7IYvf6fVRWSNG8Bc+FYFxEXoSta7zzGA/Ox1imw7pgnfqo1BjPo65Yr3JuGqQB5K1Yll5YHGLB1tbKRGPeEm3je6KDMZpMeHF4yNHxS8qyam0hTwiPCCjplMcoEwadeASRW1MB2kss0yhRpfXeoWKhNuexDrQJsDetcqvyHh0WIRf6bXHbc9Es07EvfBA88qGGkWM2nTIeDTk7e0m36HBj76YYCyiJW1YV3tlmVfEBjcBbfC3w+dnLlxy+OMBOS+7fvkWmNSeHhzx//gRrZ/Q6HbpFNxh4SpRr+32MySgt+FlJV2U4bTG+ROkakxUNb0kp8NaKym5VNZV3M2XQCBpTO4f3FpOlnn9b6TMuIkZL+Ewrja3KoJga+jcuzirCUtGjkWcn55Xx/PZb79DtShXkWEdlGUFzNpvR6RZhM2EulJk2HwzMZhApyVLQTgzdcjbh9OxlA8vGhWeRFB2N80hWDiU2KWtLr9dFA8PLSzY3N7HOMRwOm5BGO87jTxRXbM8fCX1xg23JsO1iu4i+pC01oFPkaTGMk6I5i+eKYeJwxivoSlzstZLn5WyNrWFUzcjzgtWVHkWuGV6OmZVSDbcoJIwcNSliJmC32yXvdFlbX+fW3h63bt3izt277Gxvs72zLXW+igLvNVUlfKPzixGzmcjEAzx9+pT1jXXyTAj4Rhu8Mpg8FzKjk/CIEPYNTkkoFlIjYTHkGGH8tO/jZxLfzNtmzWiR2AZzaSzQxLS58lo8m7y8iJ60sWWPjNW5FtZcKcvRyheo9guw3lIHgUjtoQjXrfDUGuqAFmcoirguKflXeYs2itlkxnh0yYtnQ4yGzfU1VnpdvLWYwmBdRTmbMh536PQElbVOUTlRbs2VzBPvNXGHUJEj6WR9sXXk57UZNS1nyTdhQG3a/nIuGvZ1qHSuyLIYZgKI+lwx1BjSlxtj+ypJdh4dietUu56kczD+WOvQKiSeAKWr8K5sEkRq63C1p8l8eI32IxkoP//zP8+v/Mqv8I1vfIO7d+82r+/t7VGWJWdnZ3MoysHBAXt7e80xv/M7vzN3voODg+a9ZS3CvItt68ZNVkKM1XuRCI4qgQ4tlX0jadUHI0G3SIF1hJohYiFapxBFPzEQskb0RjWk2midxsUrLmxRlTZOpuj1WuvnFsDUCo1/L3ptznvKynJ88pIXB0eMxhNZdJoUTdH+cAGeVCpRAMQzK2c4wBQ51ipwQcpeabHaY6w2ypgqqP0MHTbLaLx458B5tJeN1SqBWW2IOcYlpMk2cmL4YK1Y/060VEajUeArQFkJn6MO1yAzzMrGbaVaslKKqq6oqhmzyYjnz59zeX7O2mCVvLfCy+Njnj56AtaSG0Mn64oX4GVidrs98qJDnhfoLAdt0EWHvOigTS7P3lqsm0nGkSeEoyyZAaMzslyHeGkViNaGuqqpa4VkibcbW+QUNOPBe7RzogFSVUQjJi20KF6Ub8ZSKj5Wzkru37/P3bv3iNoH8bvS8INUGxbS5u6N7eBYOiFT6nZRjy3dVNqNRjYmZz2TyYjh5TkiQd4uYOmmHq8fK6J5zlqM1kEDSPqoyAsm43MYDNjd3W14KfOoSTQ02nm06FnHUGt6ve01L3hvCRq6zEOPaFMk3aYoSuzP1GiR99o52nqOkUMihlmU5ldKNC2U0tSU2LqiKAr29m5SO43Rpin3oJRq9Eg2NjaCavFttra32d29wcrKoFEjns1KhsMJk8lLqlpi+WVZNl6oD8br6voG48mUzU0xymMY2Xl/he9ifdAUonWKVNjg62hM68g9McS018WsKUEuosl7PSFWfJsU5fKNQdMuhLQ6SHEdUongHsEh9GrOeGn7IBTyCyiP0kaEKmsbCutJ5Nd6TxHnVFmjMgm9OAU4H0TlhHPhjJzTOMfF+QWPHn/Au+/+gIPn+0wmI3a3t/j//Nv/Nj/x5S/hfUlZXnJ6eohXEzZ3VsgLQzmpMVmH2pmQaSfXHJEoZWMtoMAvyUQVN+qhlGU6l5vZi9GBjuAszlZhDwvVz1FNsqRWBu/EOKhKF9YhmufivAr0iKBuK5K8oXJza2Bqo8jzjBSdiXNF6xAStC4g+pLZpQPv09bBEHLgvMG611dq+0gGiveev/k3/yZ/7+/9Pf7pP/2nPHz4cO79r3zlK+R5zj/+x/+Yv/bX/hoAf/RHf8Tjx4/5+te/DsDXv/51/qv/6r/i8PCQGzduAPBrv/ZrrK2t8ZnPfOajXA5Fty8cgibuH9LgvJCdIMb14icCwpC2ZPGJkyIuTtGzTaH31CuLCxqEBRYtFnyEQp1rSIbz51i8hHbxd85RVhXnF+c8f/6C09Mz+R4TFwoXYEoVauVApg0KsV4lRTdkBzglCI4KbHAVANuwqCmlAopiw8QOlJBw7dJ78poPcLBzBHE43xhHNkrgO4u3Uc8g9B2e0WQiqbi9HkWnQJlcwlQeyRByFuO9CDDVFUWeY6uKi9NTXuw/pS4rdtY38dZy+Hyf05OX4Cz9Xk8Kg9kZmRF1zZXVVbKsEONThXz8wSrWSFaQc65xjCV7RTZ0FxAcjSwMmc6CB5bocDglxGTdTj6IsvriFdd1zWw6JdOG2pbY2mJriyaQSecefrroyN9ZluGs48GDB2xsbMg5F0id3reozWw2QykaDkOzAfirYZm4NURqd9xYtBZDfTwaEqXl01BGurk01xA+nyq2xmwd74XcenZ2xs7uLqurq5ydnc3Nl2T6yRanmhkaJmI8ICKTVzNi4tx5VUuNu2gkxVBY21/tcWkF4fh6DNOm6d+Rc6WUEd5BllHkhaiyrq7S6XQkzKkzis6AlZXVppbNzu4Ouzu7bG1vSc2afh9l8iZOf3Jy2ijKNmFPa7EBIRBOQN6EwQBWVtcYjUZMZzPW1rpNCNB7qKp6LuwniEhYb3wsTCHzQQVkDW+DFINu5rYcG8dOQj/186jeVe97YQReef113m/H3bIW+0icNSnY6Z3D1TWdvKCpieVE3bq2Nb0sxzohpvo8hPOQEERta9AZZTVjfHrC97/7bb773W9zcPgc5yzdbocnT57wv/3qP2BzdYV33rrFZHLJZDrm5s13WNtYpXZwPjxBeYPJMrzWYtAl/ZOGV4AgS6EYj0cYbSg6YaymxnIonxEFEEEMnEVSvJB8hV+WGY3utIKCPiRgZFrjlG24KVESA+b1TupKUH+pCSRjLirExnGolcHWLdelDTcrGt6N9wmK++HtIxkoP/dzP8f//D//z/zyL/8yq6urDWdkfX2dXq/H+vo6/9F/9B/xt/7W32Jra4u1tTX+5t/8m3z961/na1/7GgB/4S/8BT7zmc/w7//7/z7/3X/33/HixQv+8//8P+fnfu7nlqIkr2q189Q28gDCQtLA5W0s7nVaG2aZ/3vx9xRaTz2w6IkGvFosUOcAEwwfkMnnZJEhWRx1kE5UgtSMJmOeHzzn/OIMyYsXwlrLlJdYqgliPhlKKhcr14jF1WWFcgSEIC4gcg9tbruct7I1uVaNkdKGIQhhnRhzFrg1FoRCBS5BQFPEwNE4iyioak3R6dAJhGQRtpNaQtoLEdY7j7ehUiuQac3p8QlnL0+YjC7pFR16q+ucvnzJo/ffYzoaM+j1WBn0hRtihfg4WF0Rolqni9IGgxTYyjsddG7mxOhiCKHxzsWVaOLYae2YeIxzTsJ+1lLOZkJGZt5orYIwmZBrPbPJDFtZSedOxk/buXFM+GZ8VFVFp9Ph/v0HdDpRFnt+nKbowXg8Ji/ykP3WHpsSNCGF0pNxjTw0qbnkOD4+agiycXwsQyug5fen3lRsdV2LyNjZKScnJ+zs7ADw8uXLOfg4XhcBlYionPfRF04u1M/Px2XXtOzv1LhKrzWmPacctLn7MSqMa9eiiUrTCaKDnU5HjItuv6nsG/kj8fw7W9vs7N5gZ3eP3d0bTdZPNJCi0vX5+QXD0bgJK6bOSkSGspBdps08WTEiQt6LcSsGzgnb29tz/bGokaE8eMSZi2iq2IXi4MgGkxqHoEN/pJ51ioRch14tGrnLnlMzGhY+H59hHCvXGTeLhqsNBFmnHLV3lNYzKWtwcPnyhNnpMXu7N1jd2Q11fMQJq5zFu1p0P3Ccn7/k+9/6Q/7P3/1tzs9OyXMJX5ydnTMY9Pjj937I73zzd9lY+zpaVbz5iTe5cUPOORldcHH2ksFgC+VNEIObD+lH8mlcQ2LaftHphQKkIY1fC1oZZfENkcya1mpq0dwWTRT0S8aQjBNBR+MclxCr1vPGZby2+Hs0AKuyRnd144hEIwUky7J1CFpjc3EsvOaWDHxEA+UXfuEXAPjpn/7pudd/8Rd/kf/wP/wPAfjv//v/Hq01f+2v/bU5obbYjDH8yq/8Cn/jb/wNvv71rzMYDPjrf/2v81/+l//lR7kUQDbBOsTmVNwsaRdXx9WJcCWV1SW4N1xZbFk4RxoTTwVtVDBMvAty+3IhcxlB8f5VCIm04SZBNjSe8XTCweEBBy+OKMuaqEUwf+3yt1GSLp1nhswIkVdnBc4Y6lKyUJSeh9XTAVPVdRN2iMCCCqnR2gva5JUL6YjCCPfQ1MQBRe1rMYCQRc+FGGjekVh7VONslWTD5qlMULL2wUvTVNMp5y9fcnx0BLZmc22Ncjbj8QePOD46ZDaVzIjRZEInl/pK/UE/yCevxFqB5J0OSkvlU7ShtrZBjpYZl82ztW0WzrJnHP/OIxck8YZEJTGk4inNbCaZE+k5YmsmMYLqmMSAsbbmxp17PHjwQGr/uPlnGPsvZqNMJhP6/Z6Qp4Nx8apaPALrz/+NEr7H0dEh4/H4ClGu9brm51JcBGN/xvssy5LtnR1OL86ba9za2mrScef63idIpAobaQvQNQURl97LNUjK4uvxJ87rRcn6RWRHkMW6KYkRM/y63S6rq6sUhSAlmRExxMFgQK/XY3N9g93dG9zcu8nujmiOZHmBNhl4xWw25fLyskmVLgOh2HuPMu1mkKaTNv1MKJWVGMTpM5nNZqFmWJfhcMjJyYlwgIKHG/+dQ5zS5+otkpVWEyvAG5OjWtpo+rHWmGSeu5Iixel6kyr4pnNp8bz45UbMdb+nfRabc1ImQ2nwBkpXMxqXnJyMUNbTcSXHBy84fv6Mz//4T5BvrMv6ZwxFlpMHQ+3w9JBv/eEf8Ie/939yenpKZqSQ7Kyc0et3mc1maOX57d/+Ldz0nM986k0+/9l36PZ6vHjymG9/69scn1zyla/8JKvdNax3TSgn9lHMckuN0vgsU1Qv7TNJQGj5QNFwuWL8LxhzqSZJKooa0+HjPI6/p2Ow2+2GUG0pitpNcd52POJ9UzIjPpfFdShFgl+nfeQQz4e1brfL3/7bf5u//bf/9rXHPHjwgH/wD/7BR/nqpe3s/JJB1RYPSztda9coHM5Z1okmQeSmRGJt6kUtfm7ZYp1Oxvie91flq+eYz0vOH4+31nJ6esrz5y8YjceysIGkFM9pEYR4uTEUmSHTUuPBaEknxusmTTYr8qb6zZWAQoOUiP5JAEEBjcU35Fpbu8Aoj0RaINTJqeqqqZaptSYrRLyo3+81VrZ4eLZBA6y1wlXxHlfV+LpmNplwfHjA2csTBr0uKytrnL98yf7TJ5TTGSv9Pt085+LyEuU93SDTnWUZRa9LVhSiAptloHQTb27SB4ng1tXn1zybwLlJJ3aUa59v8TlIaEiHuK82QTPEiuDV4vnbMdIiJiBecN7Jw6PQ3Lt3l5s3b5BlYmS7hUVH+Am20T3odDeWLgRz4xeIdXS8j6EVJH3S1ZR1xcnJy7n0wkUPeFmL47YoitYT9C7oLwhh8+Lign6/z+7uLvv7+00oKKYKm3huTwjJhueAa40zPedcX7nG61pqgEREKaYbR0Mu3ltEPrIso9vJG62TOM7yPG+K5q2urrF7Y48bN28JWry6FoyWrMmkKSvLtJxIAb1a0u6dSzdohcmLuXVi2QYTx6xrnl+7mQFNKAhoMoFOTk5YWVm5Mu6ioeJDNWPvRKW0LKeMR5eU5YyyKrF1TafTZWN9A5Q8yzwrhNvgZSwJ5uiSUM9y9CR9b9laHJtGtdmE16y9y1qKjEXv3eExxqMyed5Hxye8+8fP2B6sstPLGeSGl4fHnB+8YHvQQ3W7giAFBHk0uuDdP/4e3/7Ot7i8vEQpUZfOjKLb7YQCjAa84/z8nD/6wQ9Z6XX47X/+u7z3g+/z3g//iJcvX/Lw4TvY6QQ3m9EfrKBzM2d8pEhtnA+ir1Q2yFy6XsXnnmWGrJD1pqyqwJVboleT9E+cD8vQ0XQ+pTV44uen0ylKp+qx807c4phMHYNXjYEPax/rWjyrK6sN6Qwg6lI0A9YblJ6Hlto0rGBYhKydRcs/HTiphZ56iosbUGaMiPwoJRLQYbDNZQv4oCJodJPeqzJDPau5uDhn/8VzLkfD6E4ghaOEUJllJsQdhYyngnPjlaAxeVFgVc7MK6azGaPRkIHJwZjACw9kVlqEh2hwBNKcDyEdfOBmWBdoGEYIrMgmEo0NQ4ZW4LQUJOuvDMiLrJGCj95bilrYusZ4xXQ0ZjIeMR2POD54gS1LBr0uBs/TRx9wdnxCtyhY29qmLGdMRiM6oYjfYGWF1bU1ie0qqTtkQgFEqf4s9yJyK8JzWdxkF9NxtVJC+HVXeRjpWIjjwJj5sIB0oxMl2aoUkh7Xe/cRgbFhTDhr6Xa7vPHGQwb9AYqQcaXnPx831qhgWuTFlVTBq9+FbCiJkYKSxdg5x3Q64zzoCy16U+kiFv9VtKHCqqoYDAZNmmtVVhI/Lwqmsxlaa05PTxtS6Pn5eVJKXgeSU+yPqKQcPPVAWpSamNd7h7EtPuNFRyJVl21qc4V6WlGMrSgK+kGwcXV1le0tyaa5eeNGILLuMhis4JXBeslkqmvLcDihqmRzieiZCkRVpVRI7209zKg7omjlgF61mCvVZtgt3n+6bvV6PTqdDkdHR+zu7s71Q13XgrY6Szmbcnl5wcuXx1ycn4F3kr3iZL1xznLQ6fKVL/+4pI9aK+MniIRF2QFRZQ3jiYiqhJBwDGGyiMNcs1Elz29xc1uGnMyNycbQlDRihWir1FXF8clLLi6HbPbWuHPjBjOmXDx6hLu8xNgapyTrBG+oy5LHTz/gO9/5Ngcv9snJWmc2oEeyrtVkWlCV8/MJp+czvvudd+nmjm5Xs7m2Ra/TR2PASqFFZU3jYKRGVbrntOH31miZQ52UOFM2rB9RIT1y4bQWqTkxauedixT1jD+RML6IbiwamJKJmPY9C081PP3kOxcdtOYeXrN9rA0UZ71MlEDgFN0vFUs1iDHSFImK+EHr/cYRF2Gp9CGlE37x9TiAWiJahKhVE69eFPFsjRwpC66MaWrdeODi8pKn+/scHh1R1TUmM2Ejcc35xeCJxKSQtZQb0FLV0wJkmjwrQOWYPMMpH2k50fGRSZZ48M0C2SyAoX+dVO8NGYoYFDgvhgsepTXdIoegtaKNcD+UV0xGk5BpIgqY8m0eW1tm0wl2NmM2mfB8/xmuqugVBf1Bn8nwkv3jI+pZyfb6Jr28w9nFOaenp5gsY3WwQtEp6AfZ86wowOQSHvBSl8QRjBMf7zkYoAtWfops0fSEvzJZFz3Z1FhN32/7LNR6WjAarhJEpd+KIpfQknVsbW3x4I0HzbNaZAXGTdYYw2g0Eq2BzABu/rzXeSmqhU9iiAWUECynk9fe+CUm3kLBzjm63S7nF+dC3NWitjoOAmfT6ZTT01M2NzcBydxLw35xIyMY702/InPJmMVwwLzRtPhaukBGSDsu+lprVlZWmuzALMvo9/usrKywvr7OzZt73Ni9ye7uLjdu3AiCaP1mAy5LqVxd1Y7K+kZzxIe+jCFnYzK0MQSALcToNT7hhLlm11MNwndlY4hjDzEylxkvcUzHTWpjY4OnT58295lWcZ7NphwfvmD/2VOOjg6ZzaZU9YzLiwuGlxecnZ1yObzEWlmHiiLn7bfewZiChn3ko6sShc/mn03zt79qmCy25n5Uu/Ys3l/6nNNw1aLj2Mxz58gAi6aclpycnjGtLbX3PHn0mI16SA9N7jyZh8rbkOnoubg44913/5jn+08hplfTZta0dyTOnHNwPprx8mLC1vYmnW4XnWVYcjwFRXeFvOhhaZ9R3DdSBygiSrHmVDw2dYystc1aDu3esIiexH0l7b/FtOCGABvS+ZVSjZJ7isg2BkeC3slrgvg2GXTOL7x/tcZcep+v0z7WBoqKEELzxIIFrYJOg5aFT2rQfTi8tLioxSYPNp05wUjRmXi5+Mb4aK/CN5tAlplGxdZ4qMJCbIzwBkajEc/293lxcEDtQjaSh8jK1krCNz4gGgqCsJmX1OEsB63xmSHrFPTX1vFFj6wzkJBP0z1iucVMoOZ24jXHhdDKZtkIliXHhRw1MdAykXkO1DnquuYy8ES8d1Jgz9aAaipBg2I2mzC6OGd4cUGRGW7dvoWdzXj03rs8e/wY5R17N24KYfblCZfDoaQTd7sUnQ79gZARTWYkrBL4NwA6U03fNMZWIIktLqLp5JGFTTz2aGC0fCMVnqMOHpSb+3w8X/QybF3PTcrl405W41hfRDZOw527d9na2g5IFnMeZWzxuiaTCevr680YvGLNXNMi9yd+REPYnC7DELnq9aT3IahPCFMilZxra8mLAqU1ZV1xORxKEbVk47DWcnZ2JlVz19cbBCg5uzxDHTlXkZh9tR+v88xiKMcEufYoGBURkjzP0NqwsjJgY2OT3d0ddnZ22Nu7xd7eHpubG2xv76B1B+GNzJhMJpyeXTYy9rYW3Y/KWpwPVdKzAoLjkmAA8vgUgWDtcL6F4lOUQW54Gf8iGsaRqXaVbJr+rZRqSgwMBgNOT0/Z3t6eQ5JGoxH/5zd/l/2nT5hMJxwfHzIaDQMK10qUO+/I84x//I//MXfv3GMwMLLmei+DKOhELUNGrhi6vumR9v6a19r303DR4rNOCc1xXC0iKEqpoN8kDpXC4CrPdCzZbisrfXZXOvRHGcPBQAQ9ZaNAG810NuPR00f88L33GF6ei56Mt6BkP2kNJcn0dE4K43mluBjPmNYwrRVZLckAlhynMmbOobQnT3S5YoZn5HylWkFzqHvCe2z6VIF3Un0tM1nrpDd9FrJJk9RtaEm10ck2oeBtWhOqRUBi3wo3TgXnIRV5S8OTLhRhTJ2WRdI3XA3tvap9rA0UEVOTnyZkEZpCuBueuAkF9rn3YbCpBjlx1jUbt0DXPuGliB6Ai3UnSBfH4CXFBdXLQJVzh6kYIfqA5HhAJeXJq9ry4uCQFweHnF9cNiEhHQr5aa2lVLdXlKXUMjBKslJs7fDekHf6dHpd4WL0++hOj5mV9cP71ru5zjuWPhABIO8kBOOtazawxq0JA11pKWzW6RRNpR6jNVY56qpsyg7IFAmoknVUTipNX15eMBkNWV1d4e7t23SzjB987zs8ffKEcjphc22V2XTM6OwCW1s63Y4UcMxzeitCiM2KQgSAdE7lAt/E+eCJxxtWzfW7UINiEU6d2xBcmx4nEys+83lDJo6vpvnWYLS1DX0Z4Ht1lYQZm9Tzsejc4Kyn2+/wzic/RW+wgtI6pBfrKxtA3GS89/T7/TkPKzmKRRivPSSmFEbCsmI0Gs6Vk4jfs6yJNx9QPa+onaN2tSg5FzlVWXL88oS9vT2yPMMFr885S1k6hsNLOp2CaTBm242HxgBUYR6luhfLxm5ERoQjUjSE1lQQrdfr0e/32dzcZGdnl9u373DjpiAkG+sbdHtd2YgQjZGz8yGz2TnWuoaDJMUdRdQq6k0UeUE0Xq9enwr3Qpj78proUrQqqQ3qotr1qR3Dvn0t/iQGyqLhlm7oMex2dCSFAGO5BKUUw+GQJ48f8cc/+H7gMZVoLdwhMThaByovujjrOT09I887Uj1e6caw8sHIvjJuUoPDt6ntCyO0/S15e85pWDBAUk5fHJ5tYcw2xKAbR8ygVYFBY2cjnK3Y2L1DbSxsrGHWVvGZEXRYac4uLnj/vfc4OTkW5XHvsN42hVVTJ0CyKh1eKypbM5pMmNU1tSuoaihyTVZ0qb2IsCk8blbNkZ+XkdEXi04ujq8GHQn9bJ3H1zYhwUqqdRYQMzEIUqXZxiVtjBJj2oKfUYRQrlEMFZHDFyqBRGTnUeUWopfn6ZwcawIvL9aOA+ayCz+sfawNFAmpzIsHtW+1AkQRioqLZHQenQoLgGQQEjUYVOCotIvE4nnbhzvnRatQTTPWudA+WN1xcAk6orOssTRPT0958uQJFxcXc1CxwpBlUtNBFGAVyqkGyVdeoVROp9NndX2L3kqfvNfDasXU+vD9UnlUq6vl6dOYfF1XmLhBOIezLkhyiwIjwVirrSXPYmqcQjSZPUUhmgzOzkIAS/rN2qA7YWRxnM1mHB0dSabK7jY721topXny5DEvX55wY2eXcjKinE4YXV5ia0fR7WGKnKLXYXV9g8HaKjrPGq6I8DfEs1MqGlXi3UU8yyvhpKS8otSqn++bNqV4jjeTwLJaaYxK2PgeFAZcjS1dtAznxuUyT9d7yLMcqbsBW1vb3L//QAQCgzKwi8b3QhuPx3OQbIMkxuY9abEv1VxLmn0kcfqynHF5cS7p01w1TKIRMR/mFC9aBWO8shXdrIvzFust48mI6WyCMWGxChehFEymY+F6dHIm44mURghoqMO12WABObTWoYNsdrpJxayVaJSIWmuH9fV1tre32draZHt7h52dbW7evMnW1jaDwSp50cOYjLquKGcllxcT2ajrSjK5rKOsLdrEQqMGtG7EsVoy8FVDt4XG4/PwYqAlbRH9AAJXLiILvtkA5o7zy9GTxfNKKLhulGtfvnzJ3t5e8xyzPKe2Vai/ZBPjRDVF5vr9HoP+Gru7N/jUpz/NYLBKkffaMIyWtUgl39uMtei1+3btdM7OhxygLZ4ZN9xk7C0Lq7e8hziPF+dTQn6PjpHOyLKC1d6A2XBKYQxTb6m6Bd17d+jc3MFlOZkyuFnN8w8e8+zRI2bTKbhK0BUxLYjhHnEcA9HVerxXWFcxmYzASRmNTqZR2pAVOVmeoXMtG40nuV7fZOOlPJCUJ7VIVm+MAlQoLdI6y56obQW2rNA6ktdNyBZarmvUFE1UaXZY3Lfafm+QEmfnxr1v+bhNtEGIvGG+BDoDiGGTl/OO0Kvax9pASTN34iYSf4fg6SSQXGq0NK9p1XgAYkK0Fn9jrSuFLQOyYUzDNE83Nomd58Fo8kEDBVlwVZyQgBfvxnnP6ekpjx49akiDKQRWzkqMqSjLnDyvmsETobnMZCidk+c9+r1VsrygtuBU1EyRapUqeGeR6S/Wezu5owdVmEC0qkVJ0iiD9rL5eA04T9HNKTIdVCgdysCg20NpxWQyZlZOmlLiVR0gwSzDK8/5xTkXFxeY3PDGw09gtBS5Oz44YHh2yurKCrrvOCmnTG0dlgRRvOx0u6xvbtJfXRUJfxVKkyua1OJ53oGk4UWvVQE+TJz5Ba31AOKkvIqwiEff/O2CsaM8mYuCd0iYxSq8BeV160EuGCaLHpFSpvGK33rrLTY2t+Q5+Mg7EnGn2OK5xmPZ5CMx9fWaGCjt1imwr8dzfn6OUlcVXa/2bTuH4iaqtW70EPI8b4y52WzWLMDpOeIYN8aQG0M9qyDA53lYkHOjm/k76PWwStHt9ZpsoZj+q5SUNdje3ubGjT329m5x9+7dEK7ZbHRJ4nytSsfZ6UXIgooFLeN9iXKqyTK6OXObZvrMbEIgTo3+9NmmXuriOEjP1fS1S0I+iRcqx8nfywyTZaho+l632+Xo6GjueouioNftkhcZ05l4vp2iQyekUa+tr7O1vcnu7h57N++wt7fHyuoalU0MVSIqTLs7xf6CptCeT/tm6ZD0TXhZJUZwbCnyGPtHKX/lvq/MMyUK0bVzdHo93rz/gGo8pVtkZL0OrrPGYLWLWVvBYzDKMD474/nTJwwvLoJBHbkVcv6wDMp1hT6wzV1ZrJ01hoyrLc4J8qJU0KvRcp9xDDjn0EpRBOM7lbZPjbJ4f2m/xNIjc1lPvuUqehB5hZDWn1YjTomyke+SOmGpY9YmiUTEKD5zRVMCJgAi6f60OBbjPUm3/ikhyRaB5LYMYo0L5+IAj6Xa44NIITZoY3PphJaYu0D4Gi/1egK8ls46ax1ipTqs8tSAc3UDi2lt0AYqV3Nxccn777/PwfMXVLOSalZiq6Ch4hWdXO5Lo/A2iEXFgW0dTktdg+HwgpXRKitZ0P2wIT0Y8UdRhqqSc3vvJLykVZO94W2Nt5YKhfZCvMU5fECXlFLkJqPT69Itcjm+KinyjE63R9EtmM1mjMZj0QXQBuU9mRLuTVXOuLi44OLigtXVVfb29jBaZMGPDg4YXZyTGU1Vzjh68YLh+Rl4T6co6K9KRea1rU1WNzdRWsIJgprH5xqWw3Y1RCFhtdY7C/9JxEBIxS6UGvcuZP4IGVOKksXJGMeNTEYIhcaUbPFagVJBXdM5nK1xriZubYvjanGRiRla1jk6nS7vfOqTrK6u4lVYQHx4/r6eG8NRcTSKcTnnXhs21apVtvD4EJeUsIuHuXEGNF7c1daGreJ8ikTM+NlyVtHvD1AYSXnPBBWy3uOsbwSpaMpLGPIsI8sziqJDlhkgENLzDBOMkrW1NTY2Ntjd3W0q+e7u7rK6uk6300Nr02g1XJwPsbYOfCgRO1Q6xOwJczIhGWotWUXO+6YvFje/eM+LRsIyY+FVx8ZnF8fHsmOXfWbx37nvigRwJcJevW6Xcjbj8vKSbqeDMYZet8vO7i7vf/Aem5tb5EXB5uamGCdra6ytr7GxvkGvv0K/v0an0yNF47xveWnBTlkYGfNt0ei47j5jNsriZxf7QC1+4ZWmpEgegnBkWvPgjXv0B13AMStrim6PwWCVytZoahQ1B4f7PH32iOlsHC5S42rQobSFeLKuMTIEySDQA8LaiROSt/J0OoWEo6XEL6LYLcUEvZP7snUgTxuN0j7UtmpTeaPBkiqSAwln5GpfRAPeWYtNCLDpM0jPnxrZi4hgfN0YNcc9iftr/L40WzNNIIkK19EB917C7a/bPtYGSmoRRoMivp52YOq5xLzytPDa4nlSrzr+GC3pyGEVl1ThaKTEpsVikcUtQoJOoFClMV6IIdbCwYtDnj3ZZzqVsI6tHK5OuATBzY1S9MF1CCmNNUWh6Pd6gOhMVNbhjSHvdvEmo3ROMoWyHLwnU02sCWzok9oGTosmbNPNj1yCIjcit9zr9cBbaiuciaLXxRQZla2pqhnGaLrdjmzytqaqS0bDS8bjMd577t25S6/fE+QHGI1GTC4vwVnG0wlHBy+YjkZkRjapbq/LjVu3Gayu0uv30ZkIrqUJi1HMyzMfG06NSxfQHmtto6gbn7t1bQVlMdZoYPTY0smqAuJmYgw8efYy8aL3QRMqWbappEgPeLzzofbO3WZcGpOFUgYqVEFtJ/VoNEIpRb/fl2G3EKt+VYt2XMDmoeFdhXFu5vVC0vtLf295Bh4xeUQrR6qyZg1CERfLdmGNmU2y2HW6XQb9FTEzG4KrCbVgwvuDARtbW9y8eZO7d+9x795ddnZ2WFlZbdSQlVKUleViOBQhtLIkIqTxerM8kwrovkVn0gU3Gn++mebzhsey/r0OvUj/fpWh8UpUZeEcrxpL6fNNP6O0ZiWUGrh9+3bjWX/2c58PHCDP+vo6/X6fbrcbVJ879Hp9er0BRadFrZbd3+u0V30mRQoWdWAWP9v20fINN/1dSPMaYxTT6YxOp2Dv1m7YF2IRvcC98J5yNuXk5JjL4WVTbsJbh3W24XI0/c78M3AhciNrjWrq4XS7oqFjI58PJ/yN2hOkfGWuhVCZMRmZuVoEMxr/i2Nj0ZiLe1iccyrLmIXPpJGGRWQmfjaSdOP3xWN049BdHZfp/EmvN64hMd0+vb5lfKTr2sfaQEmbUq00L7QTdBkZUilFnudXJt0y6zA2W1ZN2Cd2/hVoPWgcaAceLSgEJLno4ol3846EBLzE/8pyKumxLgwG73G4VhwhuW6tNFlRsL65yWBtQ+o7KMVsOqN0Fj2Z4bSm9h60pPhqxRwqJF5jiHW6qLMhgL9cpsD4xmgG/R6dooPzYnSgPJ2ig84MZV01Qk+rqwOUgvFogqscp8Mhs+mUzY1N1tfWyIschZAaL87OOTl4jq9mnJ+dcn56Rl2VaGPoDVYoioLtnW22b96k05NNuArS+cp5YkxOKVrZ/aTNGSdewlm1bXklzevh7yi5L3aZv+oCJmMM2nLhCppqvqmhY/SHT0CByeWrjNF88lPvsLOz06jyxsCOGDzzi+94PG74BSkc+1Fb6xUKjwj8HOk7zp/FTXw+jNEiWba2UtIgt4zKYVhUIQ/1ssRB6ISsNoGWY+qtZMIYjNb0+wP29m5yc2+PmzducOfuXba3b7C6ukbRKbB1TVlWjEYTQdVCMUIZ8iHTJHB4IC6M6TO5ej9pCMsThdGWIxYfhmws81QXj1/8bGxpiO11jJZlzzR9z1rL5uYm77//Pjs7O5LRlGVsbm7zuc9+gbPzcwb9PibLyLNMtIx6PTY3N+n2Bo2ycgw/pE7cv0hL04OXISzpfc4fB+myu/xahE9nnZU124hRkxeh2J1zZHnGrKyCgSuI9tHRsZQy2MxEQNJa6rpkPB3NXc/i8xSkWwdVco9WBm0MK6trjRPRlDPxEbmU8zlZ9FGuTfdd7JvYXx821mC+NlbqeMSWirA161mCoiwaR21IyCbfGfzckAwgafU2EMk9MbkgknK9j8ZNeM28vtnxsTZQYgn61BOC+U5OF55Fo+NV3tHixNGFmvPy8EEJMnR2bWshH2qFyjNArHhlRDIoqqopNEXe5e233+H07JynT57QHwwaSNpZSxmLMClZsL3Y5U3Mf9Dvs7a2RtHrNWXTrUcK2UXPtvbMqikTNwLVis3pMFGU1jgrRMDV9TWpA+Kl1HdmpO5HkecUWY5GMQvKqEVHsmfKqsIoyLQi63TIlGY6nTA8O+fk6BSlFPfv3mN9fV2ei5MaNePLEQf7+5wdHlLOplycn1NWZSg532FlbZ3B2ipr65tkvT5WGakKHJwOscCjwFobhln27BrY0ftQBCwYKpF4qnRD6HU4ITQ7GsMlGqpXFoEwvowKcWhnsVXLIfIuIGcJ0bGN5bYeklxfzdraGp/85Dt0ikKuSRmcd+2zkjOIITqbMRwO2djYaAyIcNeLvcC1ltbcHBD9klhPS+LQ82mPsR/iAtp6YyTXIKrDSungjfeoqopuV0TDLi4u0FrT7XabezfGkOUZa2tr3Lixy97eHg8ePODGjRtSdG9llTzPcA6m04rJrORyNE5E3pL5afJGHFAlfA3rIiQf+sc3/7vW0IjzNkXiPirKcbWflxtEscXFXRb/RTIjC+M8fn55qCd6uu04k2qz4/GElRUTQj99dnZuUBStSq4xJqRi5wwGq3R7vSZ0u4hOp/d6nfDWsvtM1+HF1NllfbdsY44OYjz/YiaMIEeGTBOQAKS2UuBgeQJS5h22BuU9h4dHnJ2diUOnQfdAOSmq1y+7XFxcMJ3OggER+z5kw+ko/KmZzQStWel32d7ZodPrggkF/rxvzfnkVhujVLX8jMW+W9y/FkODi0hl+mzSPoyoaOSbQKsxFI2L+F3t3F40moUkv2hTzmc+RuckD8cTvsNh6+rKc76ufawNlDTencbZ0iJHqReolJqDrRdhrvS8VzYm3T6g+J7Js+ZBGp+hvAu8BFFXtB4wIrvulQ4LRYZShvXtTf61r32V9S3xbi4vL7B4jNEUmYGwKMSHqbXBBJh6bWWFbp4H+kVIW4z1mwV/RHsvFYLDoudCto5HNtC6to0w13B4SXd1Ba9ihkqoSdE3VJRYrSWNLQNsgPJDP9fTkrqccXF6xtnpSyaTKUWny80bN+j1ungrEKn1HltXzCZjjg5ecH58JLyNqiLTml63x/rWNr2VFYpeH9PpUlrheHgU1iu8s2inMdo3JDWlaJhrr9wkVEC0QuZJHDPO0/zEkFE6dpaNFaWUwL7eCxnOWhHNSzc4Pz+BF72huPl54OGbb3Ln9t0mtNN8a3yWRmFrMRLiZhHHXfINCzfsl7w2/078fJ4XfPJTn+Ib3/gG0+mUum7LQcRyBXGha6X/2xCJVFIV6NwYMTgePnwoFaw7Hbz3nJ2dMZlMePDgAVprOp0Oe3t77O7usLWzzdb2NnkeFlgv3u9oMsZe2vB8IjIiY14ryQ6IoTTC2JdEiQRxirB001dRmXl5a8aPn+egLL5/ncHyKmQhPWYRZUlJ2vPf1V669yxsCvNGiozZ9FjVnLMoigRul810a2ub1dW1hswcQznynCvGkylVXYVn3IbESfr8uvaq95f11bJQwfLP+eYe06w8uLoZK2IxvLgGOqqq5PjkBAXs3LiJUZrRcMjx0RGj0Yi6rsTxhKA+LeVbBoMB5+ciGJkaBybogmidMZtNw6acsbe3x9bWhlRmj8/VhxB6MJKVJ/BXguKrYB5EftSye0v7Nn0/5UvG93SAOtI+bQUFr65pxuiFMd06Hu04W3y27bwSQy2txQNpunK7p74++vaxNlBa5OSqtHezASxZUGKLx88xjJONpB3oSE58aKl12U5aT6GlrkhEMRwOQhhHaYMyBq8Mla3xwOr2Fl/48S9z9+Eb7O/v8/TpU05OjhleDul2u021Xm1UqPHh6XY6DAZSfG/mW+9VI2qy3okctXIW5Rw6pLblWoTkrLWU1qK8p5MXQhQtK6ZDgcslQqiYeRi9vBTSYvDuTKHpdAvZnJ0lU4q6rHh5eMhkNKLIxROzVcn+0yf0+wO2trbodbuN5TybThheXuCtRePpdHLyTpeVlVVW19bIii4OzWRaoiobOB+mWQSci9K2CnzqYS6Hz+OPtT4oy4oH4AMuFSi1RIb6MvRtsUWNG+cD8z0puui9l7BZrA67ZMzFiWqt5Le/8cab9AcrTYgt2Xbkx7fjcTKZNBv8/LhudXpIP/uKplCgNePplLfeeptPferT/N7v/14oPFjNjfEURVChYnYsBBkl4judDhsbG5ydnvGTP/mT3LlzB6U0mZE0+bKsQmG9bpOB5LyndpayrBmNR7KoKpLvMkHTIWcuD8T7Kxki2jd+xEKfz/117SbYjhcagcJ5JGN5aCYaNK1huYCuLHzH4vfJZ11ydFDpDKM0vebFS180jgTa920fhnMNBn1GoyFbW5vEPUIcMRNQg3kEuq5FfA/VOmyLXvvi76/T0utd+tkl88WHG0/7d/FZLDqUrq4xWYZWisvxlNFoxPByyP7+Ps+ePePOnTtsbm2TZzmnZ6ccHDxnMhkTa2uJioKgoNqqoDY8QCnNaDSaq+JL6O+qrjFGsbKywo0bu6yurgKhGGicN4RN2xOQnOiAxnmiRSGd1HC9WmZjWb/G86R7Xzp208+nxqbWkTavAxl2ntMJLCX/RzQlkmfT9+YfqZozul5hg15pH2sDRazNq95ItLK1jpWAxWeMkzDtoBQRWYTV5iZBUkQuerBx0krox2AMGOVFaj8W1UJjsgKdFzilmFUVVmk6gTxlii57d++xs3ebtz71aY5PTjjYf87+48dMxmNGw0umsxmV96Kfog2Xkxkz6yHPUUZinkopMqUpbS1ZEc6RiaCEyK4T0ixtLVV3tabIM/BGvH9rpSQ4qdXtmc0qptaGpdKijMLVlsloiK1KCmOgdnSKHOfh/PKSy8mITqdA7exygWfa6dAtCmpr6WaGh/fvc7z/VNQrg3KuhDNojDsfCKK29lRU5FlGJy9acT0nhoB4uVdTMK9sJF5Jv/hU7TcaKwSDZ77K7bL4tgo/1kpYp65L6qoKRLcEzfMRCm7PFTf6GAeurWVza5uHb34CrWJsX76gkRBXUt7AGMlMienFRVHMLRRxI5tvy1cC1bwlBQ7rqqI/6PNv/sW/yLPn+7zYfx6QxphSrJu5UxQF/f6AXm+Fu3fu8fbbb3Pr1q1QDFCIq9/85u+S513efuuTzXlkLM2CsWgZDYPisBJ0UQyZPN78XJ2aENpvSM5xAis9rxGRqVALK+2BRWPBe3x4zq3vN++QeDze6fb95PnNnc+3JlPcROVnsb/9/PvtB9q5ljpXi8/qQ1vcgK6K+qGE1D3o9zk6PIyjHaXEYIxZFqPRmLIsGQwGzTiUYo/LycHpernIW1jWWs853TCvXuuV55X8G9ckndzDomPZOJ2ZYlaOOT8/59mzZzx7ts/+/j5np+d0O13eefttOnlOVU45eL7P4cEBk8kEpQJaoZRIRTiPV6IVE8sh5HnO2dlZQyRVSlPbmiKT32/dus39+w/od3s4KwioRqFUhsbinOjOKOfJlHC/InKN0jjquXtblvq/KPefRgua7tQ6iE+2BFetY+0nHdb0JcZeor/SRh/aEg0k80Wub/5ZxvBtDL/FY+s6ZM4ukG1f1T7WBkrsk5iellqJ0ar2PsbrJNsgz7O5QR22guTvlmjUbAAEC7LxdhR4jc6MTHgNSkl8r7QV3otXXnnwBvKskKicdVglKZPWa3zcgDyozLC22WNlfYvbd+7z5S//OOPRiJOTE46Pjzg5OeHg8JDRcMyL45chRbOLCUqakfSbZZls9B40HgNN1klZ19hZGcp1ixETNwKLJwt122zlmvQ0nG+El8p6xqyaUk1n4B2ZNrJ51BWnF2fMZlNqJ/lAfjBglF8wG42bc00msikJ1CmIiPWi2VKVJRfnF3RrJ7LhWpMFiNJZS2VlQkcOg0jSR/VeJF3Yu5DqJ96Jc47a2VBAUhCXuOLJpCNsMmFBUvML7TLUDSRcVpUzqVjsEk5L+ObGyFowmqANRTonpQDu3XvArVt35J6Jn3HNuEwXkCi1vrW11SxI7fUlqZ+kCEw6X6JuS9gsnKTGmyznfDjiS1/+Cera8St//5d5vv8c51yjxLq2tsbW1iY3b+5x8+ZNdndvsbm5xebmFt1upxl7VVXxb/7sX+Tv/K//K7s3brK3tycCcIEP1MTRQzhIaS3ht6SvogHXLMwCaTTGoY/PTx5kYmB66oXwjWNxMWyRimbRVwsGLgH9XDBc2ucT0YkYWorX+Ar4Jq4ljdUjEH+0Z6y/qmWzyNFY1loVVcTwCsrRKlyXR7hSnTwDZ7FlGbKkwhi04sEfHh/y+PFj3nz4Jjf3bqJMMD6sSzap5enC1yHT869FThYsjsvmGHyTWNC0xgL0DQnVqxDaC0UmnQ9hWyXO02w24+LsiKfPHvPog0c833/B2dlZEKz07O5ss72zBThGo0tevHjO5eUF5WzWrB9KhXR8L2t7nudc1iN6PUun02HQX2U2rQRxyQzWC+fC6IzdnV12d2+AdZRVhXehWrwKSFl0dkNIN2auwXzm3GL6btMlwWCw1ocQU6iiXldzqIgl6l2phMMYjZqgcYUIataOJiztKgvYxDDyITIgDyQaPBG5bP4XjHsRkLNBXkM3aJ4LSt1l+adE6t4YgeJalnBk8QuzOMr0Rggqjds3FjfMoSPLPC681HaIlVbj4HKVl8XNxWyQEqVFv6KuPc7kZLkWkTDvsWh0ljUQuaix0mxmYmxq8qKHUp6t1TW2b93mE9ZSVRXD4ZDnz19wenrK2ekZx4cHjIZDqqpqBHfyUM1SCvR5SQsOhFjnHIU2jUKmJyABzkGei44HhCKMDuXD4K1qppMJs3KKUqJRUuRCjL08P2M2mVDNpqH/FbaumY1HTPJM0mWDGNx0OgtquTKxUZAXBTrLqGuHqizT8RSTWdlYQkaTELda5dCIGEU0xaeaJ8kGYhPFQ4LoXDT1vfcN50TF8aAN6cYVjdw0QwdrsVUlxN0oaZ+MFR8M1rgGp5tM5HNE8bJOp8vnv/BFev1BM85Str98rk2Jj0rDMbzTbgwt4jXX1NU/YxeELkHSIqWm0cuzc/61r36Nz3/mM3zwwQeMRqMmnDQYDFhdXWVlZYVup4cnE6MvGIJlWTObifCZc55PvvNp/vAP/lDqwBAL5c0Xd4v/epc8F+UlM8sj/zY6iKHekPdN9wQ7sDEUrG8l5NN+SXslVrklecbp4t8eb+aMw+Za0zEmOP3SdSM939zjiOdwCeSOajZC4lP0PhS3nEdpriIki4hNgjmodmyDZzDoMRxesrm5iXV2TuTPe8kO+9a3v8XG5kYzxhY1Yq4z2q+75/bvxXIMPuhGtc0tyX5LM8qa/rEBQSCUBAnG+2Qy4ejoiGdPn/Bi/z0uzk+ZTKZUlQ312KRa8+pKn631Nby3HB8d8uLF88AfaYvsSZgs1J3Rmsp5vK1Eo0gZim6PotsT3krILHTOs7W9w9rqBpPxTMLqTkInom1SBQfNh0C6wdZOkiHyUBxQtVGBODbnqQQE46RN45e1SRShheBei/pyUNjW2tDv94KwoQ5GSai6bmuy3DRzQGQGFkdaW24CovSFm3u/HacKi29SreJegw+cLuepyj8lOihAAz3FVMVoeGTZfBwuTrRUsRWQBYZ5meSUZS6LiUU7F7J+o7flm4XeOWFE166i0y2o6prhtKQ7WGPQH2BVhnUapUTWXOxo3wxUuZH0nhTKGPHhlCLvdukOBqxubLBz8yYgJcRHF5ecHh/z5MkTXrx4wfn5OdPpVMp6K9F8EQ9VNRtEE6IKXlT8Yg3CX3GB4Ok9s+mU87OzQK5TdLsdSfUscmaTCZcXF5xfnEn/xMXaKfKQPhq5GVHKORomCqntoLSiyDsUeReT5bIJOS8ZMT4qxc5L04+H48ZYic/JBpnuK3Fo10KS3ovoVwsDx7oX7blNsjl65HdvRViorutglNSooEujtGo3+1gHSExeCTR4SReOHoZkSJlQAr7m4Ztv8PYn3iTPhAAtRN24OISNVLWaPpPJpEHL5tBClhgnrz1/FNZJ6nk5Kzk4OGRjZcBnP/vZJrUU5pGD8WSMUh2kqKJtvL44z6y13L9/n9/5nd/i2bNn3L9/n6IomutPQ6WEhTq9/mUhOhVt+XCrKrmm2Ad+4TXi8cFzVyoYQMn3zB8rfzsn3KB4vuWIQNzI1JXPLzv2ymfnzutZJO4uMzgXt+95D/b6axA00bK6usrF5QXbO9tUddXUMZrNxHGIqFVd1w1HaNEgeZUxdl1TixfZvD4XIAPvZXMLUyCinHGe4j1aQaYlkOdczWw2ZjgccXh4yNOnTzg8POTi4hxbT3CuxjpHVVfUtiYzeSBn36Q/6GNtzcvTEy4uzmW+ay2S7NHpCPduguiZc0EhezaTumCDAdOylHGiciwO0+3RW1ulcuLI4BXGQGY0aEOtHc5ajJYMNrzc37SqwItGjdfy7OdDLGIwo0TIDRUyk7zw61CKbrfPrCwRdFpC/zEFX8j1YZ0zpnG0xbEOi1hw7FGeK7aiave5iMBcfabzr0XURAACjbM1dW0p/7Rk8TgroQgTtP7rqmWcz1UV9R5bVVQx+wEa1MOr6Bm1i0JVtaWwhU/gMbTesnhWMWsjqdXiaqblmOFkhjddBhsddNahdhq8QSGiaV61C3pqmaYwavyJXktU5WuKoWU5N7Z3+MTDh/zYF7/I6ekph4eHTKdTLi4vefnyJcdHR7w8PWU8GTMtLcpDFjf2uiK6WNY5Cu9CmEgxGU0YXl5ydnoWUkVFuGkwGNApCqqq4vJyyHg4lMlgDMrLxMPTKIGiFOPJJGR+2KYoozJixGgjpQOsd7iyxLqSTrcfDKtAjAW8bmWYVUCs6jQuq1UzGZoFNSJTcoXBoG+1R6IHHbMnlJKS64SaIdHgcNa1nrST525UmHTBs4h6GW38oR2jvvmf/JNnOWVVobTi4RtvsL21JZWjlZaU8sXFX9Hc13g8pt/vL8ngicP89cTa4liTrCEzJ4OtvGc4HDKeTKRitNayaEbSqJMsrkVSbpPZFrzy9fU1fuZnfob/3y//Pf7j//g/BmiQoGXX/bp/Lwt7tM88Ig7znrqP3p2HlFC/uNku/r7MQJlHUOZDcB/FQEmvO46tlD7zUY2AV7XImev1ehwfHxNRvLj5iTBbj9lsxq1bt+j1eldCiCnS9Cd1bYvjVSmagnLhCJyVtbLRFrIWV8+oq4qzs3OePxduydHxMRcXF1JHLKQBO++pqhqUotcfsDpYZWd3l5t7t9DaMJlMOTg4YDQeNUhzgxpFlDnet1JSw6iumc5mZKFCdrfbZVbOqKzorFxOJozLikG/h6cWFNo7XF2hdAhFO9cUlo0ObhPmMSKaGRMDDG1KsJRQAadDiNzkMh9dJN2Ka6SNhPtzoylsm4XnnDgczhoptEoIEYU1PKKYasHwUAQJi4AMp3yfeeP1qpsU1+x5GkL+2mPkY22gaFprWgO5NgHesnhtJM7bxNsQq1NFw8M2YY9GYVSslCZQnC4kZV2Fc7RoC8gDqMqSsqqoqinj8RjTWWHv3i0Ga5tUTlHWXgaEWp7imELIi6TdOAgiGlAURUNAkiwwRdHtcWOvy8bmVoC+5XOj0ZDT01NOTo45OTnh6OCQ8/MzhsMRk/GYOtTnUUpjqxkzJeGZ8XDUKMCuDHoMBoO2XoOTYlizcoZHNmpvJR3PxEGupWRgWc6YzKZzbHcVIFNR2o3PRTaRrMjRmQ6hBy/iLsGL0kpJpehYRrx5Vi3hS6uQbp30nRznUAmJNXrfzrkm+0ZpFaTqbbPp4BPjw9OwQmS8hfi3DfymdNFuPrIwgZHFqqxK9vb2+MznPkve7bThLDyLunPxvLPZjLIs2d3dnWP0t2No+Xh6VYskttQIlmcoKrZuWs6FYgSqlecQi/ulqFWKdFVVza1bt3j77bf5R//oH/GX//JfnjsXEDx0sPX1G3uLasa5MD8vYxNnw4exdLUvmnvmev2NOQQl8NeuO09rpLwaVfiw1+cMnj9BoyRt1tqGH6S11E1KRf6UUk0xwW6325AcUzXR1Jv/k2rtucKzxSMy1zTrmEt4S1VViaTBy0MeP3rM0ydPOT4+YjYriZPOA7OyRoeaXUUhqO/O9i4PHrzB3t5t1lbXsA5OT884ODhsuFZZltEJ5VNiCZXInRuNRo1B75xjPB6zsiKikmVV4XwNZFRlTV1JVppyYtg7QhZL7YR46yPeVzYoTVEUOOOpfY0uxGmTrojOmaxVKiCttnYUmcEpjfUhjA9ok0nhycb1ldBYlglXBQS9rYPhJ6Uv2uzTJcBd8zxEgC7UNHMxjXl+fYs6KukzjuHxuFbkTYHTD28fcwNFSRlsIMLpDhWMhkpSpgy42GEerAtaKN4HPZAS5wJrOi62XvgLMXYrKZeO2svv0+mUsiwbMq2QF6cYBQrDysaA1fVt8u4KVemlUnKUNfctoTJFSKKVO794twt0tEBTI0arwNK2cZB3gxEhYZT1tU3W1ze4/+A+5WzGrJxxeXHJ8OKSi/Nz9p8+5ezlGUcHh1wMT5lWM05fnlIFIl1/MKDXKciNpnYWhaYsg1hXLnV5nI2/S9msvCjICwlzVZXorhBQDxnkEm7KjHAbYqVYnRUhFTtI8isvBQsDgTLYho2uhVQVCAQs18L20XCIz5fQf7mWjITIN4ocGx2eiatlgIgdq5qgSePPxfBeOMbbGP4LgmqJQRTRuHRxj8+sqiQj5zOf/Sx3790N4cisKUC3uAHE16N6bBpGaZqKhPBXx3aXIQHpuPPBBfJKvDMVnl2YOmLgBVRLKzPnaaXGdKfTEfKg0Xz96z/JL/3SL/L+++/z6U9/mtls1hxfVRVGZ7TQ07JNOpLz/MLP/D0JNO0a50IWcheIeXaO7JlnWbNptyG/5BtVKPhJ+97ic5F1IjUM23tYvP7Fe0uJrfJ6cs6kvU52zOsYNXGNiZlfi+nCsS/u3LnTjIUYtnsd42lZ/823mOlzDTLmQfRBpJaNzHeFMprcKBGAHA45Ojzi+f5TDp4+5uLiXNARRChgMRXeecXm5jZbW9vc3LvFgwcP2djYIs86eC8S7IdHxwyHl2itGQwGDAaDxuiIRS9jX4zHYw4PD0O9Md2ENoX7Z1C1rHFaaeqyxNYVyteSrWMMlRMnKde6Ifd67zCZrPO1q7C+xiJcvNZwjetIROschDpDkeDs8dS2DqTXtjlAkH6HcooiEPGzToaysk8abUJF5pg1mD5DWctieKdFTP0cMpyEKq46NLRrTYOAfwRD/GNtoBidCU8gFFwTVMHjakdd1Tgj1mPcSKLkvPe+Sa/T+CCFbHFOuA91QoCsq4rhaNQgM2VZMpvNsFbY3CsrKwz6q3i/QqYMne4Kazt3yIs+o0mN1blI4HsH1Ggt214axoH5Bxrb4vvpv+ki4yEhB6or6ZceyPKCTq/L2vo6xoOtLZNPf4bH7z/iH/3ar/Hs2QWXw0sZqNpw7/4D1jc3GnLmcCxpiM7OZGIpRd7tgS8EuQhGn8kyUUHFkxmNd2I0RrNM0BAxJJpU0gBvejXfLxolGUROPI9USC3+5hEeWrqRpF5pc76wm4jeRJz48m9cCBa92nQBbalCUZ0iFBiMi0b4XETjYnnxpmpv4I3Udc3nPvc5/sxP/iS9Xr/ZHKKh0C4U7YbvveifxMq8yya4fEbPfWZZS/slVaZsjGMPGfNqlrIYhb5xfulYjUZ02m+2tqyurvAzP/Mz/Oqv/ip3795tFEun02kwZOIzi9d8zbV7L5WkXWr4RWKfweFCOECyKayVTWU0GjGdTplMJmHeOlZX1njr7beYTCb0+/3Gu5tbpN08EpP2XfN38795JOBqm9frkb9p+rjNLPpo7XUX+jgeIuckEq3TcZKOv1edJ/33o1zDMuOkkWX3ck6TtUJrVVVRVhUXFxfs70sY5/nz55y+PCY34KxIJXgnRP7Yx1lmGKyssnfnLnfu3md39wZFp8vm5jbWQWVl7Z9VYw4OjyjLkrW1Nba3t0PdnHa+xj0gyzI2NjbIsoyDgwPG4zFKqUB071DkBUVdkRmFK6dgS4wrMdpT1cL96BQFymisrRqdE6Eb1MFobOeVq1pHLGYnQTrKFGVp8VpLKCilfjgfIvchwSBkJUWDKt5XnO9VWYpzrxV4067JyjeojShxt05WrGOVrpsyF9vX47hY5AV6L1mZr9s+1gaKr2vqqqSuWjJfM4nw2EqyarQKBoITa1YrhatLSQuuZ3glCMpkMubs7CzIFYv4VLS2NQblFZnKMR3hcayurrK+vs5gMEBrTTmrUVmf7mADn3VwdZsw6rFoFereJINu0UNb3JwWwz7pZ5yKG2YbC2+OoV07vZL4YzUrpeS3FvXEb/1f3+J3f/t3+OD9DxhPS8rasbq6yld+4sf513/6p8nyjNF4wunZKWfn51yenTMdjZmMJ0ynY3xdM51OqGYTytkUZ4OHqkXcrZMX0FdNKCUaSyDCd9roYKBkeDTWh1h8SA5VAZHSmMarveJVSpbq1bGRbtQebNgEYqZxi+z4NvvYSzZFkzkSBdIixhmO8cyPtfQ74+uxYmdEvarAj/rEJz7Bn//zf543Hj5kVoqX6hbQk8XnXNc1o9GIra2txphZ/t3tJrDMiIivR8L4UvEtD3oxzpQaa/Lna2xM7cb39ttv85u/+Rv85m/+Jj/1Uz9FWZbNfdRVjTF5YhTKZ6+cX2tsyKZKjau6tlSV1IOazcaMRxecnZ1xdnbG6ekpo/GYcjYT8vhshvOeLC84eXnCV7/6VUajEaurq1LrKVyvdY5WbWOxj+f7Zd6VvK5fVLOIt+/PG1lzY+xfQovPt9vtMh6PGQwGrzxu2br0YedO2yKCmL4eWzRoI+IZs0+qqgqk16ccHh5ycnLC5eWlzBMtWk/eKwmZoHBISGp1dZU7d+7w5ptvsntjj8HKKlmWCw+urlHKBENAc3k55OzsjH6/z9bWFoPBAGttg5DEMFckDRdFwc7OTuOgxntp0FFn6eQZuYa1fpfVXkGuHWVmGU9HZDiyvEflofZSAT0zYd1W8iPrHU0RUxe5JSpxtIIjYmyF8pIdBLIP6MBfwUfHVeNMyH5TksqufUCdkXC410Gl2ktRUq1CRpkHlMab8LeLEvgmJChE3mZEKR1pokn6nFND+E8VgjItJ4BoX7hgjZssE4Z0prFWo5QoelaVpOpmXuDd6FnVrmJajhpr3hhDvz9gMFihKIQU1Sm6KDKp75AZsZiLohHMkoHsKTo5XndxpqC2HmWysOhEHZZgdOirix/MD8L07zTVbxE2i2IKcfOPRebmoT6PzjR5bijHY57sP+f3vvl7fOcPv8PRwQEXwyHTumKwMuCrP/ln+Jk//2/Q6XVRxtBZW2N1Z5tbVQWzCl9HopVk6NRVyfDyksuLcy7Oz7k8v2A0GjKZTBiPJ5SlZAfoUH4gIgzKZDjv0Wgyk+FCSqnXgecQFq7Ww5s33ub6LYZdIpLinZhsMoOaz18/aeKrviFBk2z4qf/iVQDDuHquFq1p347vGWN4+PAhP/MzP8PnP/95siwTklvC40jjtPH5RgQrInbLJ3gMI8TxIyHFxRop7XhSxJT5tsBXXGxpQjeLntB8+/BwUjQcO50OP/uzf4Ff+qVf4tOf/jS7u7uNwZbnBc6mC9pywmlZByXL8IwlG08QzYvzC168eM7h4XPOzk64uLhgEsKw49GIsixF7LCqQthR8+1v/yErKyt88pOfbFRzmwccEI5FDOWqgQJq6Uy+0hssWh+NPRgNnPB9H3UBf92WGijD4XCpkbvs+B+lNQ5UivL6FimK9+hcjdFSd6osZ1T1jKOjQz744ANevHjB8fFxExI1obREVXu8DuKSXu5nY3WN23du8/CNh+zs7NDrdoWkj6a2Du81xgRipoeqKjk7e8lkIjySwWDQcHIispNys/JAiO10Ouzs7DCdTjk7O2vu1dkaW00xnT7b66v0uzndTo6rJ3QLQ2b6EAyLPDe4kEVjtBhATkuxUqWDAZAb6lquoTFnQ4hZ5qfG5fMkXtFiCkVmEV6eyjQ+zO94866ekWcZtbUhqSSgJgja4oLxFDVMjNZBnDOo6yqNQaN8RFe1XL/Sof9sQ+p3ER2La3e4kY8ytD7WBkpdT3C53LDJZIE2xqOUEF+VsnhsqHw6Zjweh5o0NZPpJIhUyYBYWenT6/WC7HMWQkAerSp8Bkp3yLKCXq9Lv98niwPaOcmDl2ARJu+AMUE8zIZNONk0lGHxCS16u8u86aWtwfza1S7GNyFsWSEVVnnH8OKCb//+7/N7v/07vPfD95iNZ9haPJbeyoCv/Zk/y5/96Z/GdDrYkGvvAac1Os/pdnp0Q7VbhUwMEYGTmHFVVbIhzKY45xmPRpyfn3M5vGQ2K5lMxlxcXDAayjGzyZTK1kxLeSbaZI0hIWGSrFUGjQM83LeP9xu7IWxc4hkEbknzn9x/nOBteEhmTytsGA0WF/b8ZIvyUfrcNd+Lap9PGiIBQWxMKKq4vb3NZz7zGb7+ta/z9ttvScVgI0UPiRwqCPCsDuasl9CYFwXWCDsvGy8gpdpRiYHCkjBM3AhdK2CmlWo7NDizNhhnLghjKb3I6+fK32n/NccoKYaolOLevXt8/vOf5x/+w3/Iv/fv/Xuth2rnY9uEPl7cpK0N0uUhW28yHvPi4AU/fPePefb0Kaenp1TVjOlsyng8ahCTlCsm35lhwwL69//+L/NzP/fz9Ho9SXtv7i1m131YKGMZ4f06w+2qkSJ9FH9pEafrv++jGQ4pihiFwOZr8ny0dt01XVUGjX0XHY0mwNucJ26qVTnj7OyUF89fcHDwnBfPn3N6dib1raw4l8576lgDSmu8F37c+vo69+7d4+7du2xubjZItvcgSgABiQ3GtTEGo2A0GjK8uCDLDGura1JTrG7VW+OYSfk4EfGL5Ryig6tkYSc3htwYNjbWmcxKhpMpyjvqqhJBTyUZOZkxc2VTlNKyVuk0dBoyUYNcgyRFRA6jrGgacSZQIZs1pADH7EOtRXXTB50cGwi7Wmusm1IYRa5lzfaNrEZ0zCRD0UEQ11YoVeARXRerJDNKp3sWItMQDsEp0A4aozSuRwqu+DqvaB9rAwXl0KZNd8yyln0+vrxkOLrE2ip4UzOyTEqN592MTn9dRGmyQsR+lJDnOp1uA1mBotPtkWUFRXcFpQWdEbhZi1egTGIoZAKZeYfXkr4qWSQ6EA8zjBLm9aIHnrZl8bvUq1wGmTXxyzQEEk6rg0/8zd/6Lf7JP/w1zo9PKCcznBd120Gvz+e+9GW+9pM/SafXo3aeWTnBKxHayfKMrCgwOkfqCmkpaqjbuhEo6HSg6K+EIlst+hO1Z7z3DUQ6G4+YTiaMxmMuLy45OztnNBoxm80Yj8fMpjOctUzGY6pKalxUlVR7brRRnBgSJhhlixu30bohPpe0XnLcfnyY5DpkEVkl8VZCFE4WulYHJMbLI+Pd6BaliPfnkBirV4pOv887Dx7w4z/+43z2s59le3tbjvfChHFetcXsQouVkuO5lDacn5+zurrabOrLDJSrCMeyDUVd+S0Vy5JzhkwiL+ngbXgiPZdvUKv0u66qXaq58NVP/dRP8T/+j/8jP/jBD/jUpz4lC7/JWq0VOZEYfgubuTZi7HitGI4v+fYf/iF/8H/9PkdHB1RlyXQ6YVYKgT2Ga9JriddnjHjQnU6Hd9/9Ae+990M+85nP0oaXmgDjFSvsKnIXr9o3loZayCIKH2yyweJjc9caMv9i7UoYOIzLuAFHAyWGyv5Fm0/ubfEa5nSo8M34ms1mTCYTLs5PefTofV68eM7x0THT8VgcgcCjwIoMRDRm8jynP1hh88Yet+/cYXd3l+3tbQb9QfOsGo6UDgkE3ksdJy/6SkYr6qpkNLqkU+TNdaaOxnA4pN/vN/ykdBxrrdnY2ODg4KBZ24wW9HdjfYOdGzdB54xrEbz01qCcUAIMoCsb1heNNprg7xBvQCuHti5s5AqrNdQxpBzQTQVaSY02rXVIwpB1KSKyeZaRGYXSUUemXTPmjK+qEm2XaEIGx3Re/0iyqRS5GO8+JBssxNZVMIqiseJNfHZW+iKcn48w9j/WBooOcs1lJfVQZDAKSXM0HDEcX2IyqXvTH/QxxlAUHbLMNMqrShnqWgwJKdjUlpI3Rqq5apPjdUFwmWV59otLqBggWovVO6srsqIjC5ZXgMErCWVY6wKcN6910iyAwWuIanyxyuhHifXKC+ARgbnxcMh7777L6fER9XTKbFbS6fRQwKc++Um++rWvMVgZcDkcypKrwOQ5pmjz17Uych9IBrCzMY2XZuXVymCKILcfIMsi7zShBRdIbXliVFhnKWdlMzFiIa5yMmU8HDKZTijLislk3ChGXpxfcHF5wWwypQ4icFVZNTC+DbHjaNCkc0lF4yMy01V8XWGMik6ElAswugk1xbCT9kLclRTCdsJnWUav12Nrc4u9e3d58623eOutT7C1tU1e5HgfDBBZp4PXrOYQtUY500XROFmsI8T8J7GpXNcajzuEUsKrjTmXtlddRbrYxxTDoijY3d3lC1/4Av/H//F/8M477zSb5OJmvTiOozFZu5rC5Lw8OebX/9k3ePL4Ed7VjVJxHIpN2AThqMg8j4q30wb1K4oOZ2fnbXq0b00vr5oTLb02pWJ/+eQqr4aFoA1rRhTnX0YIJ72+FIW5YlSF9SamzKYoy7Vjq1mWgmM0d5hicWxAa1RE5JgQxhkORVp+f3+fJ08e8fLlsawHmYR6fFNmJIwjJ2H71fV1bt++xe0797hx+x6bmy0fS89N7viL8DEENVBBXt5S1Y7R8ILZdBQEJGf0+/2GIBv3hbQPZyE8qJRkqJVlyerqaqPs3Ov1ubXzgC989tPcvn2PvDuQ71YGq0VOQdmgEhudK2/buZY0jSM3sQTJvPp1DAPiPcpYMiOlW0TzS1FbySKyzjKblXgn9YGKQmpcqbBGZXFe1jWZ0bK/KNWIX1oXNK0Caq0Qh7yuAwcM3SBbcVzEzo9GS0QgnYXatoRoj8NPpsvH2ZL2sTZQTk7PhPAaEI9Y7KnT6ZDnBf3+WrOway0FnZRSOCt1cupozeogIGPyZjOG+QHi8I1QjjyQkC5GXJAVde2YzIasbm7QyXNJb1bg0ChlsOgQTlBh04uZF+GGQshAaU1h5smQqeRzSrT7sDhyXE9Ojo55/OQDZuUEo6A/6FKXlvv37vHlL3+Jbrfg9OwU56HX62FMRpHJjw4WtG1CJIBtveQYX4zXbrJW6TQiGA3qo0PIKzPBU1JS2FBndMJEa8JbzolKbTiPs1Y0B6xMlNrWVNMp09EQgPF4zOnLU0bjwDuYTBlPxlKb4+KiqWVTlmUjPpZKSduwMLpYbTSiAvK4m8yjTp7R7XTo9wf0+xIa3N7aYmt7m62tLW7evMnKxjq9fq8tU08svSBNqA5KwjxJa5AQ5fFO+rXbablOi2Tw5nyv2Ew/rM2RGJssp8X3l51r/hoWrynNjomGyle/+lV+8Rd/kd///d/n85//vIT2lmza6d/Oe2a1aHiUZcVwNOb45ATvPdPpNBHxa1Uy45pgTECFvGR4FEWHlZU11lbXefDwIbu7O0n2EXjliNlQr+wnH5A4n+wf13xm0Wh41Xmv68vr2qvOt8x5SQ2UZajb/Ilgfo0JKJOfPyi+3ZoqcpDRYnwOL8+Zji/Z33/Go0cfcHh4IGqvrgrPDMq6xFtFZjqN9k+e56yurnLz5k3u3b3L3t4ea+ub5EUPE1LFr0vFVgSjxIkqsA5o6qwqGQ4vAQkbjkYjQUECMhn3izjPtNZNen+sJA5xjZQNfWVlhb/6//0rvP3mQ9bW13HW0+/3gbZAKIDyDl9XWOpEGXfxGShqKxoj2ilcQE1j3RxCiMdZhXOK2oJSomxtrcVkBo0QX5211JmirkwwFyyoVgNHUClRFDdGY5ygOkbnmFw3dbuUUhhXofQMVcuzFecjHQwKo1N+WzCsvMY54YP6gBzX3vC67WNtoFSlo9fr0O12KPIcuy71CfI8p9vp4hFp4tClCEmpLaonAyzDY5q4s3Ue5yWEIQqkXgp5GWgma/Lg2sXHM51MefT4KW+89RaDrU0qW6F0FuKHOlijrccuA7cljomRZALfoJgL5cQ4chpPf902Go149OgDjg+PJLvESxbNzVt7fP7Hvsjm9k64b0+n22kk8o3WeOsCJwG8ljTatDZHnNjpa4sbzuIirUNKsVVWiFd5hnZSr0hJN4uhYpRk+CiRY7d4nJEijbnpSvhJKbRzVGUZVCTD9+NDXQorZMpZSVXXlIGXUFZVW7siEH+tC+GjgJDESRz5H3mek5uMbtGqSEaidPzXhbQ8tMYEYrDSyz3nKPm2rMneIAZRluUNzPwqo+NVm/zrfkZ23MXPLcmqWRICWWzR64z8B+ccm5ubfOlLX+LXf/3Xefvtt+n1enNefLymxfETpcHHw9Hcoh8h5DzPqCqR0o7nMwENjbWE1tfX2draYnt7l93dXe7cvc/GxmbyndAULkwtjyXXFHqlMTo/rK9TBOVPEgVb9sxTYyS+thimuJK9tawpaBG0+FqbaRWbThA2hWzqZV0znkw4Ozvj6dMnPHr0Q46PDri8vAQVhffkOdYh+0+FondKazbX13nw4AF3795ld3eX9fV1uW4Pta2bUOi196DazMbWUFXUtWUymaK1pt/vN7pWw+GQ9fX1gLIXTUgs1v8qioLhcMhoNGoQFwhZesDt27d58OABmZY1ejyeNOsBJBV+tYZK0oudu1rKUkWShgr/hh8fnTYUWkVEuF2ncB6lc3kMWpMXGu86gKP2qjHg69rCdIYOSrWzyqF0CHVH9VojEYZocsozsXhf45qQtG0QMsJwMBqMsnP7gIy/qNatMSpRBX6N9rE2ULZ3b7ASyoOnBoMxJjCkhQTkXFviPt3YIwvZK1Hn8y5swIh+hwqdKgYJScdLXZdULEsBbjbh+OkHFBm8vfYFIXiqPKQ5q4C8hAkfJrltcuIjOhEJUTQTJPWE5hadxcUjtNRrffHiOX/0ve/wnT/8v7g8v6TQsa8MDx6+yf233sRqwHkhcOmsSTfzNkgqY8QyVyIOF1n1i9lFc0hJaOnvqVFTOyvxZRU80YAoxMXPhckX5e7RCl1IqQAF8syAynuMR8Jpgd9hnUCpWabIA7rTX1noqQCXxs2oRXxC6jEkEzAhn3ogICzxubVjSupu+LpGZRnKBHQsGCxqYTMJ9VLnXosx30iKaxb8QBK8Eg68pv1IxglXLufa4+QxLX/OsaUZSXGhNsbwxS9+kd/4jd/ggw8+4O2335avDWM9bgxzqAOColR1jVeetfW1ZrPP85zZbJp8pxj3vV6XXq/P5uYmGxvrrK9vsLq6ymAwoNfrsbu7S3+wQrfbC2EC2cCau1iy6c3do4rhpOXcsCvdmsyPZe/9yM/rNVo8f4qcLHJQPix8PG/QzD93lcyfqqoYjUYcHB7y9MkTnu0/4+jwkKoeitqqitfTGv8uiE12OgU7u3vcu3uXW7dvc/PGDQaDFbJMjqmdhVAgMI6tRktl8fp94Ek438xD52zDfwEYhL3j4uKiSb2OIm3x3uL6G0M/ZRCx7HQ6Dbl2NptRlSXeC8cuCjKW4TVIkNFoPGuNNle3XxnrIoWvwh5UJ9omqvk3OqkGFwiwSgfCslUiJ0EGwTjwTjXEWRf60TtFbatgA7VhGtHqklIoPlSJz3LpdxX2D+98qO/T8oyM8mSapGJ6u25KHxiMUSjfeZ1hS7iDj2/Liy5Z3k0yKGLqbVjalcJkHbLoluMDf0Q2pSiC40PBQa8VWmVzHh9hMPmoo+EJ7PKFTBvv0dWMVe05fP9dbuxu093cgsKRdVfQJkMM3UgWUs1ElQVcYqTx/HEhuY4Y6QPUd4VMGDazOEl++O67/Nr/9r9z/vJYlFnDxK2qivFsivWeTp5hdEYW5J4zJbRar0SkSGsRBMqMkITTQn2LSNKrFuF43RKTD+GN4KzOUy5l9RcDkiTLRt6LDpwn4A9aU3sfS7GAblPwfHjyc9WvGiMgOonyt3OCtkXecwxP+fRzYYwE55IE8mk3YmNAm2D8tuNxsZS88lezY6Svkowgb4P3dolSqoGjP6wtewZuviND7314bZyrB7DUMF52DYvomXOOtbU1vva1r/Hrv/7rPHjwoNkQIuKyWKDQIc+iqmu0NqysrrK6uspBgOq73V5TrbXfF6RkfX2d1dW1oA4qobhOp0Meall1ul36/UFb4dWF73Myq5zyC2UH5O8Ydxeb3s0Nzldt8mmI9nXaUsQmMfQW+zn9ffE6IpmzgeuDIZh+5rrvSxGXiMLM6fZ4j/eOyXjEcDhi//k+H7z/AYeHUlajrmuyPMP5GqVCGq8Lsuk6wzlPr7fCzZt73L37gJ2bt9jd3WVlsNLM39oBKLwOThJtXy412H1b80YlDoQL8hKzqlWDjWKbh4eHjEYjer1eyOqSrTH+G+89ogsRVYkS+LOQGaWNlvpdC9cUS4poFY0lByGceOV5NjkUsnZIiDv8HRY+7wV/VTqMKR9C0ER9oLhSiqEg2aMxFVhR19GozsNc1kH+XqF9NGgV3hvwmmoqz9xksg/Iumhw3rahNi9FY2M4yobsJ9U4xeLwTaavn0X2sTZQtM5ASdVfeZZCVEVFi9+DifuPpMJG9U+Im5DHGGRTac4bN90WOanrNr87tjjZo3x74WrWtOP08ICnf/Qd7r7zKVRvBVtWZN0BJu9QZB3KwL1wXjwHbcIE8h6sWM8xNh/RikYLgHRBaiHx+HpZlgyHQw4ODlBKsbW5iVFgywqjJCXNBOOl3++R5ZLOlpsipMDJ32jh2GRZHrKdMvKsCEWs9LWL5fz1XX0tbrzyb7KwsmzxVleiDVfP7bECdQVbIVruJLBo21fxhXQMRCvB+4ByJP07bxsFg0mpuVBdeyWIsdtM0vS9xppJLqPNHLlypoDoxetOPZXrEJRFA3bpmVtri7ZPFq7UL752zfW94ojrWiQU/+RP/iS//uu/zsHBAbdv325qxXQ6naZmzNxFey+OQm3pdrp86tOfYjy8pN/r0O/3WV1dYWVllZWVlSb0FnkC0SvOMpEPyPJCCiEaI2ioV40D0mwMS25QoRoUTMUxwKv1ROTyfzTE61+Em7LsPHGTzbJsjsu0WJto8btSpDg9RjLuhowuzvjgg/d5+vQZJycnjEajxFmBui4btKkOJMu8k7Oyssbuzi537tzlzt27rG9sYnIxID2EKtvzoVG3xClb2r8LRrT3julsxnA0lGxAL8JiRagLY4xhNBqxsbHR0ACEVF02YzNWeY5JC1EV2UMTJo7FWJeFY4WDMb9mOm/nkEiUIisEtW/EFJfcnwr94wIx1mhB6efOntDJjCh04lQbKjYmICpIWNqGavLxfFbFEI/DedE+cZWiqsXQ0CpDmQyNw/oK58z8+ph5Ku+FrxgAA4VjPOG128faQFEma5KqvSeotLYLm1fhCcUNCB8ySYJ3EMu+JBBXZFi3XnHMD5fUMBZga2ctrrKiDlhOsJdnbBSG0/3HEu++12M2HTIZj8g6fbqDNUyIX8Zra/cDCTVhHXiH1j5kvTiMcWSZb0IKUWirXSCjqNeU999/j6dPn7K+vs4n3/oEX/7il/jt0YiTgxdBft6xs7vLvXv3pBBgnokhEngTJsuE8Z1nFN0OKNHZiISu1CteDD298nklMLfy4fqDlxRRjLnjfQK6C+wUmDwkz7TdXJopnFod4blfx5dI0ZHEbKXZqBfOJbe5ILQXjC6vlmW8XN8v3hM2vHljRzVekowDaEmmKX9g/hI+JCTBonEy987cZ5ZpeSye/3WQgGXXFA2PTqfDj//4j/Obv/mb/Lv/7r/bGOQRIUrvMfapsxaNpI9/4XOfp5pO6XWFX1J0CooiJ8+LJrMhEosjCiieb49uty9wdeNRhr7xiJcfO+tq1IBWD0dd2Sj/Rdq/zBBPytdRARWt63puHi/yVtLj40YZychR2Xh/f5+nTx+z/+QDTk9PG70e2Qx9k50V57t1njzL2draYe/mLe7evc+dO3dZX1tHKUMo8tQ4CFmmW0ezmfBXs74W+0cp1RTDU4pQEFQ0SUajS6mTE/oBhEdy69YtxuNxc66IQMe+ixk+MeFiUZcoGhHWuibEkaLM8t7VlGxYWC2UhLLaULNvjLu0GdUG+EWGPpCV42GBpxL1YGztULYteZDnBc47KltLqRckazM68S6gNC3HJQ3xxbBNcNCNqIfXViqd+ziZGqNEHkQ06utl0t/XtI+3gaKlLDa0E6vZOI0OIqvzg9kYjdbzm6vwOUg+7zAqhAmQkEjMpY+8Bd+saqopOlc7qQWifE09qTk9eM6dBw/QAZqfji6YVTPybp+i0yHvdMlCsSjrHd7RcDwI/IQY8pH1UuMD2qK1bG6N54cM0MPDA9599wd0u13W11fZ3NzgL/3lv8zdW7f41b//yxwfHdDtdvmxL32J+w8e0im6FN1u0IMRA0UbWZDyWDQLK3CfaxeKRT7PK59Tapg0qMb8AJZNYf5ZKWjCNgKC+UabI4VAl/iZV/9elG9f2uzcR/1VkISA0109vyJUKhWjiRSIua6FMZR6ehECxgv5M3rsaax9Wcw9HcvXf13av6nX1hpVr9oDm+8N8+LDb+/qydLQ5de+9jV+6Zd+iefPn3Pjxg2AptLu3HeGy/XWkXUKZpMpN3Zv8M47n8Q5R6cjRrTIBwgKqE1b1j3LTMMb6HX7ZFkRut7jQy2vOJfj9zm1BCJK55uPhuyHtx/FsHgd1OV1WzpmIoJSzmbNhlZbK0aFp9EWitMz8hWstYyGI07Pznj29CkfPPqA46NjRqNL6nrahCGCeg8x5IkXLZ9O0Wdre4vbt+9w5/ZddnZ3WFlZo8g6xDpMnlZ9tHEQmO/nuB4v3t+yvvNOhDgVQqwdDi85fXnKZDxuOCXCTdTN+IhjIOpg6SBmFlG4WFMr7df0GlTy/YthPaXbMhKpY9RevwLlQpE/2YdsyACcu0cvYopNeN05eYZ6odyLWDZ4JEwUq757vIxvgoxCMOJ8cJCjtpWE42xIrJCMq4ZziKyEla3Qgd+igmFqayExx4zMaMyoYNRb/6elFk/ixcdBsPjvXJRfIZY6rX5BjN818flgCICK5XvwLhofBMiFBvEwWsuiqGGUG8gNvq7IjOH89CX1ZEJvvUsFUDvG0zFVOWOqDZ1+n7zTRZmcLMvJjGlQA+cjYVS+xzqPd3XDGvfO43QtaWLh/kejEQcv9lF4+r0uO9tbFFlOnXne/MQ73Lp7n8o5Pve5z/FjX/lxBmvraJPR76+I9RwY3FF9ViBw8ESoUTULexqbfp3ntDiZr4YjFpGH+eOao+NulR63SDZdBpi8xl6ilMR1ZVzRhJfm1r+rQE+zq8ewjyxS9pWbPYjmQQqezBtvBNhWqtBOp9NrEYb42ZTncX2LN3W1v+fev3KLPlm4wSzZv6/73OJ1zmYzsixjfX2dhw8f8nu/93v87M/+7Fy8f/H7iIZDEJbrdHrcvn2X0WgkxrNWZE0WnJ7bdKJXL+HKrNVkaAwUHwzlBClb7Is47udekj78qIbEn5Thcd25rwsNpRyK2XSCCwKKkq1nm/cVQhav6oq6LhmNRhwdHfHs2TMePXrM6cuXjMbjgOaK+Ftt6yBaZtCIQe28Y9AfsLW1xa07d7hz5w63b92m25UUXKUMoSgF0VpSrk1b1kn4Kd5DWK7n1vlFIm9UKNZKeCdOecqgWHtycsJkMibPDZ1Oj15PZAKc82F8iMN7efmSfr9PWZZNmD9m5UT9kxj+aUL9WuOchCIXybtxjJFs2koJN8Q521Yz1wqjtMgg+KDiHDiBMTwuaIxdcCz8lcym1EBoAmNKMatryljTKpzTeUddJ5Wkg8ZYzITM8sCD0TTn0ZlpjRHvUDoDbTB5DtZS1zagwcGgUYG79Rp7RmwfawMltsVJ2XgM8ld7nEPgszlvPj7geFxUBk3O6xVGgm7yUE2IDVnf+NLOeXyeM1MwtZbRrMTVjovLS3bXtzBas7o6QI0nKOWZVjXnpydkeUHe6dLtDSiKDnlWkGdZSP+SQZbCsCKUQ2NIRPJblmVMJhMODw/J85w7d+6ws7ND7UScqNMf8FM/829wfnbKvfv32N7ewXuxmPM8R+diSUf+TWwusMCttzgnSESqnvq6MfEriJVyyUa0PH22cVIb2HLJ4q4UIiLdbilLgh3p4de2mAXUGBxLDhZU5/oNJtpP9etsQs2alfR5ROXCAoaXZxvjxsvQk7lTXgPXN1/Y9EXKf5m/1uv5K3E+hH6+YmQu/0zaUg5Enud88Ytf5O/8nb/DT/3UT1EUxVzBtkjIFEDJkWmNq6WsvM4ytrd3MHnRalYQxRWlVlYM7cR7lfPVIZwbmYhtf7QwqiifXjGuGsl25Dn9CGGvf5ntVc8gGrdRhGw6mcwRXmMILL5W1RVnZy85OHjOBx98wLNn+5yevgRo0nads8zKOlQhFmPFK0ftKvqDAbdu7XHnzh1u3tzj5s3bdDu98Oxdo2DcjunYnfOk+2X3tyw0lba6rqnKWeCyCF9iFMpujEZD0YLKVhiNhhwdHbOxscHOzg7ee9555x3G4zGPHz9mPB6zvb3VhFdjJl10EOZSiJOUWq0XEi1Ina2rGY8KMUoE9Qmj0oVxa1XTN3G4yd6kYe7eAxIY+yr+X4c1S7WE7hbZ0hil0QvrwPx67FEqiLfBfOkRLwrsXkkEgLodS96LPlm7n0TkW5HpPyVZPGlbCnlfGbt+bpA3HqtuuQ0CdIVOVQvnYyF1MgK+wbIvvWKqDJUpqJRlPC15tH/A2q0HOJVTWU+n38fOpnQ7wqouqwo7KxmVFZcedJbT7Q3o91bIshxtTCjgBDhLXVdYEK5IYdABQUErim6HotthfW2dG3s36fV7TCczLI6sk/P2pz8lBRONaTRHigCD+zBKhXDswgD0IfU6QqYKY/I5Q+O6MM+rNq9XkWjnXvMyoH0a5wnHepzgJsqECuN+DpoOjzs+dWKK3mKbg2vj0eE8cYwsXptL3OgrkiHI91+pCNx+I81mGGBorTXKmzlwzrdXI6UV8EhSmcHWPj6iJjMoNWAW723uu5donCz2x4caKPFT/vU+l7ZGYjukZ967d4/t7W3+4A/+gC996UtNOfg5Q4urjzbe7+rKSvPaMo2RxuuO6ZbeN2db3ORe3XfLx+j/G1sTglTJ2A5jOWbvzEKmX0qSjZogJycnPHnymKfPHnN8fNRUEk7TwBujBlHuriortW3W1tnbuymhnDu32draFq0bJyhnXSfCZSrOMVhEotJrnjdIuGLcxM9Fo9baOqASwreo6oqz8zMuLi/Iihy0vE6mefnyjIODAzqdDnfu3OHhw4c8e/aMLMs4Pz9nZ2eHPBfj4eLiAu99U/Mn6lL1ul2yPJO6O8HQiAZKvD75OxoR7b1E7lWqGaICKh+dtxhuika199c5hvNrcaQjENHVhf4ySrLV5hbGuK/FPScgMT5IdrXLvcMG8URxnF24LpfsD1Kkl6b6u2Qa2T8tCMryUMGrj29VI5OBTbuwxSqNKflTqTb1MWW8xw1ah8lqMdQUZL2CQbYC05Kj03NKp8gGPSn5rQ21kw1mOhxjnWNra4VZKWm/s8mY0WjMqBg2AmDdbreFEsOkdrbCziwd05M4oYNut8+f/bN/jsxkZJlhOq0kNllIJWaLJ+uIAJyra/IsD3BpS/e+btGWAW5Qqk2B/jA+xIct6HPGwbXIQFzA5rUiFMHjQEIzqVWyfBj4cI70GsU7iJ9Z9u3LDJT09Et5Kv7D+BkRqhUZbJ/u9lqnthgeMJkJUt2+ySiI/Kh4Q8tg0/n5IMZJel1KXU09XopkLXiucrYU2rreQFnGD4g8k7jZ/cRP/ATf+MY3+MpXvtKcYykMnKAW8bg8eP2t5zY/dmNfxWtZDAdf56V/HNt8OGHeCZPNw+O9JcsCeqQ8WaYZj2eMLka8PDnh/Q8+4OmTJxweHVJVJdCGc+PzAlo0IRONpPX1dW7fvs1bb73F3t5eoynSOHNOkIXoUadGSnIH195bfFYpcrGIvMaaXxK2Mg0KOZlMODw6xDrH9va2ZBU5h7OeGzduNMaGc47j42NevHjB5uZmQJVMQxCOGWK9Xo+Li4tmTxisiJ6OdS7ojFzVK0rTtJtnxHx2Xgy5uHBvc0Rx71kmCfAhI6Lp32VjvX0GV9WsUwRTUEw7N77kpx0P7bnavSGOm7n7hYbA/DrtXxkDZdH7uW5zTK3tdLFK2+KgWdykFr/X+0ByNQW17mCdxfQKVnqa0azi6f4L7n7iE+RFD+dqTi+GfOcP/pAHd+/RzQsu/SnrW5vYuqIqZ3jrKJ1nNhlzcS7lvjtFh17QeugUnaDGSlN/JstyalNLLQZvyXSGQur+FIUYNzE0NCtLIWxlkpaMUii34FH6iOO3wjtRQyaKPC1Lp0sH5XXtVUbN/Ivzv8aQh28/1Hryc2jXPPoZ47GRKBvDMPNhocg2b5GLZc893MCV+1nW1IceI0aGcI+FVKbTcRyQFh1uSOp35IBoGcQv8SF2P3eNH6G9ziY995pvru5DP7fYFhc/YwxvvfUWv/Zrv8bz58/Z29t7rWtenH8wTySO43CRXJxe5zLkJB63OIZfFyH6v7vNGyHx+lxA2BSNUJeX6treO/LMkGWK0eiS8XgcuCWP2N/f5+LigroWkS4xhksW11aQ59jr9djY2GBvb4979+9x69YtVldX53SbnHMN8T+WH0jXjsV23ZocvzuiCvHvNMwcDZQYhpdnX3NxfsHJ8Ql5kdPtdnA28PaccJkif6SqKt59910ePXpEv9/nxo0bbG5uMh5LEdOVlRXW19fJ85zpdNoIsUWNndjimEuvbVHbZ9GQjuE3bQxVZakTTtCy5/w6Y1ElGVGLMgWxr7XWNPVelxjyzQ8LvM3QotG6KMoY+zT+nX5umfbLde1jbaAs8/QhZRqrKzb5deTCxQe+DAVYNFYWB5vXOVlvFTud4ZRBaUM1rfng8VN27t4XpEZrBmtrjMcT7Kym31/hj7//A77y1R+nmkz4g29+k6zI2dzeZXNrW9Kiq5zJ8ILzM1k0up0ug5UViv4KOpe0N29rqko8B1C4SsiUWUhJjnH3hhTnvYSXmgUccari/ak27NVMssZhbwWbvL/a90CzSKV9vPjsFl+/ilSEAe1bA6WJbRrRBxC2eJs+6Vy09FuPSymFCTLa1rVpgFHIyYaCchI/jsbAvDz43NiYu8b2fq475pUtWkuBrOlUvP6A8KCoq7pB8cpyNj8Gm+8PGURL+jW92sXxv9QYWfw7LFDtNYdw02vc3uL543iDVvG41+vxuc99jm9+85v8O//Ov3NVByV+7TUL6DKUJjVUPux+4+tpuYb/Nxoji20Z2iRDX+QPIlpsncVoQ1lO8d5zenrC6elL9vef8uLFAfv7zxiNYoptXAslLTbyUuq6bsJv/X6f3d1d7t69y+3bwnWLyqotchDnr/DcZP2ZXy+vrsWtZMQiwhANk3Rexp9FtKIZ/x5sbdnff87wcsTW9qak7nrJ7LLe0+l05q5nNptxdnbGbDbjrbfeYmtrC1uX2LrGO8fF+TkmRTG9Z319nSJRn61ThfHEWF52z4tIRTQolh1/5f4WxkJ6rA66KBFJS42ExfljEuXy65xLk12NViw7vg2z2blrnNurr3Ivrm0fawPlR22pobG4wC3zQBcXumVWMECn36fo9ZhVFm2kNkhe5JydnXJ+dsrWzZs47+l2B3zuc1/gh9/+LnY45uLohMd//B7333wD7Rzf+9a3wGSsrEqa8NbWNuvr66ytreGzjNHFOWenJ2RFj6xoi9YVRYHTwtL3LsM7jTdBFjXLkEXHtvV8lArGi5Bg2yBJ2B4jYEBUaY0WeRSxm4/lpxL70BoryzaKV/V38157UHNdkbsh6p+1pIBnhtpaptMpnW5H4uzezyneykR1IYYaShqYAFtrRchJl4mceBRXPG+feO8JfDrXwnGvnIZeUBvd/jn3S0SBoreYwsPpoa5Z9JMg1xKjXf6OaNcrrkwtMVAWwmbhqX/IDb7aGJj7SqX47Gc/y9/9u3+X0WjUhAbS469D3BYN3Fd54IvtVSjr66BK/3e2674/btAQMmdcLTVRMoW1Vfw0l8MhR0eHHB4dsr+/z/P959S1cE7imIibbuSpaN2Gw40x9Pt9dnZ2ePDgAW+88YZszEWB1lnTl1e95RDCVBK+SL3y6wzLxsDxUvsYDWQAAQAASURBVPk8/ZvAwUg3wIiczJ3LgdGGw6MTnj/fp6qqJisuXofWirKU7KNOp9Nk5nS7XabTKXVdN1lzxhim02mjrSNIkzgOG+sbTb9pJTpT6ZoYw/PRiVpsqYFV1zXWqYY/shhOj3267Dwpdys6majW8IjXuGigNFy9heeSfq6p/ePbysTRAE6fX9SK8b6V/V909t1S4t7y9q+MgfI6C1NqPS4aKYvHxXO+rnGilJI04ZCel+dCJjUKytmEs5fHbO9uo7XEOm/s3uRp8UOMUqz0+hw+e87bb7/F3Vu3eP+D93BK0ylyyumU73z7W2RZxsbGBjd2d1lbX6PfH1BOZ6A0FyfHzaDd2tyi6HTo9XoiKlQUqKoT9GKEea+1IDngw79hQ5Q7m8t+au5RtdoXi4Pyut9fhY68XiiiDeeIFw91VeO94/0PPmiIltvbO2xvb4uHF9EGZ1FKiyGiBL6F+arQNniZ0UM0SmFt3aRiTqdTOp2OGEM+LjowZ8ldd92vIXYmmFZymoQToqAJu4UPz6E5sT+azCY/75csRUa8x39YHHsp8LKEU+OXf8fi973Oe3VdN7yFp0+f8tZbbzXHfNg4uc6h+KhtqTH6J9Be5zwfdoTs71eR3tQzjxtGlmlqO6OsK5F2H485OjriyePHPHr8qCF6TieTZszE6uBRZsBgJJ1btRWF9/b2eOONh9y4scva+jrdbldSeJ2wJyPql66d7XVevae0vxd5fZAiJ645Jr5WV1XTZzGMF5FhpcVAcMpjK8/+/lMODg4YDHrhXLLZTqdTxuMplxdDsixje3u7MSZ2dna4vJTw14sXL/B4zs/PsdayGr5jOBw2mWibm62BEgHR1KFIQ+KL4yHVBYp9EDl186TvYDxwdW2NLS1JoJQIrlnr5s6zaDAIopSKsM2PrQZVNC0Ssyy0H68pKkVrrZuiiz5ZND/q1PzYGyivXgA86dLaPIAlm2U6seJAWmbEzFv583CZVopuXuDrGluVTeoZ3vPk8SMevPkQY0TwpxgM6PZ6KK3ZWFtnNp2Qobhz6xZ5njMaj3n44D5vPHjAP//n/5yXp6esDfo8e/KY733ngs3NLXZ3d9nY3GJ1dY08z7DllBfPHouxEio6dwar9NbW6fZ6dArRhECHkI8SqWOF5LSjIErwxOtu+znpLx3y55P3osH+qmeRnGH55rP4KOeQEwXKMSnHfPtb3+Z73/kudVUxvByxsb4ZtBZus3frFrNQsXh9fb3ZyPNQvTp6NdFjAtqqo3GRU9ILKysrQFxUdHOPqRpka8zNmQfQEFjTMeeTT3m0ise0KEjk60eP0Tkv6pp6uSR5FGNaVKi8DgVYhFevGo4sb37hj9fcwF/HiInP5Atf+ALf//73eeedd+aMsR/F4Pgo7TpP/sOO+5NoPk6exdeVuvpM088subaYRl2VE87Pz3nx4gU/+MEPePbsWaOS6r0Plbg7jMejRsvDZLGwqswJEXrc5v79B7zxxkO2t7dZXV1tHC/R4dBkeRFqk+k5Y2nRQF9mhKShmnRNTY+L4YKIZlgrhfFiNXpb1Y3TFUO3CrB1xcnJCY8efcB4PGIw6DUKuB5LVVXMpiWTyZTBYNBcZ0xxX1lZkZBqJRy9w+NjJqMR9+/fxznHdDrFOsva2go3drdlbLh2HqYh7nj/y55bvD+lWi0VfOCjhaU4bvxNmYW4LpCuwUnSRzR4/NUxM49sXV0P4nspIqaCc5p+z9V7EaSsKi3O0tyLsz7ZHxTo13CSkvYxN1BE7Kdt6UNT4Vc1/65qeSk+bBpqYbNcfJjyQNL3W45A+7eogA66PTpZLplVRso3eed5sX/A+ekF2zu76PB8tna3ef973+fG6gar/QHUTnLyd3cZP37MZDym1+vx8OFD6rrmU5/6FHme841vfIPj4yMODw8o8py1tTU2t7a4sbvLxsYGoKjLKWfjEZMXLzBFj/5gwOraKoP+gG6326giyk+Bch6dCQLkcfgF70xphWQKSlDBpuNTkZBKY9EqH4TIZKLNoTJ4NEKaE8NOz02CtkVJeVE+rK3lu9//Pr/7zd9h0O3h6pJyOmacFbz7x++ytb3Fl778FfafPyfPC/EqM8PxyYkgIUAeMqMGgwHHx8fkWcZbb7/Ne++9x+jijDcfPuTk5ITzszO++tWv8pnPfGaO9Od9qLQMaN+OuCubnPO05kb7f59gJtY7Kd6oPE7JOIpTV0TfYqaOjPM6pCC6xCtRQXk2LgLXIXzymvTpstYcqhKtj6UHLL58PUr2Oi1NX/30pz/NN7/5TSaTSVPOPnIfPormzv8T7aMgL1eei5P5tpiZ7lXr5Tp8mFMyF6MRYEP/eec5Pz/j6OgFBy+e8eTJE54/f95suN4JMlhWJVU5pdcfgFcURTegkpY8kxpF29s7PHjjAXfu3GV7+wZra2tzaEcbcgCYF0pr721xPV0g4dMaKC1CEuvStMfVdS3GxGzWSM+L6F4P5xxlVQa5dY02MuestUzGIx4/fsTh4QFVVcprkwnPnj3DI0UCV1fX2NrZkppNeQhXKBhPxw2fppN1wcP65iZKKcq6or6sxXDxjs2NDba2tgQ9j3euVMPzUzIprzzzFNFY5KD45P0UOUvRJaX1lfUyGjrxM0ppslgQN5y/EZ8krBle9sForOg4DhVtSQFPrNgoTlTgu0k2WFxr2iXCe988qzSjB5B6Pu715/G/AgbK8kye9P3F1hwVvdfEQImT5eq52o5ejOE1A8daOrnIade1w2tNnomQmK1Lnj7eZ21lHdORh2yKnK2dbbZXNjh6/jwUHcy5uXeLw8NDJpMJR0dHjcX+7rvv8qlPfYqNjQ0ODw8bCf2XL1/y8uVLnu/v0+9LifmtrS12dnaknLzWVOWU/UcngCAG/UGf1ZUVer0+3W4PlXXI8oKi06HT7aAyE6rIyoQxSkkWgAZRSfUNRBx7OIgbozFImlzopySMFPvdo7F1iJnqVjdgWfNKFujSVjx68gFPnz1he22dy9MziqzAd1dR3tPr9Hj6+Anj6ZRer8+jx4/5zOc+x/nZkK9+9bN869vfYmuzy/e+90dsbW0BMJ1M6XYH/OEffJs7t3abGiM//ON3uX/vPp/65Kca4nE0TiLO5FWY4Hgp6z6PP4Wx1qIj3vvGPvBST51olnmvsN6J4ecJaqihNlPt6fa6EtM1mrK0EVYKkLJPvmmesZ+21+FceB82wfjA2lVn/kNLDPplbRk6sex9732TEfLo0SPefPNNer0e0+l0Tvr+X7QtXQ+iEa6Wrxev2z5KWCg91jWe7FWPWGupMquUKOUSNu34nq1rjo+OOD4+5smTJzx9+piL85dMx2PROlIe7zW2qrFV1RDMAaqq5SOsrW00/JK7d++ytbVFtzcIVbnjpqUgoHziEgcTPOmyxbX4VQZsih7EMKsiVnQXxGQymVAFMn9MB1YKnKtRSlNVM7TuUBR9wDObzbi4uODF/gveffePmU4ngCjJxmfcKXqsrq6wtr5BHvhO0ZBLQyBRNNDkHfr9FVZWVjBK8fL4WM6HY+/mTbrdzpxxotXV/chb24TTY4ubeJTcT8NdNH2cckVCnyqFw8ISV2LRWIzITDwPyaeiix3r/syFjxMjUiklRVC9E0G28BmbOA1SD0hWpOvCP+FA6upPidQ9MLcQLw0bLBy75NUrBsqyhWoeQWmNmPRHKym4hJGFQyvRCCiKAj2e8PTRI95+8w36hZHy8VVJ7R2bN3f5ox/8EaPplGJ9hbt37vHd736Py+GIqrZ8//t/xGxW8r3vfp8i77C7c4MfvvteqK4pdUWcs4zHU8qZhD0eP3pCnuesrKyyc2OX3d0b3Nq7gfeey8sLLs5OOTp4jlKKwWCVlbUt8qJLp9uh0+uRF3kwVrqoTK43L3K0jsRTQT4SZibEaIQBaDU+vIp6I23IK/W80mej5kTQZIHVIWRisPQ7OXs7Wzy8e58ffOe7aKW5PD/CVWNWexmjy5dYD+u7Wzy4e4unH7yH9hXnJ4c8f/Q+9/Z22ej3WOkU7O/vs7G+zv6j9zG+5uG920wnl+ztbvLkfc/6ShejarSHqJcSAA25vvg/18aHG5RIESoby9hRkU8T9iEp5CUhSG1EiVLhmzTjSOSztmrKH1TlbI7EK/0YhJ/wKBbH7OtvmO3xEbNKgqNLPMD0Mz/qxgwtQTCqy37xi1/kd37nd3jzzTeb6sZRzOr/zvZha8nisa/ug1ecx0dv1jcoZPzu2DepcrMOmWaj0Ziz01OePHnCkydP2N/fZzQeUVelKN4qAjJVUZVVex4vFdS9g6IQrtrdu3d54403uHVrj83NrUBydDiviHNWxvey+3i9saEDyhpd7Ri2sFYMDeGRWLyzVHVNVZZSv2w6lfs2BmMyqa0T1tl+t0tcR5yzDIdDjo+OePHiBfvPn3N6dioZTEFQLSpsd7tdQXqDU1RVItXQ7XYbTprWmtlsxmxW0ukpiiJnMBjg6orJdEJVluS54f69u/R7XbxzUh8HIMnAmXNq42gIjuVkMmkM8LRK8tyoCf3V4vXhvWQdIjlv7Pc4XpY9j3Q8ybPRjXEWw+CL2UMRTUlR9YjeRSVdHdC+aECnJNr02qr6T5GBcj168uEtLsiKq5+f3zxbZ3LR25ybhJmhM+ihOznVdEJhcow25LkBLGcvjzk/PWHQLch7HQarA06PNaZb4Izm7PKCvY01VlZW6PX7XFxe4Jzj3r37fPvb327Y45ubm3Q7XYb1ELzChhz6uKiNxxOKomA8vmA4HPH84EVTav7mzZvs7e2xtbVFv78nZLHJhJOTY5QyZHlGp9sl6xRkRUG/38fkOXmR08kLjJYy45JWmIeYdOs5qJBOGJVbVdtxSMVNJcqo1jUbvHR1qygZXkbhUNYKfAt0lOErP/ZjZFXN5ekZD+/dZ2NjDZ1njCczlNLkueJyOKJbGGaFoZyMGAwGnL08ZKVfcHZyyN3buxweHlJOLnADkUrfWh/wfP8Jp6cn3Lp1i42NVdY2BqBsyNZrIVUdLxAaIqvCB0NCrA+nIiBPCCXSGMJKEwqZ5RgfFrOqxrmaIpeNGl/jbA11zXQ25ejFPrdu3cLbFr2S0BrBxvbN96SL4+vPg3Y+CMTMlXF+3Wd/lLmXfj691hs3bnB+fh60fbIFouC/vPa6aFPaFlGCxcX41R+O3yO/q2Ye0ODv1lnRENEaa2usrRmNRxweHPLo8SMePXrE4eGRePMuSJdnBo1kp9XW4lHkRacp+qa0YXVtlc3tHfb29pqfmJETw20gdWIisrPcOEmQwWv6J75nnSiNLnJObOCByfVWWOdE26msGuOlKLLAkxEDpd/r0u/3sSHDZjgc8uzZMw4ODjh9+ZLxeMzl5WWDPHkvGSXGGFZWVtrQkhLBudmsTd2PPJfYD+PJhKzogM+wVcXF2Rnnp6fYuuLOrZvcuX2bIjNgJXPQM98fy1CUSMaNocuIHi9mP8axdGWTj3270N/XoYOLQobxXtO/4+fj6ymq1Ug1GDN3PZGPFI9VSqP0vPrvYj98FMMf/hUwUK5HPK566LEj5w+E9FEvh8YjgnI1hhr/9Xisl1TjlbVVzi8uGI6G5J2CTjej3+swm5U8efSIWzf3mExnrG6s010ZcHRyTH8wYH//Obt3b9Pr99ne3uHly5cMh0O+/OUvM5lM+OEPf8h4MqHodDB51qQBbm9vs7u7y3vvvcfurmy+29vbXF5e8vL0lBs3b/BjP/ZjnJ2d8cMf/pAPPviAoihYX19nd3eX3d1dbuzsoE2GVwI5l3VNOZtRh9LkJsvIlVSKzfOcLMso8qz5Pf7oLEcVeZBrbjeYFp6NsUjRZ2lDFGIEQCuw4b1GkaOcAi0Vd25s7vFv/Os/y3g4wtcVvX43EHwVs5kQ2irrmExLZmXF1/7MT4VCZiW2rprJ9uATD5uFsqqqZiLenglp7p3PfI77Dz+B1xlOaWgqgbqGp6Eg1EvyIsuvVKgwHb3NGApyDbqEEpKfBpG39x7lLK6aoeqS0dmEy8tLzs/POT095fT8jIPDAyrnuLm7KyRBHbRgAAms0WwjcQx/1NaEOZYwgV61AaW/f9jCc915oqdV1zWDwYBPfOITfO973+MrX/nKa5/7/6m26LAsv06/8Jm2Qm2I1BGR3OYpKjAonLdMJzNOT19ydHDAk8ePePLkCRcXF4zHY+ENaJlHrqqJ48E50fZBC28CFCtrq9zY3eUTn/gEnW6Pe/fus76+LoJsZcV0MiMvivZCG4jw+ntP/31V39hasu9SmYM49wRNqamDRH1d1Y1GkTGGIiAMna5oreA9k/GY8/NzDg4OePHiBYeHh5yfn+O9kIBRktVYJwbQdDql3++3G30Indd13Rgu4/FYiuMF/RcRY3NoBePxiNOzU2bljNwYbu/tsbO9hbM1mdJN2Ym43sWw1Pw+wRwpVoj4rx7jqVEw17fJ++m/wBx6E99Li4ymRkT6e7y2+B3x+tPUYogp7a5Z003k4Hg1V4do2T3pPy1CbakVuOwBvxLtSMg7auGc131XOkiuDgohOCqj2djc5PDwiOl4zGwywmhDoTxoz5P3fsin3/40nc1VOr0eb3ziTS4OT7h7765Y8M5R9LpCTPNw+vIUYwzvvPMOz58/J8Lh8q9pPM1omJydnTEYDBgMRBvl4vKCyWTCzs4On/nMZ9jc3OSf/tN/ymQyYW1tjR/+8Id897vfpci7DPoDdm7eYOfGLhtbW6wMBpg8ZzQeCbtfyQY9LWcYoxl7ET3LTCYIS9FBFzk21BASpr3GmKzxGLLMoJQmU/KvsO81yis8VqzBUDFTq4zaevIsQ4lGMh3Tw3cL+r2V4GH5hu3e7Q0ELvaAFqG8WVUHUqHFhOddlmWzEFtrm5ix9W0KnSJIzCuNVwobgaAwlrRSzfnwuiGO4QV+lQwdixhcHhHPqgR+d5bxeMR4NGVyMWZ8ccrFyRHHL55xfHjAeDxhPJkwKUtmVc2krllZ32T69T9DWVXovBNMJSHZRi982fhc1l61sbyuafMjoQbXtFTLQ2vN5z73OX71V3+VL37xiwDNZvEngXK87ufS+Z6uGdEjXXbfyzzH674vLuyN2Jgi1DNp9YTG4zGnp6fsP3vG+x98wPPnTxmOLqmrSjzxTFHXMmecl/EAgPPivATkY3Vtndu37/Dmmw+5efMmu7u7HByc0O+vYnSBd6B1TpZ1wv268Hl/bd2U9B7TNThugK5Rpg595W1AUGxDiK3rquGXNCGeAFfrPEMr1cglFHmO0ZqyLBmPRhweHnJ8fMyzZ884OjpiFqT38zynKIrmWqKR4L1nOByyubnZ7BXj0YSzszOUUo2BUlXVnAqqrWu8lZ/R5QXDy3O8rekWOZ94+Ab9Xpe6qig6HXySRpw+xyasEtFkmOuvdKwtS0W+6hAj9biS9xdRkHRsLSIf6b6ZOuzLuJfpedPPpOeP1+2cGNnLwrFNv/D6awx8RAPlF37hF/iFX/gFPvjgAwA++9nP8l/8F/8Ff+kv/SVAcsv/0//0P+V/+V/+F2azGX/xL/5F/of/4X/g5s2bzTkeP37M3/gbf4N/8k/+CSsrK/z1v/7X+W/+m/9mqfDM67RFw2NZyCc9Zi4mqGK56fmOvs4jSOPDV94jlAf3UsBsZ3OT2cUF5XjMdFZy/vIUnGVWOZ49fswba5/GW0/W7XDzzi16BFGkPMMb2NjYIMuyxjvwXupGHB8fN2Xkh5dD8jzn8PCQXq/XeCN3797l2bNnKKXIM5Fl/q3f+i3u3r3Lw4cPWV1dJcsy/tyf+3Ocnp7yjW98g/HwEoXnhz845Xvf/Q46z9jc3mJ79wY39/YkrLTSowhhnclkBF5TlSXTWcl0CmW3Q9bp4vO8QUxSBCUaKcYYtMokbqkNRpkmPKQCI1+eRkmR96jLKeVkincWby1aK5QRQ8boIFrUBGSdVAYFvLMUmaAfWBW02Dy9wMxXSpMn5FxHIJbF1zyiExC8Xa2UEGy0AedwNmwuKPAKV1sJyziHdpZyOmEyHjGbjShnUy7OXnJ2cszZyQkvT04YXl5y8fKE0flLusqx0jHkRlGJhUUvzymyQuoqjS+5OH2Je8NTVyIIpXCCwHgP/iqr/8pciUaWih7YwvEqhK+855opcO2ceN1jr722sLBZa9ne3qbb7fLixQtu3bp1Jb16GWJ63Tmv8z5fdd3pPH8VOrDopLzu98TXohcqB9diaOI5Oz3l6OiI/f193nvvfQ4OXgSyp5RqUki4AGiIs96FsaBFnNEY0U26d+8e9+/f59atW6yvr2MCAup5KUR1H0IKWuGjs6Z0Uw/munufvyfJJBMp+3S9bUM6iioxTCSMEkmi0gfCU9NGYfKcouhRdHKyTJyaqiwZDi948fw5Zycn7D97ysnZGRcXl5TBSRMJBRUIm/OGo3OOSajgHEM5w+GwMWhGo1Fj0EQDR9YsA95SVyVnZy+Zjkd4W7N34xa3b+2RG41OkjXSvSZFMbz3uCTLpjXk3ByyvGwcLY4dlEJrj11wuBfHZbyPNvup5YQ037FgiF9nHMXvSOdGOu4jN04lxy6e03sf9slrb+9K+0hWwd27d/lv/9v/lrfffhvvPf/T//Q/8Vf+yl/h93//9/nsZz/Lf/Kf/Cf86q/+Kn/37/5d1tfX+fmf/3n+6l/9q/zGb/wGIN7qv/Vv/Vvs7e3xm7/5mzx//pz/4D/4D8jznP/6v/6vP8qlNOdLaxyk8bPU0Fi0AuPvMTSzaNUua4nxu7T5eE7nGHS63Llxg+HhEdmsZFxaJmXNbDIBp3j66BH3P/kWupehAsJgay+VHvFY5///5P1ZjGzJdR4KfxGx986h5qoz1Jn79MRmU5xFiU0NvhBoCfoFX/8wH/xgWHrwkyAbtgUYggA/SJZlGX4xDFgwDEPQiyH4v56AH7JhaoAtXlmUSVEmRXbf7maPZ6g5syorxz1ExH1YsWLHjtx1zumW6HtbjEZ25cncuYcYVnzrWxPW1lYpHbPWPofB1tYWjo+PYS2laJbBcx4fH3vWpNfr4cqVK+j1ehhPJljMcrz77rsYj8e4efMmjDHodDq4fPkytre38eDBA7z17Tfx8Y9+DM88+wyOTk7wrVdextvvvoOjw0O88vK3yCS0vo6rV67gU5/8FLJOhu2tbTIH5TnygkL5jLWANoSmjYV2Qk9IgaooUaoCQlIgshDCgRNiU1SiIJUDKgJIhMTZeA+vv/IKHt57F+OzMygAWTdBd6WPbr9HSek6ffR6ffRdbpm004VKM6gkRZKlSFSGjJ25AtDEKbiFYDbNkCZq6zT+iSJNsqo0tKFKqZUhG3m+WKBY5CgWORbzOWbjCSaTCebTCfLRALPxCOfnZ5iNR9BVDgUDW5aQFkiVBHSOzUzg1naCTFp0pEaSJlhUwKzUWBiNudWo0MX5PMf+/kO88PHvpUgiV32anGqpBvdjYQILEMtznkwKS4ddAMK/043XXpIk+MhHPoKvfvWr+MIXvrC0xv+09/deGZTw/h7HGMX31spSBedhR1ZdlTgbDvBwbw/vvvMO9vb3cXZ2RmyJoCSQVIvJOH+O2jFbKuWZxKzTwebOJdy5cxe379z2ciBJXG0uo2E1+Zi03n/jPi++/+ZzGHCdnbpODjxbQuaBEpUuaLPUxiURY38qECMkFBJFfm9Zt+MjmM7Pxzjc38fx0RH29x7i9OQY4+kE1oGrNEn8RusZCyUbGyozUpPJBOvr697vZH1tHZ1OB+PxGNPp1GdB5Q292+2hKktK2TCdwlQVMiXx9FN3sL25AWktpKyrEvO1GHyymduzE9HciJmJ2ATD7z3I4fPIeuuOE72xkyo7Bvd6PVhLEU58zgZzYpedacN7CMEIP09YOLKei03A3rqGYKHNd6hY4F/6S3+p8e9f/uVfxr/4F//Ca+e/9mu/ht/4jd/Aj/zIjwAAfv3Xfx0f/vCH8Yd/+If47Gc/i9/6rd/CK6+8gt/5nd/B1atX8YlPfAK/9Eu/hJ/7uZ/DL/zCLyAL7Z9P0NoGdAkhuhYjan+MezVQXovwuWixNo9x9JaxWFtZxY3da3i4yIHZAhv9VZyMpxBWYHB0iPPTITb7VyGTDqwk004ildcmtna2IZRC7mytd+/eRVnmSBKJPJ+j08mQZil0pbG2toYsy7C+vo7nn38enU4Hq6ur6Pf7eOPNNzCdTQHA22PX1tZQVRUGgwHG4zGee/Y5vPqt/wtnZ2dYXVnFzqVLKMoCe/t7WOQ5PvWpT0EpiW9+62UcHB7i+s0buHzlCmSawBqDXraKHqgwYVVpcIFc7i9fPCuoPqqkgoCEdmYdAQFRCEgpoJSAsAZpmeOPvvR7+NoffhnVfIaOArqdDIArCS4AbYDKSiQqhUoVpEqJXVAJVJIizTIkSYJ+r4tEKaiEKj0rpZA6UxSDFulYPAK+NLfKsvAZa4uiRFnmKMsFirxAPp/Toie1kQSv1rDaoCM1hNVIpEBXAqkEEhh0ewqpFMiURCfJsNK16CiDBBq9jkJlKkxLi/OFwfmCythbAwitcbD3EGWeQ/VSN3ed4yEsrHgcfwLv68D/ecQdTvcL5vmjNvU/azBjrcXzzz+Pr371qxgMBtje3m4I1Ce9XizkL5IJT8oAPQ6chMc1Neo6Hw4zBQDNs+l0isHgBA/uvYX79+9h/2Afi/kCFad4d35vRVFAgMy61hqXAZQYE6O1j8a5dfsudm/cwqXLV9Dv91DX4SKGg8LXm/d5kcy8SGGLAUq4uYabKCuQWlcwtkBZ5kFmUQCg/D4qkY4BSdHt9NDtdKCtxmI+wXQyxfn5CK+/+ir29vYwm01RFjmxCIKT2TE8F7CG0v2nKlvS+MuyxHA4dFE8AhsbG5TfyRj0ej2fmp0BBQD0el3oqsR4PHW+MRqXL1/Cndu3sdLvQlc5rJTQImn4Z7BpKdyfIOoQ3FCZDlmVtv4OnVa11hSZlEgfhURjW5tJeWwYJHEuoW63633twlIBF5XsiOcFOw/H1/F/LXlQhWAJ3luPxylcC49v79sHRWvta2e89NJL+NrXvoayLPH5z3/eH/PCCy/g9u3b+PKXv4zPfvaz+PKXv4yPfvSjDZPPj/3Yj+Gnf/qn8fLLL+OTn/xk67Uo3Cv3/z4/PwdQD0IbRRYmrYkRXQxGROQaGLBf4M5sdX0LB1SQOUClKSonTK7s7qJcLLBflFirNIanQyhtMTod4Gh/DxtXd5CqHmnsgjzsafgo58jlK5cwGBzjzbfexIc+9Dw2NjZQlSXKokC3k3kmpKoqXLp0CWdnZ1TcSmucnp46kLKCs7MRAEoTryQldZpNZ5BCYnA8wLPPPotut4s33ngDg8EAf/n/+5exsbaOLEmwubGBz3z609jY3MDq6hq+9Pu/j9FohPW1dVQujbKFq80jFdJOQvUoAuEV9rdfhFqDE8IBjrcWxFroUkPoCpODBzj89jexIeZY2VBY7SQ+R4cVEhAKGhKFJlt5pUvYck5OWKWANhRSWViDhagawtSDU8D7lZhwz/ZzJhTo5Fvi8hMhBZCCGR+XCTKjKAqrNSQkUiWRKYleKtFNBDKhoVChmwGpNFBigW4KpKqCNRWqRMJaiVxaJMKgIyUyY9DvKJyeHGJ8PsRWtwcD8pmB1eQbZOVjAYrbpviB6UWdGU7q1t8+6Sb+Z9G4IN3zzz+Pb33rW/iBH/iBxob/XtqSlidYWIbHPJnyEZ7Tb3wRCUX+THQN373W1Fe0gDYVTs9Osb+3h729fdy79y5OT09QlnWuDp6nrKmyH472mTnJHEK5Y675/CVb2ztI0q5L+W6JkXTmFyUFfR4ArXBjW2KI3Kbjb7zxlhhSIKiXY4gZYdOnz/5qNIwpUVV16nUpSWazht/r9aCkQlWWmE9HmE7HmM8mACwULIrFGMPBMT23CzV2/0PTFGVp7aViCaAAwGg0ohwv3S663S5K5wdjtEaiSHmRQsC6KENrgdHoHIt8gaIskSqFp+7cxu7uVSgJWF1Cyoyc58Hghm5NCGKRhACUSmABMM4O2fyw8XiE8y1mEJVKYK0m87hSMJrYXQhinmHh6g7R/TMoKcvSkwCxct9wiA72P74NC4uyqgA2qXtwWM8bow1g0PB5aWYXtn7qPGl7zwDlm9/8Jl566SUsFgusrq7iP/7H/4gXX3wRX//615FlmctkWrerV6/i4OAAAHBwcNAAJ/w9f3dR+5Vf+RX84i/+4tLn7NfAi/kiARYORGzu8cDGiroDfQvQbaX9xtbuBARAwIW2gaJOuhlu3L0LKwROukfonp1iOhgC1uCt11/F0y88i7yTIOl2YZRE5RJ3SQhknQyXr1zGW2+9iel0gv/z//wStre2XEbEGYX/BlTbysoKsizzUTpSUjl0a6jCcVUROMkXORKVYDqZYjKeeJS/tr6G/f0D2NNTTKcz5HmOqihhuwZZmmJ4MsCLH34B3/zmN3F+OkJy5ylURYV+f4WcUoV1C0S4txxy3BTulgYEVpeOBSH7N4SErUrYqkQqBIypsDgfYDXR6K1nSFEg0RMk0iIREkIqQCSwUKgk2b6NMhRNYzV8YUMrAChUErVG2nDgY3Bi6vtDLagpIZSbDRQfDKLa6Z6FIOc3SuZmoI2jeqXbRKxBKgy6UmJFCSTIkaBAVwokiYGSJVJZIREaIgOkkShtCiUspDVQsBC6QIoM0/Mhzk9PsLN7jQSSpHghKwWstlhKjBDPUUN1U+CGyz9wmHtGYCmk9L0yKu+nxUqD1hof//jH8e///b/Hxz72MaysrDQ0yXaWcznZVFxVG6h9XZrPET9j8/ytz+vmjkBkXpAu/4/rb6XonieuYN/BwQH29vbx4MF9p2xZ2sgkZfwMNySWSGR2ZN8gKlB356mncPfu09i9ehWXLl9CmqRkWnUmS6j6PjlHBXzdFbi+EG4T5U2RQTwoOi0am1DL9yBK535ceDOsKu0yuBrPXpCpKvMsBeVpWkWv2wOEQFUuMD4f4PTkCGU5g3QRSZ1eH0/duoYH9++hqCwqF+Hj4IlnwGkzNN7XI0z+yN8vFgscHR35PDtaU/i1NeSMTzk9XH6UvMR8PsN4MobRGhDAzuVL+NALH8LG+hoSpaCLCsIaGEvJwwGXp0VJdLvdIHSY5kTsYhDOr7AUR8iA8HPwfE7SBJVxYehSIEkTiAaI4blDcyUEaovFotEn1toL/T+zNHMA05m+YYGqogAGKR37ZINEg/V5+dnCtcpkgBQXJ+WM23sGKB/60Ifw9a9/HaPRCP/u3/07/NRP/RR+7/d+772e5j21n//5n8fP/uzP+n+fn5/j1q1bAC6mIfm7tr8hs8KLjD8Hms5A4TUeZQYiACrgzfpCwlgg7fdw7ak7yFZXMS5ynJyfQxcFTocDnBwf4/rGGk3cRMFUBgocmy7x/Ieeh1IKJ0fHGByfYDgYYrFYYDAYIEsz9Lo9zFymxclkgs9+//fjrbfewvj8HBbAa6+91gj5Ytqx0+nAGIPZbOZpv82NTRwdHyNJKdcAVevU5F8yX+CVb72MFz/yEdzYvYbh6alz0oSLE2CWiQCB8EtjWfizwq6yjD4VAsb1NWWqtVC6QqEXmI8GkOUMCgU6ooQQC2RCuKRAKQALYysk7goGLrpGqsZ9WQBacgBmTR6AHZMtYCFhbOXNUM05xVo3Zbmsx5iGXLOTtRAQwsJUBpWhRHbGGghhYKWCTBOkooRCAWUtlCWzTyLqujwCIBAmgQQCiQQ6iUBlLMazCU6Hx3jKkA+BdWYuP7cfyQIQveqh9XvEF/+rQAoLzDzPcenSJTz33HP4ylf+B/7CX/jfyLnTrT1mFOK1Gd4XC3neEEMGLRSgbb/zifnoG9oEYxATM3LBczDIKooFZvMxjo4Oce/ePbzzzjs4PT317ALgHPNhYZ0DKW1SCsZqfx/WGGRZD5cuX8GNGzdx8+Yt3LhxHZubm+DkidZaQCz76bQBNwYnxD7Q6gmBOTNA4W+srf0b6vNwQbyqEa7PCoCxZPJMU9LclVTEXnS66GRkpi7LEuPzEc5HA0zGJyjyKRKhIRXdY5Ub7F7ZxLWrO3j73YcQaQcQQOnqnSVKunslBYWdczkFwmKx8MnakiTBdDrF/fv3sbOz4xVcgPJ6cD/meY7RaITxZIy8yKEksdrPPfsM7ty+TX4vRlOEYbAMYpeD5jxrsoCsJIemnmZUzPK5hNtjmEBqMoPwYBmCqlGHysZFayRWuPk6PrLOvfdZg4P1xnsAnOkyDLWOz8lNiieHHe8ZoGRZ5quNfvrTn8ZXv/pV/LN/9s/wV//qX0VRFDg7O2uwKIeHh9jd3QUA7O7u4itf+UrjfIeHh/67i1qn00Gn01n6vE04tR0Ttji7X4PSRBO8tP2+MRniQfCbV02352WFpNfDzrWreD5NMJ7NsffufeS6wtHRCW48/ywgqKIoLLwXvFLA5sYWXnjhRZRPF5hOJjg6OMTe3h7OzyeYz068Y1an08H9+/eRKIXpdAqpFG7dvImNzU28+eab/j5ZIHJSt+FwiFu3bpHj2OYGhKAQ3Ol0iq2tLVdiPEdZVlAqwXAwxPXda3j4cA8CClVJzplMD7JtHS0LodFPQtUTGRLKAAIGSpA22ksVjqcjjA8fICvmSFAhQQlhNTKl6FhUgDXQVqIwgLAWCbne+mysdH6+JePpT6bchfCJ5mEtYKCpFLgz13lmxTKosU4wCFhKlAsrBBKVQrtsuWmiMK8KuiYMYCtyDLMUbiyVhrIWUhikkMhsAmmNS7xLxQIUBFIJpAKQVQkhXIRYpTE4OoIpK4ikQ9qLZObQPBqgCIryQMt4PK59R807jhEIN0cOnZ/P5/ihH/oh/B//x/8PDx8+xFNPPYWyLLGysoL5nKJamvOr3lRZwHr/p4Z/RDNyItRaw3MKXzcpgCa2lgE2uGfeaMqyQFGQz9LJyQkODvZw7/7bePjwAc7OzhryB0DAOpCp2tWScEXW6Brs9H7j5m3cvn0XN2/exMrKitPOl4FWW4uVsFiDb1XmbC1jG6yODR06DYytfM2csiyduYGo/jRzZQqMRJZ20O120OtkSKSEMRXOh2cYDYcYn49Q6QWk1OglAqkkcF7pEp0kg1DARz70DPb39rHQOZKsC5nwxsiC1zGKEKh0iSyl7KzsW8J9kKYpTk9PYa3FysqKzyDLviOLxcJXMy6rEgBVUH76mafxwoeex0q/ByEIrGUp5WWh+dDcH0L3A2PYubmen2G4bthigBDvVT5xmmxmhLXWwpqazVPKybJgn4ytCPE8ALBUdkRKSZGVvNc6Jo7BEiWulC49RK3kk8xdBj9cw+dJ2p86D4oxBnme49Of/jTSNMXv/u7v4gtf+AIA0uDv3buHl156CQDw0ksv4Zd/+ZdxdHSEK1euAAB++7d/G+vr63jxxRff87WfBKDwcRd9flGmyiUGJbDZXZiAxlLIGTPtRgAyVZjlObJOB5evX8NLP/yDOH6wj9F8gt7mOjpZhkqwOk7jDCshE2Io1pIEVUFCeXt7G3fvPo3J+RhHR0fYP9jHYDigQlpVibfvves2T0q0dunKZTx48ABs6+XQPqb0BoMBnnvuOQwGA1y6dMkv0ldffRWf/vSncevWLbz99tsYDAbY2trC+fk5rly9ivligdlsit3r1x3VKryyKQK7Jfdd3Fck/FwkDzjRmQV0CWUN9GKG4/v3MB2cINEVYEtoWyJRlB5eCbf5GyqhZpy9mMxK0iF6NmXQppwIVZtv3IbDvke8/WgXthselSr2sKcX07fWAtoBGAESbGnWQaebkanKaBJYxsLaCj7GVxAQ0dCObSJAIkBhnhYWVlpkyiIRFSRclVZLAun4+JDGUHXp/NrNGysDMNYy363woPD9tPicf1bsCW3yTSYkCZyVhRD48R///+C//Jf/gqqqcPfuXYzHYx9tEd4fvbSf56ztm6CkPJuFlcvTw2B9mXEInIkFvFbOz26soYR7Ao4tqZDnJRaLHAcH+7h//z7u3buHw8MDFOUCWldLJge+P6b3OTqC5dLa2hp2d3dx69YtPP3007h8ZRdSpv4+WfsPN7AYZLWNX7xRXcQ0h3Kv4VRp6xwj2lYoyjmBLKdksamE70NKiaxPkXZZmsCUBabTc0xHI0zOTzGbngNGQyogkYCwGrYsYBSZOYXR0PkcVy9t4/lnnsIr334DVT6j2jbCJS10ZhlDJBJ0ZWCUQeaKgxYuyjCcK2dnZ5hMJj7Kicc3z3PM53PPNBldYmd7C5/+9Kdw6+YNcsQV5NCvjQWU8ECAn5lfnG2VfSjD7K0hU897SsimxM6ojbwqiUIiFSo3DpyEjWQrmZPYrBa3MOoHWAa3fC88v6yldcAARQhBfn4SDWFPuV4YsAPWkk9MEwi/N4XnPQGUn//5n8eP//iP4/bt2xiPx/iN3/gN/Lf/9t/wxS9+ERsbG/gbf+Nv4Gd/9mexvb2N9fV1/K2/9bfw0ksv4bOf/SwA4Ed/9Efx4osv4q//9b+Of/JP/gkODg7w9//+38fP/MzPtDIkj2tPAkwexZC0LeJ4IsSv8NhYGxIgxyEusDdfFBgMBxiej7C1s4WtrW2sb+9gbWUVhdHIrYGQCRQ4myYAQ4NqTOlSngMiSdDLOhDGouqW2NrawuXLl3HtxnUcnRzh3v37tNjGEyogaCrce3gfk8UMo+GZn7ysrfHkHI1GkFJiNpvh6tWrfrH8yZ/8CW7fvo27d+/iwYMHOD09xa1bt/Dw4UM8++yz2NneRlGWVAXV1I6uNWp+9OZFjqcKtfs4AQxpgX4nw/HBfey9ex9VXiC15AArLCCUBBXVs0hhITVgTeWdP72NU0oymcCCHG8tjOXcJrUpRPjEILQAJUTt4OuiYqypAGMpwZp1QEoQuOD8J8IaKBgkAugmCgsJQLv7EhowgNEVjFVuy6NstFYYuHgkZxZzGWahISWgUo1EW6SWGKY0SXA2PMV8Nsd6b5MSSFnnpGu1N6w5yYGaMHHapbGwLcpLmyb9JO1Jjn0SIBNTzyHlDgDr6+v4/Oc/j//6X/8r3nrrLWRZhhdffJFYhMo4MFJisZhhPpthNp9j4Uyfizwnx/KqdOnghc9yvLGxgStXruDSpUs+oyevDXbmBJoJrFgTp9weBHO11jg7O8NgMMAbb7yBBw8eYDAYUBZS55lgoo0+3pTKsg5L3draxtWrV3DnzlO4c+eOzwtjQfOf76tyqd7bZFEbIAnlWJx0LjQx+OMM+Wa0RedQLhPyuSqq2rmX/TdgKUSf2O8eVIfGcjab4Px0gMnZEIvJOYQpIWwF5fY7UlsMhLFIXDX4cj5H0u3DlAs8/8wdnI5Osbd/CCUzSKVQGGInHb8JYyiikGs5dTod73shpfSMihDCA9kY5HmWSBdY7Wf46Isv4PaN65Qp2hpImZLvhxAuOU2tpIX9HwJQOJY1Bh98X/GeFH7G8yYcI8D5FrnjeC5Y56tkbX1saOqP8wrFOVT4cwbw5ETsQL4F5cyRoi5pL2ozT2iiamOHrLWOlXqy9p4AytHREX7yJ38S+/v72NjYwMc+9jF88YtfxF/8i38RAPBP/+k/hZQSX/jCFxqJ2rgppfCbv/mb+Omf/mm89NJLWFlZwU/91E/hH/yDf/BebmOpvRdtrs28E3/PSJubtS6j4CO0EyklFdWzhJaPBid4sLePwXCIyXyGS1cu46mngK31NWysrSADoARp/1YwohW+gjD5jkovJLQFEqmQZlTHptuXuNLNsHV5Bzdv3cLxyQmGwyEODw4wHA6R5zkOj44AbZAKitwxFZUz72QZYC1mkyl0SRtpp9PBysoKBoMBrLV4++238YlPfAJKKZydneGFF15AWZZIswwrKys4H42cg5yGUOQFQhOSIxmW+zz4BD5vh6UMmAYWqQS0sRiejjAaj4FKQ5dUtMyS3QVZAiTWoK8EuoJCDaUxVJAQFuwDQ7SvhrXaAQBnAHJZamFZe69f2sqGNk93CnAm2EQyjasd1UVmLeMjaTTZ3K239UEIBSnYEc+AnBQ1pLSwqKBB2XgJrwloC5TGohKATQS0qKn2VCWYnJ9jPBpj+9INlJoAk4IIsh8Jh7/YbNK06oRUL49NvJldtG7iOf9n0S66l/B9VVXY3t7GD//wD+Pll1/G/v4+xuMxdrYvBecxSFOFJCHBuLq24rMYK0n09GKxwHw+x/l4gvF4jJOTE7z66qtIkgS3b9/Gc889hytXqKBmktSmAb6PONGVtQbjyTkODg7w+rdfx717pCj4BGyW2JeqKjyYCJ8r3BiyrIPNzU3cuHEDTz/9NK5fv47V1VV0Oh2kaUbzkhPFBsDmUWMXAz9mpCpXuys8xq8BtxFqrWGqGkyFY0HmHAIoFhpCKijltH+Qn0mWZsSYZBmEFMjzOSbjcwxPjjE+G6JczJAIg1RaJNJCWvatIBYaAoB2G6o1VHw1BfodhQ8//xwW8znORuekEEKQf5lQMCBWQwrtGQxOTseJLIGaXQgL9IWbN/fVSr+PZ5+6jheeeRor3QymKiBlCmbUqD81VCo9+OD+Yn8cH7qsSRlhX6o2sMjvw3xeYSmI0J9Kaw2hlDf18DgbF6mXqsQ5K5d+vsXKdziP+Ppch4jzqGitSUmTiWNEQkDD8l06U3YzB0wInHnNUFrwJ2vvCaD82q/92iO/73a7+NVf/VX86q/+6oXH3LlzB//5P//n93LZ993a4rXDsLpQewjbRUCkzVbHCx5CIC8rjEZjPHjwAA/2HmIymaCsKhRlgbKokCUd4PouFmWBXq+Hbn8FRhPrwgwKbZpk66HwVUvUgjbQlkwGUkioLIFEgtRqdDodrK2v49atW5g99xyOj4/x8OFDEuSjc1gBJIlCUeQYjycAgF6vj+l0itH5Oba3d5CmKfr9PsbjMW7duoXz83MfOz8YDBpVZeeLBYbDYV21UkoY7TQsYwD1aBsjPWPlFQ7j0sFrITCaLzAqCtisB9NdhxEK2lTQtgKgsTAFUlNA2woqS8mDHn4vgBCGeAirIQXX9TEOVNQ24Fgw14Ydl5HVm0Oc052rzgwBVAaA0OBqOFZIGCFQgcCFcccIIaCYsDFwrIvLPGmBSlpYoWEgIQyBMC0VZgaYGYGZscgNUFZkWxZSIc8LjE6HsLpCIoA0kaiqAvAmLH4+ep7GfEZTS7oIpP9Ztvd6/jYGAKC1ur29je///u/3VWCrSvvaUMpl/EwSgU6n4zfkcCMmBtGgKMkX6/z8HEdHRzg8PMQ3v/lNfOMb38CHP/xhfPKTn8Ta2jqShJwm8zxHp9NB4dKps1Z5enqMt958w5uyi6Lw1DgnGdMu83G4CfD9cO2hnZ0dPPXU07hz5w5u3bqF1dXVdgpeBI7fUf9cxAbz+3DM+RlCORcyrAA8S2IjR2QfOqy1S3RIihMEJZNLkgSdrINev4csy5DnOcZn5zg93sNoeILR2ZBSwycCVrn8TwqwnQyQFqKi7LgMuhOZeHFSVRUsJK5e2sL3fuJj+Ma3XsbR4BRCpUG4tyVTqbtXLhKYBaUtWI6x7A61fGZTjDFYW1vDM3du4Hs/9gJ2L22jk5BCpJQg0x5Y2Y3WWTAWIejhqL+yLD1YiAFHOEfCnCyx2Ycd863TQNpY0BCAxIp5CFBCBi2cT+xgrhQ5bKdcby0AOeHzGlgIJVBV7HPDCdkEqNiqY4vfg3X4A12L50lb6DsSOksBzYUcfsatHjhv4QfAtkQ4b/EMk8kEe0fHeLB3gOHp0CFOp2Vbgcl4gv0HDwEAW1e2sVJprFiJLAOh4MpAJS4ehWAphASU4HT8AKyFLis/kZOEkp0xgk3TFGlKCdtu3LiJk5NjHB0c4sG79zGdTlFWFV5/49tOozSQicKbb7+JH/3RH/Xe9UIIfO/3fi9ee+01AMDq6iqGw6GnS/M8x9rqKsbjiRdWadbx/ftkGxKZXghVcJ4RAYgE54sc47wE+iv07GaT7NNWQwgNk09QTk8xmp4hUQKJNpAy4SAEAnnGQAkAisxl1rrU+aG2ySYPz6LQKQx/x4scok4wJyyMFagcQWKdGYm0AvJDsGWBXGtolwvBGovEUKQSZcFPAKQoqwo2dR7yVsEaYkxzLTAtLCalxPlcYl4KFIWAtQRAjNY4OjpAVeXEvEACRpNvpRDObBZuYvyi52Lh8Chw8mfmX/I+z9/2O61pZLIs82DaU9ruOaWwBFCNAeef4PouLITTLEHiIkp6vR4uX76MZ599Fi+++CLeeecdfOtb38Ibb7yBH/qhv4A7d+748gyLxcL7q4xGI7z++ut4/fVXcHiwh8lkgjzn8E2Bsizcc9InlTZIVOLmET3/ysoqdnZ2cOepO3j66aexe+Uaeo1nqkEV4PJaBN120fi1ybJYKWszDdXhwTVAIZ+S2t8EcDk1XOSPcsAL1iJLM/T7VDcnSYmmPD8/w9HREY6PDjAfHqDKZzCuQjOgqKSD0dAuikkqKo6ohESmUkhB7yEldGHIgd1tdqsrPXz4Q88jeesdHJ6cwhpN/iBSuWR2NObMHnCEzmKx8M9sLflVaONYTEHyQkqBLOvgxo1reOGF57F75TJ6WYpUSKg0QaKoUKvkAqKesaxT17ODNm/wZOKRfvxDYBKOGwNcfh8CiDAMWYJM3Rw9yNcO2UitC3D6DB7zOOcNK5hCkk8NXFJB6UGri4ITdbmSC2WH1RAWSFMFIGnciwh9E5/cR/bPN0DhAWAUG1Jq/D1wMX0d0mzGAYR6IjoHIKkwmUzx9tvv4v7BAWZF4Te5oiodmBAo8wInxycodYVKWUAm0Eai26cNVlcGnW6HJnPifBUEYKUElKA08G6yk/9HibLSUAKQMoEQ5AyYpB1UZYkkydDt9bF79RqeunMHo9EIew/3cHJygvF0Qv4csDg4PMTb77yNK5eu+FoV5+fneO6557zZ5+joCJPJBJubmxiNzrC9s43B6VuYzWbo9HvoBiwURSJEA0HWBtRfOIDiHVRrYXE+meBsOodNO1QnxBJtCACJMuiurmGsK8xHp1gF5RtRbuPliCLhBDyBvNq7PvKV9xsGLxwNcnzloWZmhdLf+zv398OfaEMmH2sMdC6Q65JMde7k2gKlBRalRVpKCEuFzypjYSsFow1KZ8qazUvMS4NcKywKi7wQVEYgS5CLHDqRGAxPUJQLdDqZ08YAjeY9MRtHrdbA/9/QlrV/Fy1jm8eEt6sryhNiLJkphQPZlhApeBzYRBduALHmSNd0nwHor6yg0+3iypUreOaZZ/B7X/oSfvM3///4zGe+D5/73OdQFAsAAsfHR9jb28Pbb7+Ne/fuYTodoSwWPjKIGZuG/JASprTINWnN6+sbuHr1Ku7evYs7d+5gc3MTKysrEFDeFAUISEkJuJSUNcRkmvARzdv9PRvrnjn4q6sKKklgHJsAQaBKCEGmbBCw0xXlv7CGcovU0SMCUiV+w+p0Osg6GdKE0vEvZjOcj0Y4PDzA8fER5tMxVDmF1QUxQEkCg9TJYQkLibyoIBLACkq1AOty+wCQSqKChoYlcAAJk5foZBmeufsU1tc3MTgd4WwyxaKkhIeUj0R5ZoLNOSGLZGwd1SVcqLZUElmWYntzG1evXMZKrw+pqPCilJTtlpLMKWJOLaUvkK6/vTeikJDSekdeZjSlVI1NPqx4zHM2zEtiLcsXMv1zmQCVJNBVBeMqVXNekprVER7USymgNbMpwm9jXJsMVpNZjeWx0c5UB+d7R8cboxvFFN0dkhM6yLdOKQIzvHglWwL8HIbLD/Rk7QMNUGL2IwYaoVc8T4iQOg0RXvw7/hsKsrpmS30uIQQePNzH/QcPMV7MSVPWVNSOExZZS7UhqqrCyckxZiZHUVXY3trGmqGsmedFjhXdR6eToSd6JKiEgFCM6h1aVhISCWANdK5hjHDpqyWEIvQvraSw20zAdjQ6nRQ7ly/h6rVdTKdTHB8f4+TkBPv7+5hOp/jS7/8+bl2/gfPzc5RliVdeeQU//uM/jrW1NW+DPDw8xPXr1zGbz7C5sYnpdEqe8W7jqErKxGitXQLIZHIMdp8gQkJYwcwsijzHZHyOqipRWYPKWjfBE0rMpgApSyDtQScdVCqB1AXgIiqEBRJLJIJ0NmyhnZCWdXQV3PWMYfBC/9YCMA7okfACOYRBETsh0BD25OxKybUs5XBDaReuZo9wAlK44wVmpYAsFQQ6MKbEwlgsKgNYhaoSyPMC1gCVJl+eqgIBFyNQlAuUiYXuKpwOjyEk5ZhQqXLe9SFjEoKTuu+tZSLu8eaBuD0Jq/L+zEXM+tT3Sddr/huyZsGMC2NNU+UdAo0xUIIqa8dghO+f1nGgecI5vcIiyVJUlcClq1fwv//l/x1f++pX8KXf+xJ0lePjH/8E9h4+xGuvv4a33noLo9G5OysBotBxkUCKAoNuXVVQKsXOzg6uX7+OZ599Fjdv3sT6+jqyLPObJABYxyYSPV5vdzUDtFxorXWsGFyzCdt1JWeUpUlAsomZEV2VDQaFFDuXjdkQtygdq2vdBtntdpBlGTq9LpmQ8xyngyMc7j3E2fAY4/MRisXcRTq5LETWkmyEhFU1WCAGTMJK0tqt1sQOWkBaMgdBCFSOaqTHJmbo8qVtrKyuIT06xsHhIeaLGSA6UCqBMcpH4FEUnkSSpB6gSAdolQMIWSfB+voqtne20OlkmOcLnJ5PAJFApl0IS+wP1w8zFuCcVzwUUgn3mYG0ghxMJeV5AmqmOf7LIKUydRZ0AiYuWokVJmNcuBI737oF467PQEVa4WVCkkry5ZVs6q3XngiuHQJ4r+BrDeXyvRhbwWoNhTp5XHjvcVZ3ukpg4rQaAk0fz0e1DzRACRd3mwCNtac25qSNrorjzwmhNtEpI9vFIsfe/h5m8znZN00djqfLqp6AgKsYajEcnmC2mOPpu09DKen8CDQ5iwlNiFalUEkKI4R3FoOETzMsEwWYDLYi3xS4fkhlCqm43LiGkBa9fp8c49IUvX4f2zs7uFsUtQ3+4ACHh0e+ZsPR0RG+8pWv4NatWxgMBtBa48GDB/joRz8KqRTevXfPLx6tKxJ+rm+M1mSYbhmH+t+0JwkrIV3eB1iDfD7H7HwMXRVU04YGAdbRulImFEJaARYKeWUhNLEx1hgo1GCCmA+3duHqAYUUOQBS2ci51jpfFeMcko0VLmSRtDwDCmfkiJ6GGUWQxieEoBwQlucjCVLt7mU8L7Eo6TpVpVHZFEVF4NJagUSukPaiNRJISAFIULTXotSQygBG42x0ivlijpX1jASX5mRbjaeLPqONxTQ/Woom+F/RGmvV0+PMetVAq05hToJZG9IGlSK/JIrMME4jZbNEkzJfkg9CAjJx5lT4Y32m0yRBJ8vwQz/4g9hYX8UXv/hFzGYTvPLKKzg5OfEhyovFAipRUIrCzkVJc1hIysEBkAlpY30bt556Gi+88GFc3d1Fr9ul6CQharZO1NlLgfZKsPRZ89ni974nbdMsw/3Az0msCdX04ePCKKO6dpbwDvzsCyKEQKokVldW0Ot2YB1oGJ4OMDg6xP79ezg/PYEuckAXUNaQeUpaWsPBBmYqDbCfnQBMZWAlKRpGmDojNQQkqFIxKSIKRgNCUDqFRVGi0hZKOragKqCdUyebV3hsOTJMCAElJKRIkCQSWZIiy1KsrPTQX+mh1+/CwqAoS8wXJTqdAjLJYSCRdYDESijlSC2vyNqlTfoiZ9eLGP1KVw0lIgQO3ixlDErv11IrI/G+xv+Fv40DQACn1Bnj5w5YOQ7mEz9LaBbk56n9W5rrLQyjricsKHryCdsHGqDECzVerBwfzgMTFiNs2v6WKSdiS6zfiMGe4gBFiUjScgenpxicnqLiwlhBdkgapEB7dep6IhJUiwKvvvwKpuMxnn/uefR7fcwmJfL5FP3VFXS6a0ghKO07SDQR1WkgFAGCLO0ASnihYozBYlFCSRJ4icoghYFAgSQRLvcDaQ9ZRuaby5ev4LlnnkM+n2P/4R6OT46x93APr732Gr79xrcxnVKhwfv37+ONN9/Ec889i6PjI5RljulkjPX1dVRl5YQunsiMIABIq1idp5whtsJiNsF8NvURU0wVSuEEiFIwuYCeadgFkJclrDUohIAURBkXRtFGATLvUGZZCYGCQFzgg8F+RERTGlSw0M5cYiEcE5OQgyplZSObNWijZ4BMAJSWs3FRV6WhJxUWEMZCGAto0h4Sd32lKmx0u1hdXYUuKlSVRr7IoUGgxQgglxJFWboQZzLfzmdTnJ6eYGNrG2VeEQXbUK0vYjLEd8zK8/7Yk9p0wYAOoLltmO5xJkChJIVSW054RXSy1gaLxRzz2QxlkcNUGvP5HLMZlWvgLKKZKxqZphn6q+tYW11Dr0fVsJVzyhRC0uZYVUgShU9+8pPodDr4D//hP2B1dRXn5+dUAsJtMKlIfPilNS5DpgXW1zawu7uLO3fu4Pr1m9i5dAXr6xtQCTOMwj87PabwJpm4XcRutfmaADQnEYQGh0DNGOPTu5PDOLEVVBiTKw9zRWLX55IcQmUikSqFXidDr9NBNyPz4mQ2wfBshP29hxgcH2A+PoepCJhIaAqbl+z4X2d7BhDMWeoRzUyKVJQ63pm42MXS1dSAFKTQVYYcnhd5gbwoMZvOAGvR63SQVwrG1r4ZYR9xDpws6yBNCZj0ej1ir/sdZGmCbieDUgkAgVJbLIoSalHACgVtBTqZAOFMAjpciLEOU9d+7EJ/jza3Ajb5GGMglUSSZcjLso7qcc/AK0TEzxTqI/zeoQuLWka1AQYB6lYR9dGSY60xrjirM/sJkpMcrSalhHKZudmnJ0nJlM1sHjNBZfEdqmb8/7YmZbv3MrfQwYg1n3Ci1Mg1oqSEbKBCGzAp4XVUkkAbjcI5Yl0UFcTnkpIq7WijAWfXvffOu5hNprh79y62t7eJMi0zFFjAGHKKlEo4zSNFZTRQ1c8vQameU0V+K1XJGR0LSC2RpNI52AkAEkJZpIlEknA6aA0pSMt44cUP4zn9PM7OznB6eoqHD/dwcnKMs9EI+WKB3/vS7+He/Xs4PDzEfD7H6HyE3WvXKaNiJ/N2znCdtDdnk+RqvC6McDqdOCc21AIKAlmPtNpMSJRCwBYVRCWgc43CaAhJoYTCORIaJjjcY0thkAhHZyJYxyIKoRQCRkabhtWwGpSfxjpnVydMKq2J6TFs1iKWxRrrGFiBREgoC6RCIpMJEiHQURJZopAlFgIafaMBJTGvKkiQE65x+V4K4zZo/s9aVHmB4fEJ7t591hULM3iCTv8za+8XjLQ1Ho963VDWXZ+CnVkUTeHjZE+vsJjPMJtNMTwd4OjwEAeHBxiPzlEWpQcmRVF4VpAL0mVZByura9je3sbOzg62traxvb2Ffn8FaeYqYYtaufnIRz6C2WyG3/3d38X6+jqOjo6CnBKOpTQCSUKOu08//TRu3bqFmzdvYmdnB73+CqwNNOrAOdVT8u+hT0NzUqgZ+5exjeRq3FhJo+gbkiFGV6hMkz1hzVgpBSupNGeSKKz0eljp95BKBWs09f1wiJPBCQ6PjnA6GCCfTyFhkUqXmweU9ZnN1TyP/UOjlrEQ5NsCmXg2guUwH8dKXulMU5WxVIDQWBRlhaJyyRI7fXRMUnuEOPnLwERK6RK49Xyuj04npdT4qUSaJkjSlMyFSgKu2nxelZBl4n1FSHkSMFZCuZpGbUAgHKcQtIRjE64INsvxNQQAEfh9CEN5YuJGzAbqvUoQYG27Ztjie2mzKhhDalvFvjstDGWYa0U6fyoONWYGSaLd2nFR+0ADFCUSKBlQtUsaSO2ExLHnYYhUba55FM3Ni6oJhMJcBEJQinigThMc+7d4AcW0G+Crdx4dHGI8OsfK6ipu376N69euY3UVkIsCSZogySiMMs0oMZFM2FNdO7sqMQ3kCJZCOX8XqgVSQJvSTZDEe5MLKaEkkAgBlXSgywWspazA25cv4dLVK7jz9F3MZjOcnp7i9PQUew8e4P79e5hOZ7CgRG9CEuAqKzLJSE/TNydiY8ILOFMDsVfWalRlifF4gjwvYIxFWVYoywLdrkKWkhOe0hqLqkCRF0itRGYzSFjoCoCL1Kks5VQhwsP6e4Elfxc2wIZ0JxcKLK2m2jYCbowsUkFMjzCoEyCx2c8dJy0xJZL3UwNASiRSIFMKmZJIhUAqLDpCIhGA0gYJNNJEYHdjHVZI3H946PI6gIqBaQPouhKusICyAqascHYyRJkXoIKJtLELPG7hs+0ejTn5OJ+UtmP+NC0WyHxN0gadw7MlZoLrOllLUSXT+QzHx4fYP9jH/fv3sLf3EMPhwBemg2nSyzzG56MRrXcpkHU6WOmvYHNrC5cvXcaVq1ewtbWF7e1tbG1todvtumvSfXzmM9+H8XiML3/5y9jY2PD5UebzGZRKsLW1iWvXruPpp5/G00/fdb5bmWOrRK0BC+HDWFt6BXjs+DX7MJRhjUCA4D0fy6noCaRUkILAFWnEYTIvxyQJMutkvS76/R6yRMFqjcVijun4HMOTExwdHWI4GLq6XSX5cSjnaM5jKV2tLUMmGed5RoqDc9jkeStFAgjrmBRK+uYr5ho2b1hYAxjrTF7OVCVkil5/laLsKo1MZRBCNZgABie8H2RZB1wRmAAKmXtUIikoIWREDJl7fAZiQxluid0xUDL1fc4RQzGLFTMoPE8RzA8hyBfPBiAnBDb8GyafGmDCmZb8viZF4Ahs/XqIGRSgqVTXrg1O6QYDTFYq20ENnzt89vDZ6NzSRbc+WftgA5QkgXSGQEKdER0KrrlBCDAUAG5PB1GKzYRHYecKQb4IJXtbu4kDAXSyDlbXVglZVhWShOyboUYTpiC2DnmmLkVwWVVQTkswpcZoMMQ3B0MMjk5w6/ZdXLp8GVmng6Qs0en3KGJDKaSdDDZLYUVKeTWkaqB2XoBJksDYFIVWKPIClS6RJK5qpyB7MABYQSHHgERX1TH5qciwoiS6/R52r1/Dh1/4EGaTKU5OBnj33n30+32wXbvXY60z8RrARc1auEqc9Wd5vsB8PgPAwkwiTSlJVZImkEoCuvIZQVOVQWhAGKptA3J0d1Q9jVkFV/7dCpTaedOz86ElGzuF1hFI0VbBCI4sopcWApkQyAS5hUnUVizlbM6SZDEBFEGJ4WABZYBUWGQwSABIqwmoSPKQT6yFNBbb3R62r+7i4OER5pWGrYhBgaNPnUiHMARQAInJ6QjSCCCR0C2sXXvHx+PQDjrei4bzp2/CCzfhASX1vRAECquqwHB4jvv37uHhwwc4PDrAycmxS0fOjqoWUsBlymVnPHLqBEiwGm2gS0rYNj4/x+npECfHRzg42MOlS5dx9eoVXLt2Dbu7u1hf3wLgIviMxksvvYThcIi3334bw+EQq6ur2N3dxbVr13H37l1cunQJm5sbSJK0wXLUGm0t+J80HP8ibZuZBN4o2AGUzDMWVpsgzT+xUXVxQpcGvapgUac0Z4aC0xV0ez30ul0kqQJgURUl5rMpzoYDHB8e4GB/D7PpxCV0q6AcYCfA4YpYupTrEoByzssQNcA3PP7uv0pbBzBd/RpXkdyEZiehXDYNoDIaWgtoKyBk5hMpysQCqMN7w+iY8H2SpF5py7IESaKQZgmUapZEEAFTb6xFZTXyqoQRxBAIKE8FxmMV+qOEpQ5CANBQ5FqYkRDE8H7C/jlSSmj3uQzACmFjSkwZgpjQv9JacuLupJSsjvOzhGVRuB9KXTkzk4CU9bPVoMspVMGzsduBZ6jdflfmdUXlx7UPNEAhGjDcUKLvUW8m8MeIpYUvUIfgmXCA6SAARM1KVQMBAEiyFJ1uFzJJYEAOTuwsGg4KN4pfB4SgTTxRSa3FG4OOK2x1/917ODk5xY2bt3Dr9m1sbm2SUq4UIEsYEMOQiBKJSn2CJBllFQQAlSj0Oyvo9fpk+ikKsuFLwOiafVFJSgLLgZNEKSQAEkcLw1ooA3STDFeuXMXNW7cwz0vKy+IilbxDVmOMLs63wcLMWoPFYkEplS2HMrowRpWiKktYq4GywDxfoDQaFSSkZdBQwTtUCgILApaAi7svLRVMWKHWusyzwolHpk2thYWG5TwtEEgg0YVCFwIKGtbQ9UjwupBCx9IQq2UgjausbAUS6RzyXEi0tYDWFCWkEoV7Dw8wrci0UzkwXFmBylKItZUETqQFlKFqyYvJlMLJ09TBl/fHcLSZJP+XNRboAq4OVAmjnf0bQJ7PcXh4gAf37+Gtt97xBffYYkk5NQh8CMth6/XJrWXAzhsje3MRSFjM577A6WAwwHA4wOnpKc7Pz3H9+k1cu3YdaZqSCTPL8PnPfx7/+l//a3zP93wPrl69imvXrmNzcwv9fh8AAxBWdmgTtp4pfH8sVKyBAzUgYUWCwInbDNyLwQh97vzjNOeBopRZQgDC9w2gkhTdTgfdHuUzkQKoyhKL+QyjszMMTo5wsPcQk/MRppMxjKmco6lTjrxp1ZlSBaCd2RPCOn8855cVrFNmqIWgvE7uJAG7Uv/bgk09zhHYsmM8gRKSHdbJjromEI8Pb8CkwBFASRLl2BNF7IkDKCpRzsQjfRSgFcSm2LKACeabsYk31bWVM2Bgyo2BCwOocCOXimrs8HFA7dNCLKAEjEWiFObzORU7jBhDlrsmYIpD60H9vpYBIZAOc7EkSUJmrqoivyEhG4UQ+f6ktEvPGj+jNgZzV5foSdoHGqDEbdkBKRQY7hMRTlgHRFydFQYpQoggcY/zZFcJIJuJbowAkg6F2Q1OhxDG0fCBvZATBYXUG2ss4assSywWC/o+TTE4GeJsNMa9+w9w56k7uHnrFlY31pFmGfKiQrfbhZYGhSi9HZW91Jue5ML5sSiXNjtteuw7xzQhXRijlI1FrVyCKRiqvluAQg/7vVV0exaVtuh0Mu/4Z7Tx4XQXjpPrfGYarLGYTSfIc3JyNM4HQVgJW2nk+QKypFiayXyKhdZQGig10OGFZeGZBjekzrdBkg8RLOlsgkGIs/O6ujVcu0cIoLR1XL8UBNS6AFYgkFjpbbAW1jsBcqpn485FwYgsYCWsVICSKMAg2KKqNDpJitPhGGc2waQCFlagEALa2XvJcObMhiCGqKw0JudjlPkCSb8Phuj/D8GM99wa69Rt4LT0BKSgyrGnp0O8/fabePnlb+HNN96gYmvGIE2pZIEhu57TQBxrhVohoUs40GJrehoCUE5Dt25jr8oSZ1WF2XSK89EIi/kc8zkV+Lt27RqShBSJtbU1/NAP/RC+9a1v4TOf+YxzjCQRytplG6CIR+ZJgEq7aYDAfJidlN+z/4M1FBaqdZ1wjVO810yVQJImqHSJymikKkWn08Hq6qpLTS9RVSVMWWJ8fo6j/X0cHh5gODjGdHwOYypSWCSvtYrmv3CGRiO84iOcmYtI49oHRYDCh+k9Kwl1VwlhG2PJ+WGo8gOFhmtQaQgLCalcOQxBa4VwRbMQbLwBZ1kKISSUYkZFUcHCRLkyCU4WMjiRtC41rAd1RlCRUWOMe8ba14evFfrANPeiZoZhrTVFhsm6SF+YUC8ENZUmJ9rZbOaDP+JilBaocwW1zC26fq2sMzvD7BvPFVIiAj/MAIQoV+YkNl0xW5XneQPwaK2hXCTVk7Q/NwCl1tRZ6CGY7AGFFg8WHUBasBBQfKygJDM0QR2ql0EtDWei6fZ66Pf7tNFXxucgqP1bmna42CcFIJal2+16mq2sNHorXRgLjEanePnlMe7fv4ebt2/h9p07WN/YRFUUsNJQVkZjyem2IudbivWnBcee+KFXuZ8sxqDUFSX8gXY5SURNV4I86oUlurUyFr3VNSrQVRQw5CIBmSZ0rJKufke8UdR/uW8pUgMQzqlvOp3C6ApUXI1yfGgXIUEbioU0GnlRoNCGzBtVhTJRASwRHiTSRd2nFpRfwbIDa8241bkm3HyxnquF4KRgCAobCqKgoYMEbkaAS40bSGjBBU4l2RysBIzLjeEuYYWAESUmJaVCzyczormlgpYUOm5Am6gQlM6K71spiTwnxmlVCeSV9kL+g9AajI2rYQRQjoWz4SkePLyP119/Da+99ipOhwP3GwshgUpXyJzWq3UFlpnW5YXgtc8b4xIYsBbGMZ28jpWkjW8xm+OkIFawKEtwNtorV66g1+vBGItnnnkG3/rWt3B0dIQbN26hKpnxaxZq8wwOCMA+WWvfSGqAUufNCHNoNMKDPUCpa+qEybU8UKk0hJTo9QiYdDtdv1kt5nOMz88xOjvFyeEh9vf2cH4+gi4KWEumOOlMQsZqCGughfamGS/nAnmnbQBEhGNYHFsqQrntZIMQ7MvnAIr3YRHOiZqACSQlF/CBDcpl14ZpKFu8sQPwtXmkcsqJJCDF05J/x744MghV9r4jQiIREomUSKRy4Lc9D0ho6mFgGW7+IRiFJfMbM/lthQwhah+rlZWVRggzX49MZBawtbznfuC/nCEWkWmGGZbwWPJlsazRO991GgsILp4JH62jElcDy7Ghgvc/JV2/P1n7YAMUKyEFJ6oyDqdzE9yX9eGA3ylrdkQ42krU/iV8jIsMofBDW5/fgRApiEbc2tqmUDNpYSsNSgVCCzhJajbFJ3MylNwsUbSxK6mgrYaBQZIlUIlynuoW2UoP2hiMzoY4Oxtib+8Bnn32WVy/dhPra2uUK6XU0EYBKkGuSyRKQZcSlVJIsw4EgxXBsfAUzqbSlMxTqYExJazRlLypqlPp08pNIGAgJFG2ZUUFAoUi0wgk5f9IUsp66+S+GwXb6Hf+VLo+1aYEQCn8O1kK3e2grEqUJTvDaQhDiZTKokBZUBr5UhPrNa90XaHXwo0TfAI44e/B2ecJeXlyVli+P7hNq86ZLxy7UwHIKV6Y4hKEgFXOFi7gCpXR/KoEaXYBJCYAaTVMRQyecFEOSirYqkC324Vx6dC52m6da0X4REoAm50stK5Ii3TCZCnByZ+ivR9TxJO2mP7ljWqRL7C/v4c//vr/xBvffh3T6QRlUaDTIcavrAoCakqhMhUUpMMjjhZ3SoS1wicoIyELD7hJy7euKrbxZhKuyJ0m5G9yejqAlQSIpATyYoGbN25R/axuF5/5zGfw2muv4cbN26QACOHz9lgGRtSTT94vS0DKMT68mNx9Glv57K7a+ZoQda69r4bWFBUH4covwPnfCQGpBJLE+XdlKXq9LtKE8gFVRYHJZIKToyMcHR5gcHKC0egMi8Uc1lDIMPUzmyrqeU/NwML5BKLmjYSgb+r1GLy8MlMrChSG7PyuHCsZBlpWpFXCcCoINi1I5VO2K5H6YpEMOKTkOkTkEKuSBBYUyqwS6htm3erN2j2ZDRJQOjkDEgmAdBXXlcuX5Vh6qVzkipA+E7jUznQlHeBwTIx1x0MK6LL0Dq9sSgnBFpvcDYCs00Hl5h77o/jetOSkzACF6xLxs0lJifBMVbM99DPb+DcPojcvCUV5rAT7UwFSKEgBF81kGiUGal8ox9p8t+RBIQ2bUDABS9HoCB10tHB0o3ATiOg7Sv7j4yT8H9ocyEvBhZNxpzKIBCHysiiwe+UqOmmGRTV3YIm0CWstikJ7h1Vvh7MG0DUlx2FYvrAZJxzSJHiEEFC9Dow2ODs5wR8Ph9i/fh93n3oKly9dwcbGBqRVKMoFhJSwnMxNCNIWky50SuXBpSQhbVxGRiFdrgOVwCqFRBmIytHFoGiSesHSkxtPQFi3yEm78bH5PEC8+cfNksYjpYRmzfXkGEYTSJKCqpAKlz4eAFIpUUymKOYLMgMZV61Tlx4ACQYoQpDgcvdpLSW5s8xqMFMJl53R3SdtbJr8SYyL+lEU2jwFsHDgxQjrbN6AFRLabQoGbBdnTYYkjxQUDk72ejIxSGGRCIs0UdDWUPpuQ1VDJThBlqvFpA2UFN70RCF/VL23MiWESp8MoIgn41j+rABK23lY6NYm0AKTyQivv/4avv71/4kHDx5QGL4F/EZoXaRXZb2JMklUDUSEYwoBWG1Qag3LoY1S+Z3SGgsjjHeUpjF3miy012qNNTg9HSDNFFZXKdU5Z1W2Frh9+zb++I//JwYnQ6yurfkaVVxQk+fWRf3d1i+hj0Eo0ENfBms1tKncZwZ5XjimhM08tVMsBINt45Qk2jw7nQ663Q46WY8iUpREVRaYT6c4Oz3F4eEB9vce4vR0iPli5lgqcoDliEEhos3MmQqYdahZpIvmBcAyJSS7naSpwYis50wNYCgPgHVKokHABjhwTwX9pIu4UQ32CKjTU0j2H5PsTF0zB3zO+DmFB081ALPOp4eziBtXrVfBXTvIIMt9FY89N8GmlugevNuAmwtpYFpsS+zH5hvrPo+z1vJ1pX+muq/5uiHrr1gBgPC+mGGWdrpHgVQpHykmnEmOFVLKF2R9UtEnaR9sgGIpk6AAanbABtllpfDOrYn7S2Bd+N8YWO85XQ8UrwwZaNfBihMcLkxAopNlvkCVcgNUlqWPAWcbMFVdTVz9hGWzTyi4fC4CpJ7CLVGh26Essft7D3FyeIjdq5QQ6urVq1hbW4NSAmWxIO/0NEVVFNCFQZJmSLOUFrATWGAqU0loU7mkTBJKCZ/YjW2STOEBgFT1YmDEHtLHDdbK2sYCcN3pqpjSIjo+PsKrL38TpsqRSoU0zdDpdJF0Mopico59k+EpiukUtqpQGUDKhBgEr8k5g42ILhawYjVz4swyAdhiLZxyDDibMgQ0iGljgFA59sJNGjJKMdVurNNmEn8DUsABEgMprUsAJ0HpvyndNoGYWlxzTRkCc07TBJl6ulmGLEnQ7XScBlRRps3HtO+kASjWui4CJ/wd+10dHR3g5W99A3/yJ9/A6ekpzftI+PEcJMFukSTSa+780pWGEmSiVZI2Sf+8NnjDLBrgaX3BVKtw88haVGWB0egMg5MTZGmG46MjrK2u+3wnTz31FP7kT76Bz/3AD3oTSnjPcb+09VX47/Cz0GwTmnOkgnd4pT4pIwDD5yG5V+S5d5xXiUK/v0KROUmC1Dnoz6YTDI6PcXx0hMHJCQaDY5yfnpJ5yyU6rLuH3wfAgtdWUKSyhht+5ClM2IMbt8WbkD0RblN23AkvWQcIAgsI2N8rNHXULIlsgIzYB6QRnSPQ+D7Oq9UwVwVPB09qMYAEICQqp9QlCbEzpAzycwsPUBSbPQDKpcQsmRCepYrXKo85jwGb8ML78+Ph5xT5oFRl6fOhhPOMGByBRDSda3kOevOc1uhkGUpta+DvlOuwP40uIUCsiXLRoFK5oro+k7doZE1+XPtAAxQIGgBKaMMoF54pSJ3DV4j4jWHtNhZWgVPsEwjbkLXp9Sh9NYd5hQKDN3kGKZIZi2hh8XX87/lYflSnFUhH2alCYjFf4J133sGDBw9w7do1H+64vr5OpomyRJJ2YZ3NWAtLoMQ4u2qSgHVJztjIEl+AGAojLZVTh5tkkWYX95c1y5+3Dp0UKIoSqQVmoxEWoxFMnqOwBsIKJCol146EKONUKlR5DrPIoRzdqk1FoS0CHmQaoN6qHXoXzqwj+X5cpwptaxOP+1yAZS31BQtNFric/pvlqhXOBMP1L4QJQE9TYBtYl+zNMU7ufrW7ZxfsQLyBcOjJaeNCCkCTI2alNdZWVpHJhELgrQ258tbGLNF3yk8l3pQv2qSFoPk7m83w+uuv45t/8nXcu/emz/TMFHTopKddRdVuN0Pq1nZVVaicI2iapoDWsJpMNUJKSGU9Nq3vI9o2xbLjItxvlBSYu5wrq6urmE4pMdnVq7soigLPPfccvva1f4vPvvQ5f65HzfmLgErT/2C5sCnLEm00hAMlDITCCEE+VkoBqVKUZYGyrNDPMu/82uv1KPdSVWEyHeN8dI7ByTH2H+5hcHyMxXyKIl9AezB4AajlDZsDDtxisJbNGwbx09bRkbXp1cKTmWhyKfXfeO5Yvr61Xn6GJpDQV4T/HQYl0OapGn4nyrEubaBGiDYlK3KEduHU1iEXxSeW5FBfOTMNAypmIIwxsGwa5D5xv42BR2P+BHKW+4WPiRVeyxnOrfWggn/j+9PWCddCfxWfhd1omMUCxrIialCWFB3Ge65wA8nsjlQpyqIkKwXYtGP8HH3S9oEGKLzhhy/+TCk233D6Z2crU7IW+HQSb0bgSR07G/H7tham0VZJgnyx8PcQljUHXESPoGuTCaNZwjp2fuPfhQ5WLIjSNIWwpIXmeY53330Xh4eHuHr1Ku7cuYPd3V1yoFIGQlqfPp7UcAdQUqpqShPX9Zt02QulJIdbW9tepcsuCbfZhRqudSFkzFBxf7Y1ATKnpFJAVgbFZIaMa99UINOT0JDQUEqiLAsUoEWpLFH6bOqgwakZtNYrWgdaeAht8/5MMN6GtWxrXdI5LjVQm4IEpKehG1qehPObIbBgLQMg6wAHARPJONA6G7RTQC0ATiZhDX9HCei0sbAigXHh0ld3ryNLMxTGIgGBnsYjh6DxEUDxO9V4LGx0D0VRYHR2htdffx3f+MY3sH/wEImqhSebQ8NQzUpT6vksy/y55vM58jz30WvCjVNITz+qiWCOLjMaoHE3BoPhEKtrG9jY2EK/v4rV1TWsrq1hbW0dN27ewKuvvorv+Z7v8eugbc4/CrR4k3SwITM4C51fCYwZlGXecHgPn8e/YCAFsL6+ivX1dayurEIllHF4OptgPB5jMBjg+OgIhwf7OD87Q7GYkyMjLEgEtANe3kjh+5v+xywBMwbupvx37WkE40lbM5zhGMX9GJof4lwn8fuwFk+8yTOOiM05TXDQNp71ONG+LFDpaulaPL6eAQvYHVZa+drxGMbjys/vn8vCK4th/4T5sLwMcN+HyUV9pGYgJ7jv4t8nKqG8OZJNPQSYtYscE6WFNYr8coyFRkX+dACqkipYC9/fcmlcH9U+0AAl63TQ6XQanV5vIuy86MSkqBeWV3BZpwwmQSzYHgVMyrL0AnVlZQWng2Fj8dTUdH1vWmvA1LZD3uTDJEJh1snQDLS6ugoAmM/nlKTKWJcFseOPZaCyvb2Nu3fv4ubNO1hd20SWZah0BZkoWEMFzYR2k915XEspYdi0ZAyKAJE3GCbqGMBa0gaEgJUSCeCSYdW5XdrobACABIypkArAlAUVyNMWPlWF1RDWIhUWCZQLKyQ7r3XOJdYxG7UC6vmwxjVZiDSNKIwIhGdWjDDNTdUxdMYfS88tg/NYECDRlkOPiXVhGpy1cSEEIBzogHPalRzZI6m+pyVfEwNAS4qcsobyS/BnNlUwWYI7zz0LlaWQeUVnC4R7LOQuau8FuDzufHzN0JcChjbKqqKET1VZ4fjoCH/0R3+EV199FUVRIEsUjK0aayAEV1JKpEkKVxIbALBYLDB3OUx47oeJqhoMnq1X+qOeI9z8AKDUJZRKURQlBoMBVlfX6bW2jm5vBdZqfOITn8Bv//bv4KMf/ajzi0karEbz/HQXDrs2GBJ/n4HMoPVMztA+bFXUGx77WsTavTEGiVJYd7WGOp0OYC0W8zkm44mvZL63v4fTs1NMp2NaZxIu0yDJSjJPUPRNEMAGtvcw8wEQpjZuXgsXyu3BCZiBFMGvAt7E1qwemUKbQG0pmoR6sRFyy+9DBoXnUvg93QVHrzjfE9EEDiFYYbYbomZvGoDAWFhNdblEWvsOscyOTXe8JxRF4fcCvs9wDYWgJZzP3KQQCIReIzNryAqyK4FKEj9Wsa8T/4ZBPlD7RoZjwCJQurmq+DjHUAFkaqZd1/Wrm690f7UrhTXfJbV4hHRu9ryZsG0Czhe74WQFP9EA1/kGgKiLd3G7iKKOP+NJlqYptre3ce/de0ssTNtk5d/x4Od5TtSYy2HCv+PCZKHwD7VDY4z3FOdzZ5zs7f59HB0d4fXX38TtW0/h7tPPYGNzA8omEFJBpQkh/7KqBXxgT5RSNpMDido5yi/2AGAx+KMgv/oZwuqo9cAxY0DRGdpUHEhFFVNhnaMp0aPMbPAGbAECKbJmTB632TIo4BakXPBvBOCqh9RC2QLBrxxjBAYA5CtirHW/kT4/ipXuIWFcSDE5vFr3bALO5AbAUJA3lBVILVHlRrBN3kX0CAuRZchhcePOHdy4e4dq9jjg1TReuOcJhBD9FYim+hOBlCcFOzzO7IfFuWes1ciLHO+88y6++pWv4K2330Ke5+j1egCAbqfrr6G19mnZOfdDmqWeTvZanROoiSvAB7hgPN4GG5iyBioCgJVRYiw31/35WUY4VnGxWOD09BSj0Qgb43Nsb19CkiTY2dmB1hqTycSFIbfX4qrzsLBzJ72Mqf/Nnue0gVXeJ0Br66J1DCDIjs81p6wgVjOk5ztZhn6v76MnFkWOPM9dba2HODw8xOlwiKLMSUkBqJifWx9cvsFaTcpA4C9Aa4GTOzpAAgFXvdQDEAYkCLX/ALQAAlx1wuuQPH6iOR85H4oQbKpXMLaZPTs2lwtBMoj/E1a4zNkMTDiSzgKiVgBDkBLOfY7utDZI5ClqQAIAyro+CJgTBkfxOokdVeN75/PXc6a5/xhtICOGxCu24OgcCy0VRaJGyd5CAJJIScVMo7XE7/k3aar8HKBospotlEFNM+Eym1NiPQEp6wrSNKcNVPpd4oNiJJw9H22y12sD9b8jgczkynugnPy1HQPCKHh7e5vivnWzgjIfG27koTbHE52BSGgD5A2ekfdoNPJgghND9Xt9dDod/5mUVAir3++jqio8fPgA9965hzfeeAO379zGrTu3sX1pB91eH0maUL9J5e2FRltIpaGkokyK/j4lhNJLVGoDfFkSUaHGwlSmL+HOZipjkCoFUZIPjxCA1hRyzKHJTA0DLtWLGzMhhHcaXWpO42PHWWexITDgtD80RqH+Hd+/ewsIAg9euIJuQlqXZEoIB0roBI7XgfF5IoJoEQdSpGVBLxplx0XjPoSLDBAwMFiYEuh0kVuN7sYWPv25l7Czu4v5rICvVuPurw1Ee5ASsE0XtTbA0mYGiX8Ta3/WWhhdIk0lClPi1Vf/L3z5y1/Gw4d7bs0oGKdJVRX8GghNG57SlgpK1fOJ/FFqUMOMn0XNVhlbO/55ypTlgV1mmWIwR3VgjDfVnrkMs+dnIyyuLrC6ugqlEly5cgV7e3v40Ic+5NmTmHbnm7CWb0SAs2B7E4BxqfgdQONoHAb4WlPklpR1n/DGmSiFNEnR6/fR6WQEfrX2dbSOj49xeHiIo6MjTCYTClG3GkoKn1TRupwvfnm4OR/LxtgMQaHb0jElIeqgv97hFcyUOIEdfUa/leBssAxyap8SZlCocnm8qYcsihDkiMmRRcwOq0Q1fgfBDu3LzrUxWOE5Lv0z8ljSfWmjkciaDeFxDf8dMxcAvNIJoHHN8PhwnvN3VOJE1L+DUxhBAAJOoYSLbGIgxa4F1pKM6iSpC1knHzBeh6HSS3NMwLgs2VAUWMHh7tLBW1r3DoAD3vlXuXUsnR9OqCg+rn2gAQqEQFhmfjm8utac6k8CGpzRfovsbdOE4u/Dv5cvX0Z/ZQWjs7MaWUbUm2ANwuil84RgJtz0GejUnvuVR+e8kMJKzSzgAJrQ/X4PRlscnxzi7GyAt995C9euXcON27dw/cZ1rKysQKgEEIpCNKs6LTKlz6dcLyoBKk30bUidhimRAaIfLcLQs5qNYeqaU+lL5+TY76/QQkoon4cxhkKhHSPGFVrp/PBAAiDQYhj4BRoF/7XuTcjAhAPeYFEsaqdZUWu63j/EiVP+t1+EXl0Pj3KAgftGuBOKOk+McEUGSaMk5oQqylt6DwstgEoplNYgWenj+3/wB/DxT30KlbVYlFTqQBg4mCKW57K7UT9foym9ZIJDyykC3wqemxetjBCElmWB0WiMb3/72/iDP/gyTk5OUJZEb+f5cvRXLJgBV79DufBVy75iymt0fA5jjMtFIkiD01xIk7XS5SdrAyge0CnhQ9atMZjP5piMx5hOp5hNJ1hZWYG1Brdv38a9e/fw/PPPe+YoBihtICVe14Yr9Lr1EZoL+PfdbgdSoo4WslQLpt/vo9fr+f7LixxnZ2c4OTnBgwcPcHBwgOl06h31abOixGK011pXpLIG7z63j+B+cn3FAETWYMP6CB4+htGH8BNOKOmPD5lsD2aErBmWYKMWKlSSqGSEkMkSqGh77x1fA7+68N8kngnIKGf2seC0AKL5VwTnC2Y/M/fCMQZGB7LJMCZmcF1/xzLB9Q4oMR0BNB9VKmtTD/i6FnScgGORGEARk0HZwcmPiMba+gy3vM4Y0KsAiEkROIw78GJBspXzm0DX986p9asGy071zcKCuWH0kXVz7BHb6lL7QAMUwf8FKDc+oqma8h8RfNfeW23gpM3UIwT5iqytrWF1dRWjszOPijnM2NOAQd6T+i6EdzCtSpdzwDnRKimBJEFRlBRGKRVWV1YBAXQ7HXQ6Xc+elGVFoYGVRJIm4CRU/SSB0QZpRvlK8nyOb3/7Nbx77x3sXNrBzZs3cePWLWxuXaJ8Erw5SAkjLGAkyqqCLiUM22OdVhICEM62yGYOThPtNzYpXdE/yrpoygUlK5IS12/fwp3nn8e9N98CKsrkaZwTFiWZCm3ejj1xGVaZG2AAUIMH638BIVo33mhmOJBTe7Z7LZBxrp8vwtvcw3MySSP8CRgdAOyTYo3LPeNqi/Dn5MNC/Wsshb8bCxQQmEmF9Z1L+L4f/gv49Od+ACrtIM8rEt5CAK7o2xIYbwUS8THL2oz15SCIceF8Cu4HAMgW7cEXAFjKYAxYTCcTHB8fYW/vHl7/9qu4d+8eRqORY0Yo7NGiLgkhg00lXsPEINJ1w3VX5+Qgdo/vkdMKQEhozg3DINIpLNRVAUiNNFU6v/bO42xTn86mKIoco7MzbGxsIFEpbt28iW98/euoXCFPrz56sMrMFaNd6yvMagbs7GReUfVxC1tHaQjaqJTLq1SV5Ozf7XawsrJCxTQTkiuz6RzT6QSnZ0Nv4j09PSXHfT+WlNyMwoctLEdiMHhGDfgFaNOuO8pttm4dMMsRLo14xjFMF5CNfmbIWDtQOhnuZLrPkic4b5Hb0EUdlfNokFIrhPxzLjhorPXPJYVjW0QQZCEY4Lg6Qy46iZKRsUyrnX8JnhDrqWEgpauNJiSMy4ZNRQWDVAwObHAiOQ98WGFhcOGiNkPfljp6SgDOH47lnbFk5jGGKruzQsmyumF6csyJErTfsNNtyPK4pUfgzc2PcL2GjuGK01Q40KSVcH3BSfLoHtP0yWHHBxqguKwVXuaKaHHEnzCob2KW5W0rpuFCABRqRB5oCIFut4tr167hrTffbDjuMc0XnkPJZuQOQJsasygUKeNSMndSZGmGnqO0mb1I0xSQNAGEEMikgLUJMovA0a6E0ZQBNkmVF4wdlcFag+OjQwyHA7z++mvY3b2B69dvEBPUJ7ORrSws04ZCQCQU+iu08dE8RimP9Jl2llJB6uW0zw0zQJbAmhJKdbCzcgOf+IEfxOWbt7Gxtoa9B3sYDE4wOR8gzyfIZ3OUiwJGa9JQLNe7qTd9r5UxGAmH1cJrecIJWb8JhHMDzY3ZwvpEXywECA5YP238POEFbXn+cEZaYlmENS57JCAciBOWgBvZdK2jTQWQKCx0BSQS3Y1NPPf0s/i+lz6HZz78ArJeH4tSOzs033nzWfh+DAMUr6k1nfbcV41mnaBkgSdE8yBiFCxcrmtKJuiYgMFggP39fezv7+PBg/vYO3iA8eS8wQhISXl4/DwINFOgSXPX/5YwLh2+ZC3bs1PSAxTjxokyjwrIKBrIz8FgLsZzk/uENm8nfAX5gkzHYxitURYF5rMZVlbW0O10AQCT8QRra2v0ezAWYbaEkqnxphOabcJcJwsXAVgUufNHUy4DNJU2yCcF+t0utre3XYSeovvJS8zmc5ycnOD46AD7Bw9xfHKE+XwBAdKsjcu1I4hua/SBZ5N9X9h6SoemhlpFqJUrBiUeQIT9GJ5f+nXKaSBCtoz8QuDMMlQLRzpWRQiXN8iZMtj0JwM56s/h/7JMCBKzSd5Y6fwiWLdkkmxmbU0UyzPpfyddQUMhCQR7ZTdcH7b2QYnnNH/H9xm+D9cI7w0hgxZ+zyufIwLh+kQlaR3diKabAN+LdSwxOyTHxQT52hxllKb1OgqLF/JvWCFXUkAm1M9lUaKTMmNF8tCiZv6etH2wAYpg/NjenK7n/93Q+PxBXMq7bjEjE/8m/DxEnNevX0e/3/dpfhsZAgPQE/tohOfk9zwRwxA1Nqf4iWRJK/B1KPz9SAiR+GQ5Ph22rmlkKQWUImQ+GY/x2ukruP/uu9je3sb169dx+fIlxwqt1RluqwrClScn/rLWZCElrNS0mTCQktJ7mHsNx5UAl8rASoEKFkmWoVQST734IrbWN3D19l1Mp1NMx8eYz84wG08wPj3HYjLFeHSOcr5AschRFgWlaXap+S0AGPYFcX3pAImSdcplyh7LmlowrgF6pe8sKk6H7sfRpaRmUCypHLyx1ufgYP2Qa5PwmEkHXKwk4KoBqmNiKBIgzSibr+x0sLWxgTvPPI1nXvgIbj33AnYuXYaVAvO8gK4cI0dqIQmUSHe1CGZ+YGJ4XKNn5T6qKeFwHlpjUCwWmM9mGI1GODw8xP7+Po6OjnB4eIjpdIo8z1HqBbhAn98QIby2LjntP5qbWrhm6jXCG5daFrZufIQgYMWOjMw+cE4ZKSUlWLS1iaU2eTTXoHTx334ztoAuS+iiRFWWxH6UBaRMsbmxieFw6AFKQJa4+UQypt5wXFZYXXr/LMp1UkEKgayTUcl7p2RMplOURYHNjU3sbG9hbW3VJ4abTScYnY1wfHyMhw8f4uj4AIt8ivl8RnPEsToSjOtqX4Ew9wf4VmvkTaugcUzNmtQv2WBBWl8Qjg2ofdd4/EJgEfq1MVMRmrJDf47YD64JUGjtMpZlkKIUf0/PSdr+clI3KQTV2OG5JtjMU4M4P1ekoNIJ8fqztYNpWPCPZXAoz+P5zkCAf8NRP+FeU9k6D0w9Z2ufQDoh/aYsy6W+r1nFem+KzTHcz1zF2JjK3yP7Xjb9LS1SocChBlwpmr4nOUA5ML9LAMrjmiMsg3/HnIo7ogXRxRPiIpAStsuXLmFnZwd7e3tLv4kBSKhBhYujzfcktNFz88LZ1LZ8/1RuUbAnNtvGOeSZNxw/IQF0shTz2QQPpmMcHx2g1+s5sHIDV65cxuraGpKsA5V2AOe8B2CJbhVCkSObdIWigkXgF4mSsFaTnbTSqGyJ8WiKm7s3kaoEYo2S7K1v9CHsDZhKEyBZ5NBFicV0gsnoHLMJJZaaL+ZYLBaYTaZYzBeoHHBhCp0KGNICIV8PNxcco8GMCXytG2Zj3AbnGQXSFsNIBkDAunA7Hh0KzZQ18+A2BhpHBTgWxVoLlaborvextr6Bje0dbF++gqvXb+D6rVu4dPkKeqvrEFkXKklRFAXVJQIzNGCSpr5OOLsDgRf6QbS1cO5pBAIf8H4RRZ5jMBxif28Ppy7B13A4pL6fzfxcE4KcBquKorNiB8QGc4LlPBB8HzyHWWsLtdtQA6WXBm3Dda6gEMCIYCyEo9D59+HG5/vKEpNAtZ2ozypdYj6nopZlvkBZFOj2M1y9ehXD4RC3b9/2A+GJNUPsRej8y385Wol8QwRVsnUpzKtKoygqzGYzpGmKK1d2sbO9iU6SwJgK8/kU5+fnODo6xsHBPvb3DzAanSHPF1CJ8DKAxz8e55DV9XPFgRKyMoilMYuZEfcPEEipEz0KUZuGhJ9LtmZ+g2uG4CKOemkDOwAaKRkuMu84NNb4funawfv4POFcA+AVrrjf/PmC96EfVhgNw3MsdABntoKvEc5Dfh87zMb9wddsBFAIgTRLADTLv/j9RQif1FKCknCGjE1zfVmYCKBUVQVjCUB4MAYyZynFz9NkDOvn/C6J4rmoxXRu2LiT2o6PP2v7nFs8SYUQ6K/08fTTT+Pw8NBH5cRsS3gfS/a+SECzMxw3Bhhsk6QNVDbCw9rATJhdMUbzXKo7X+Q+zNlai7FzCLx//z5WV1eJVbm6i83tHaytrVJIY7cLaypHMfqpDiuVM1s0BaAUEtpISsZmCtJQrMWsmGA+nSLLMphK+8rOBhlc5jP0Vy2xI2UFU1bQJZmvtK2QV3NUZYWyKFAVJRazGRZz0vCnkwkW8znKgjaCfLHAwoVvwyF7zjUBq11CP05Z75LBWTbvsGBgatc/XAP4WilgFaW7Vy6RmFISnU4XK/0+ut0e+it9bGxuY31rC5tb29jY3MLa5hZ6/R5UlkGlKdX5cUnsi7JAZTRVOg3svo05GFHNLPzqubyc4ydkKTwz4UBDVVaYz2c4H4+wv7/vshY/xHA4QJXn0FVZ/16TCasoS8fYaacFt+fSibXecPMLHbA5z1A4r3muN/1WElCekApVxaAebpy0B3RsZgk3kbC/6Jigj7wpifK5zGYzlxyRtNqiWGBnZwvv3rsXaJ/1tSxMwwzGZTAY9NVUOZAoCWMqb+5ZLHJsbKzj8uXLkII22MVigcl4jLOzM89cDQYDTKdTJxsor0z4fCFY42eN5wnP47AD4vGJZRj9jhiqNgATfhZu9jEIiZmUtuuGn4eMS9vva4BiGsfzffjzWZC5uGHGqV8xWxcDbR5jrbWvBRW3cI7yeIRmkhCU8LxnE33IoIcuASGz6edZtF8JIVxkW70v8J4UjpEFpbpnlr05tvVxlQueoGg6ASEU+Xhx3TZL31XWQFfG5V6hbOZVVXpnWiUViuK7JA9K2NoETTiJ+O9FYCQ8nlvbJvCoa6dpimeeeQYvv/wyTk9Po82BWrhQQzQaHhf+jQFVKORUopzTqW3Qd/FEjYW6drbWTqfjJ77VdXbOoigA1JvWaDTC+fk53nzrLWxtb+HylSvY2dnBzs4ONjY2kGUZhfUaAwuqqBmyE41xKR0pbCtUABKlMD4foSwKb4MXSpKvi0oB1FS7EoLScFcayhhnA9fooHQMBQkcawxVeC4dHa81qqJEWZRky89zFEWJoqCsnOSEXKHIpzBlAa53wo7L7LtBLwFr3LM4YEKCJfFZTVWSQvU6SDtd9Hs99Po9dDpdrK6sotvtIutk6HZ6SLp9ZN0+sk7HpWenhHSl0SidSUNYkCkr8qV41DyMWz3+9eYZC1k+RmuNRZ5jNBrh/sMHuHfvPvb2HrqqtgunCWnACzs6LxW3ZBMi5zAhu/3jtL+Y8s+yrJH2PtQya8bEeIHrqX4Xepko6R03pUg9m0PZlE0Y+NdYh/EGDNRmDwt6vsJFIXFETFmW6HQ7YF8T79Rpef1q96pZk6IoGgndlKJxNtpgOpmg2+2i1+1hfW0Nm5ubyNIMs9kM43yB0+EAx8dHODxkc9oEZVlBOAJEa+uq8jY18nDM4/5vmy8XHR9/5xmXYB61vdpASaipxyAiBgMxW/JoYAOyyWEZADNjliQJ4Kqkh2AkvlZbX7SBFBI+ywBu6TigAVD48zYlNfRP4c/CPYGBZ/g+3DtKVhTcMQx6wucgtowdbZlZrgGVSiiwQTsmRUiBRCXEJBuDqrLQzszP88667q+0u18IQChvbtVPHmX8wQYo1i6Dj6ZW1USXMbvAf2NfkbbFu6w5ND+31qIsSuzu7uLZZ5/FN7/5TZ9oLXR84okR0mnxv8OJF14nBi4EBCpfmDCkw8NnCSc8AH9PnCpcKeVj+DkbZhuVaazGwcEB9vYeYmVlFZubm7h8+RKuXLmCnZ1L6Pf7SLKMzB2uPgUXKgMoc6zRhqJPHBuAhIohzucLzOZzsq0bSm5mKwWVpOikGSyAQhtAJhBpAiHIcQ7SwKKEsPRvJQTVZDFBqXpDwMXbgI12WrRxmgWZg2AKCDSpTvYZYKqTKhQrJ9QSr/VIqZA4m6tQKZAlkG5MElWn3A7jkWTShXA1hzgiyAIwkkBnqStYbaCqIEzvMXMz/IyBKD+HlPW12cQUhn8Ph0Ps7T3E/v4e3nnnHRweHSLPcxLekiJbrAnu1HBtKbgEdeRHYWHJXNEi5GPNmBvT/8yc8Ivnawji+XlCAU7rhTc4drokBidRFIGRGwFdlYAwfuxj5cH3lQgUHPe8AsQ0VlWFoixQFAV6KyvIsgzz+RxCSJrfguY+1QsqHUNX+bIUoULh5xgset0ujo+PkJcFnn3mGaeFCswXc5yNzjA8OcbRITkhjydj7+tWiwpK6Fdn7GTm0skD30PsANz8VMCBbsGmGTJzhfKkfu9ICiG8Y/hFgCF+8XehqSYGrG0gJGRO+H4uAl22drFo/G4ymWA2m+HSpUvoppnLXgtnymMzonOXdyycVMnS+eP7QzCfQrNhaKL3o9RisuHn4b3oInATj0PMLLLc0lr7Cs3xfONz+SRxrkwLNKCNgSJLnZPfLkpLShdtagHh/tp6IminFCYJrd/KWOgyR5pQYlDKKF1BV4VnY56kfcABSnPT5lfbpIiPu0iDaC7CZQam7Tj+d5Kl0Frj4x//OA4ODnBwcNCYNPEkCn/LIIVbCLJCG2UDRRvtnQOLovDCnYFGLAR5gy6KwmuA3Mq8XELpSlH9EynJUcqU5K+ipES+mOPocIGD/X30+31sbm7g0qXL2NrZxvrmJpWhzzqwSqGqXH+5yyWSKEWWfVJKqrqpNYRSWOQLEnwyRWLcIoRwqf1djWErIIQzu8iEpSUgyAmOMqNbv9KYXVHe3wR+w2YfBgEDIesQcDqfmzPOuZbCFqQLta6BSsPZU0hKoObTaZNWZy33r4ExgAblfWGNz1jK0AjL7zWECfwZgvGKQcmS5h/MqZCF4HlYFAVmsxlOTgYYDAY4PDzA/fv3cXCwj/H4zJdxyNLU3Tv75zjmChbk9GYgXCEgbTQgyImYBLdLIBUIWqawQ0o7Nuew0A/BU57nfq7wnGYBW4Pvdm03TVNkGUXFlIWELub+XGH/NbVlHv6aIWDTS1EUyPOCbPPaoJN1oWTiQIkO1q31TEpZliiKwjsXAvDOi5zLZH19HSeDExwcHKC8cwcWwGQy8Q6wJ0cHGJ+f+r7wm5Os5ZSHG0vyid/U792MpXciPI7ZQXdUtInWL4Jt0kW0xOzwowAKP3cbaA2PaWNZ4lcIcPi+RGBeDO+HAXtVVZCdzPdXnYbF8QgukR7PqbiF8rwdIDXNiOF9hPtJmEk2Pke4bttcE+LxCPeM+h6b9xNmdeX9YGEMkuAa2ikz1gLFbOYVMGMpaq/UtWLN88WQMCAHPMnOvSXyoi5D4SfYd1OxwFgDijfxNjDShkrD87WxKG30ehvIMcZgc3MTH//4x3F8fLwU5sjHhJ+FACTeTOJ7aN6LC5cNPmdHKdaeQyEc0swxGxMmceLvGJxwMUQ2fZCDlPHCfzGf42A+x9HhEaRS6K2s4NKlS7h06RI2Nzextr6O1ZUVpC5TYZHnUEJSGXDHTFRao6xKSCWhrYYQCkKX5AtSlUGIYe1vo5SEUMKHg0ohUYEiMDhLK7nuSedMXIMF8MKWBGgM1xCRy2GBvs/pjdPO6k2YmQI6hsYlUVkDWJAWIlx+C7fBG9J44QCAhXV5KSiHrASxP8ZKXz7govncNldYG0vT1DFmBabTCc7OznB8fIyjoyOcnJxgMBjg9PTUzQEKR+27Ct0+cRgINLmz1xueA4DGAS8hanAkOREYgs+C+UjAIfP1tMJ1yfdfep8W03iuULg3+6PJjrI84HxByFIIaNiyNrMI3oydNkgvf+PeqZb7XilFJsEiR9bpodvtIEnSRibZmoHTHpjwMwPw63NlZQVra2veF+z27dtIkgSLxQLn5+fY29vDwcEBBoMB8tkUxhRg9iFu9MwW8GnhQ/AhGp95pBKBD98fQtSJzYJjYjAAIWAhW4+JWY8l1iG699DUEpo12s7VuM8l8ARIxfO0zrhaVRqdTge7u7sOqAjyHfFsGz+ziy5ruc+wtSnBbSAFqFmTGBTzRn/R/nIRO/q4a4NG2C1PZ36EgLVlDRacCazUGpWtQQes6zcXnSQFJZCUkoq06orLj3AEKfOLtI60IT8v42WD9mOrIsvA49oHGqC0tZAtiG2vcXvSz/i88b/jCVKWJRIHDp566il8+MMfxiuvvNIwIYX3yC00y8Qg6SL0LITb5BzI55BBow0qW8Gw8HaaCmumxnAxp9rnoCpr+jyk2DudDrrdrg9pZIASOuWyv0rNtGicj0Y4HQ7x9ltvYX1tDWvr61hfX8fm5iY2Nzaxvr6GLMmQpgk4img2nWI+m0EpCW000kw6nxYLa5x6IyWlnrduUzcC0BJIaBNxeeSccyZrv7RoyJ/DgQ33PwMHZgT5LxhBi8qYUGA3hbcHMIEqakRoh6e/ptQ1oAlCbawN55clari+K8AaTzdLB6S0RSPsl1mJ4Cz1/CT05AFEkeeYjMc4PTvD/v5DHB4e4OjoGMPhEOPxObR2iZ3c+a3hGjB1WQPvR+GuIWWdQ8L/znKWSHdty+Ch6V8SzrE0Tb1Zh/uY53wMTsIoCF4ny0rE0jIBMzHsEK6UgEoSFGVB9Z6srWutgBP6Cd+HdM98b1R6Xggq4jefz7C2vg6tSyglUVVkajXWoKpKaG1gTOWz53K/CiE8Y9LtdmtNdj5HUeQwRuPNN9/A0dERjo6OMB5PYIyGQr3ZPUr58om8EMi9YFMSwXzl+cNMUQN3grcc/8uadeFx5uRlLSaZ8G8cLhwfs+xHssyShMeH86X9fd0fvBHzXFCK5pwSIaiRLiUCr3mX1ZW0h0cClboPm+MQOtmyImms9TW5AGIbue9jJ1U+p2dHvDRb9itCK5gRtVgBKUFGNAGfN99YChiwNsht4gDLfLGAEOSzCACaFRWXsdbPEcewGMNyInTidQwyBIryu8TEE7YQgcYIM/4b/ibUlGONmVtIn/Hn4bn4HFpTMS8rgKzbwSc+9UkcD07wzjvvIFEJKkMp3tlGzC2kHcOJF2oPIajxmopzyLPWUcnO90IICoWlYw1V3KxqOjx12pfWmvKIOO03BCVZljXqNlDCqNongMMjGaww2NGaqrAqKWG1wehshLPTM+9j0O120e/3sb25RaXg11ZhjMbw5ARnJwOs9vuQ1gC6grTSCWVda+Mm8j9QCsISgDFCQ1iqjSMEIIWC4WRPcBoFsxlg0GJqoSykAxD1GHMUBwk5DlxnH52LNSwZCwtbh//7BS14G+DPXQ4bTlPNyb0ECzEScJx4iv1BBEk37zdRVSUWiwVOTk7w8OFDSp52cIDT0yHm86n3XYi1NqaEQ6ajKArHaDXXkLVAmPM/BL31ht7ePzwPfH4dS9RzHOnSVsMpjrzxfSdqU1j4POG60lojTRWyToreyir0ZIKiKJCwkyCr3pKhCj8zn98gz+eYTqfY2Exdni4LbUqoRKDSOYR0kUS6aNQWonEhdnN9fd0nQwRoHS4WUwwHQzIN7+/j6Jjq5nC0kBDEwLHvENA0Ufn+EMJll6+ZoHAc6hnHad2DVOpimVVBmMZe8MYt/BwWIMAXAwu+v4vMMuEm2cao8PPEoKXtfNya/i3S3XJTjnayjpeZnKPJCkFjD6e0uH8bftoWWR83MnkKQAq/B1BCx6YssZZqLpE8MJA6KFUSzFnKNVVHvgiXpdUzowJL/WZsHbrs10gAm/i3DTNrUkcOOd3GH8u+iKSsiKXI1HBPFEKwvoXQEb9hHXAqQKiQP659oAFKPFliBBpPrLb3wKNt+/xZuCBi2q42OSg/iFJKbG5u4rOf/SyqqsL9+/cpjDYCRQB85dbYd4YFUOhLELbweZc3muaxscc4T2Q23zAFG7It4aaklPIoXSYJUimRpCmMm/TGRb2QvUQv9SPZJMmxcDQaYe/+A3S7HXcNi9PRCEopnI/PsLq2hu3tbXSznnM8TcjUYytX04OzIFpaxIV1wluAqufCCera8VQmaaBF1hoFAjBPTp7wzyyl9Hlm4McfvpJnnCk3PLnw1YyDC/LGwV3jWB5CTpzXxIQHA64UF1fzFVJ6cxxnVRWwELpCPp9jNBrh4cOH2Nvbw+HhoQ9BZYdNa0PzXu0UGG7wPN+MoUKJ0qVZFz4/nW0UOowb07k838KETgxUmTkJwUZYqylMYBYrBrx2mOUJ1xIfE4JYgBiPPDeoNDn8MhDnFuamkJLYOx6kWpbQGp0vplBTibLMXZSEQqdDvjoUwaRhrYYxVeO8q6urWFlZ8XVzyrL0Bf1GpyfY33uAo6NjjMfnmM5mpLmjzvgZyiF+zvCZWeu2bm75+ebfB1q+qFnAGgTwXHC+H3Ti4AUCcCGIEQjmUz1GFzElMeAI7z/+2wZoLlIyYzaGtXcGBvTspLxIkFnWxRk7pSPw37GOSXDgTYkmKGprlmnZ4BlCh1eW5eF8ttaiKApv6uR5zM/ifUKCLK4ho+5NMsF79ukiBcZ4cwyvaZbxfh8Q0gETyq5rnbIKkA8PIJGmTSfh8G+D3bfw6fJjSwCvV2stdNVCdV7QPtAAJW7x5HkUKufWBkji79oE4KOODVH7rVu38MlPfhJlWWI4HDq2ov4No9BwUsY0dswIhdeMgQkL/XiChMdwCmN2UmPKnY97FNDjsuUiYVqRNALaAF1yNFkh1Hj5uqE/jlISlTGUWEopZJ0OHj58iOPjY6ysrmB7awv9/irW19axubWJ9fX1Ovw0SYihcc+eOA90vtc6g2PiF2ulK9QacbuwsRAuVYhFHS7KpL/TGi0g2FFUO3MKbwLup9RU+I9QdQUbh5l1aDQh3QZXax6k0fHtUJEvCIGyJEfX2XSKg4cPsP9wD/v7+xgOh744XGhetGgm/QsFOo97OE4cXUL3CcAED8kbXrA2QiEZCsQw4VoYrROulTzPPVCvk5c15/1FikLc+HfsiBv+25YW08kMujLodLrIUouiLIkxsexnBLgqef4Zw+cDgMV8jnyx8OHf/V6PTF5Gkz+Vc4o1xiBJUm/SybIMVVVhPp9jPB5jMBjg6OgIxwcPcXo6wGQy8VOE5lbdQsakTQFjgNKYd7Go4meKa+P4V1Mx8SCY54tqho3H1+c5FfuSPM7E07hmC/MSj2/bdcNxuvAYDzjDjTaS6Y3rXQzEW7p1qcXgrW2fAJqRPbHfINCMBgplXPMeasU2SRJSGqsmAxn7LpFje7wfUv9Yi6V+DY+LFYcYoMU+Zyxbcv1dmAcFeDxAuQgBh5PnIoQcHsuTKRR+8XdMjVVVhbt378IYg9///d/HZDyGcmGkIfjg37bZli8SxKylxiHKcYt9WPgew00gjP5hhB0+C93Pso3Y2DpSgp0xOTUzL6q6fHwzeVRRFkjcZsWbSVVVOB+d43x07j4js1O/30e/38fGxgZWVlYaNHmn0/H3Hm98VUWF6cjUIx1VyjZn0SArlEwhvEYBv+HEG6QvREYfNnxMuFFki/BKbOMQNvV4oFJrYNTnvLCpn8qqpCgiYzCejDEcnmI6nWJ0doajoyMMhwMc7x9gNptS3hbWaq2l3CpeOLmIo2AzCOduOD4I7rXt+dCQ5zUgDzU4BsHcVlZW/PH+9G5+8GYeA3RuIZ3M38eJqvycDOZYyLLwfZVlBSB3ADaBrDQMXBSQJa0RIjD9RffBflkMHo0xWFlZacx37ejxTqeD9fUNrK6ugqOAKHqKonUODw8ptHg2gdal7582ANYKSCLQxttEm6wLNz/aqJejZ9qcU8NzXXTO8Pex6SYGLKEPSZtfSWz2aQMh8WfxRhj3S3w98tPhUOvmpto8Du+7xXtD2GcX9V18bNjisHrvRxIp0h68uNOE0W68J3mZVlnIpGabwr5ta20yg+9NiuY4xsCmCWaerP25AShtC5o/f9xncae3LUbWCHmQATQ2XdYW21iXNE1x584dGGPwP/7wf2B8fr50/dDEw+cJAcxF9833xgI4jqPnZwr/xpoGa638jCzUl4VKLRSXwUvdT91utwG8Yt8Cay263U6j//h+w99yhE9RFJjP5zg6OgIAH/7c7XYpqVWvh36/7yn0ELikaUqMT5qBC5HVob/N/jTKQMqELEcyEPgWVGfHgTSjo41DykjPErBug4uOpE/4ug7EWFh/bmEpvNFUGvP5jDTtyTkGgwEGJwPsH+xjOBgiz3Ms8hyLBWXJVYIFE20+1puh6pDOmsJdFpwhOIiFabvAbM6hGJyEdHK44cQ0NYAG0xNujPGcjU0EMfMT3m9oKgo/43OQ38ciqAZeRs9Xs0SsUdK8gQfxqQufNFqj2+n4DMVFUZBJZ20NqyurUInCYjFHURQYDk9xeHjoX+fn5yjyBZQPa23fzOLxCDffJbYAzfXf+M4DmXo9t72AZR8SoJmVOhyLi/62mXUu+n0b+Gi794vuyY9cMCfDvor7tP57cV8/6WZqLc2PmGVoe899G14j/J7XDh8Xfh/3TbxfsZm0LEukSdq4Nq8Ba22Ql6mWv3EftM2xtmfiezAmdJRflhvhMz9p+3MDUAA8ciDDY+J/h8Iw1N5CYclCNawpAGBJoMfn5knT6XTw1FNPYTFf4Gt/9EcYj8fIsswLM6CZ++RJBrFNS2jThEPtgo8J34cgK4zL582lrpHRFBBxP4cCJHyG8Py1dtv8dwh86r6XUGp5cVtrXSrwReMZ+ZVlGXq9Xg1Wuh10ul0kWYput4der3YCTpMUaZYhTRJoUUEIpxm7wmIiMN94eljK2uwhBKStXWnrRo5l9U3TsQRA6fPKcMFFg7IqURQlJhMqMXB6eobByQmGp0PHmExQ5IVPdU/sCvVFIgUAQ+4BYI2VAQHPraYAj8F2PC8eN9e4FDyvDR6DWMvjqC8GnuH3oc9JOBdDUBuCGgal4XptY33CdcuJB8OQZJ7TteMssX+z2czNWX42z6G4+UoF0XzSOPYKhEUZsIZSKayurmJ1dRVCCCqqeD7CcDDA/v4Bjo6OMBqNMJlOyGlRcg0hNNbNhZu2rUEuKzRK1psNp3qPZUNzE4cDXY92ZOXfhdp6DD7i+4sZlDawEkZuPepc3No+uwh88Pl93wRpF/zx/ids0rgYjHjAFV4HIYkY5gSp52UbmwA0mb+L9qm6BELtz9V2bp7/vNZC+R3vX6Fi4q8P4SPxwueNGalQieR7Dded1tr5S9WuCuF9hi1m9B/V/lwBlCdpbZsdsEw7hyiQaTFusYCMUWw4iRjQKKXQ7XZx/fp1vLGx0dhc+XfhwIcDe9HCeRQwiu8x/C7WouPzhZsELxCatKqhJccgLhT+saALk8YB5EzICyfcLPj5a3DzaGqwbZzKssR0OvWMCwCkHaozRMnHMqRZ6h0l+/0+el1KR59lxMh0ux2i/6VAkqRI0wRSKlrQxvoy7P7ZYw5F1KnZQ98bZgvKssBikSPPc0wmE4xGZ/T3bITJZIL5YkHHUpY7wGkmyrE1FMrnXsJCKAUVVE8O+8VaC201+czYx5sEL5pvPC/pmeu5Gs63cP6FvifxeYwxjQyxIfgPgQezFZz6PsyMG86/EAwDCEA1fD4X7vuQqayqyoc8e5Mtaj8xBifhRuAVCqVgBIVdVqYCpZlXWF1bQ7fTQVES83dycuQYkwOcnAwwn8+df4+BSshh01Y18xmPg9/khdsW+RhOMR7MPuEzji1v6jGIaDPxXDQHLj7H8r9redE0GYXrv83M0wY24mPC/g+vG7J41lpfryy8dviMoo3fjJ6RjgP5nLloJv4PghlPQFi5dO8Xtbbne9QxwMWsftv8BxDIWlKAuH/aAFEMvNquGfZf2D+hYtl2H23nea/tAw1QWEQDWNJfW49v6aAYkfrj3MDxxncRtcVokAeKP48XJQu3zc0NrK+vYzAYeA/uULsLB/RJnuOiQW9D3SHCju+57dnCv7TYNaqqzgAZTtxHTdZQW+JzhhoOnz9cSPUm1Zzg8YtbmzBqPJshf5RikWMSjVMDSCWUPZULJ6YpARn2sgcElMwaAnipCUBYl1I/yOfBjpOcGXWxWDRCUcM+kEpRnZA0oZpLsja/CVGHpvMryeql3DZ21lKCJdhlYB0LvYtaLFxD5iScb9wvSilvQgmfLQSSDEr5s3CtMTDpdruNMGSllDfj8aYUzpGqqrBYLDCfz/18YBAyn88D51Wax1VVeRalLEvvd1N3RQ0QO51eDcClwiJ3odCQkAro9/uojMbp6MwxYUM8fPCuy2cy9teuN2VAmwoy6Nf4rx+jWC6wjBLwocVCkMmRAUrbuWiM1NLYX7QBhUCgDYSEYx4eF34fyrW2za7ts/C+HmUGCpWkkNFru0bj/AwyRDt7448Rwvv1cNQ1f1f3vXXW26YsbNuwQwUslh/hM/G/w/f8CplP/ixkOQD4HEfhdVqfU7b3e3xc3ELA2XZsLIfCPnjS9ucGoHCUA5NHnLTrseewFtoaWEuL2/IkhEXlSqVTdnNngtDGZ9QUovYf8BPLmCWtkiePMQZSKezu7uKdd97x99C2MOO/8cTmzx71XOHCjIHURb8NvwvBQ70hCc+sAGgwI3xMLAhCAFY/V/O6IaioN9Z2X4mY6bkIuIR9FWrNMQMUmvWqskBVFg2NPhQa1sLNleZCjPtTch0MQ8m9rLVQUrlEX3U/SSlhXREulRBNLwVVpQXgvPA5R0FtsomFAOVOMT7km5gA+PlIadnDTfdP1xg4XrTZcLQOfx+CAY7Sic2p4bxjPyMGhsx0cObVfr/fSJUeznEAyPMc8/kcp6enmEwmjcKCoXZtDNWkijdAE2w4xtA4Qiqsrq9DKGLTut2+v+fwPmezGSaTMfb39/DuvXdwfHyI+XwGAM5JOQTkxBIy+xX2ZbyOlsZciEZhNz+fZPumUn/mgEwEDtpMEiHYjAFI6G/0qI0svA6vwccxKG3vLwIxsUzkOeazB2PZ54P7ASJke6XvFwqzdXmmgAZrAggvAzihW/27ZgtlVaysxqAh7rNHjX2szIW+g4ArKluR+TCUd+F9kSJOaQTCsQ2Vl0c9T3geaylHUwiM4/0qfoYnaR98gMKaA//bf+dC7h6D3oyl7KHWWu8QySGsFYd7Wrg8HE7o14Sqp1OtEP7iISoOJw0P+pWrV9Hr91GUJeUOgaOV3fMwWgfgE64B1n1nWaG7cCKFm284wcPiazErxPfXOomDf9O1LDjbKkW5sLZ0cRghL2K+v0aa8UiA1ddsag50vWacfXyvrKEvA4baETm8dqj9h7+J6enwe+NCkWuGxy4BLvYFkEp6DQUAVQMN8hBYayloJLiXEEwladJY2KHgCoWTMGxOCgsbGrcBhiuDwWEIFJvfPUp+8HNaayClWprb3HehOYbnHm8cYVQX91UIoMNEbjxmnIl4bW3Nz+Nw3gB1nZ+iKJAkCdbW1rCysoLBYICzszPPWAohGs6zXHeoHut6E6I+FjAWSJMUq6trsFYgTTOkaQZdUSp7otIFiiLH4OQY9+/dw0NXBXpezF1/SZQ69/3DibUSqcCGGm9CAMiswHLFurw+ssmk0Fd+YZHpkedII9QqWGvB5+E8bwMEMRiJP+fj6/khGnOTx7jt9zzHwzFEw3G3/jePCdAE6bHsC0t5hFmK+VrNuSyCfmk3V/G+AsAngORmnKuxgwwIgR/N68D5vfEMNKf4N/HL56ERdF66b+HXsfE1yZosfviX9yrK++Ku72rkNCxbFi65YM1whub2cLzC64UsEX8uQMkypXD5eJxSVl/Kun3ru8QHxW1fwfvmdzQY7XZGPsbSh36ziTc9Y+rBizeKJVRuDGCbFF0ciiyEwM6lHdy4eQMHhwe1YHSPIgJHVCBgDEQtVmjyOcQanbtNw4idknjDiP0++Lvw+WKWAWgmfYu1qnCBhzRwfEzozHXRfdJEbvq1tAGT0GzF97rs7JwGrEjNjLAA09ogLC4W3suyJkH3Redt382TIHQv7MOwjy4CgCEjFWs+4e9CU0kbi9P8Nwt8nivcN8v3Hj9v2Bd0fDMUPhT+/J61V36ePM+9eSv0geHfMFvFSasAiu7Jsgw7OzvY3Nz0idXCOcP/DgUmMyLs/3L16lWsrq7i+PgY5y6CjoEJMy9lWaLX6yHPczc3aBNYzHOkWQptDPqdDvr9NWhj0e31YY2FqSystijLAlVR4PDwEA/uv4u9hw8xm00pdFhYqprrFrmwgGAfIgsYbSGVrHc/JwekrP1tjDUwTtut0wtQDos6bN5lTQ6Gz8+poJifEIIKbKK5wYcbdGOTXpr/zWPjaL9QHsXKSijbQsBA9/l4Z10hYh+1ZqVeKSmKML5Om1zkPmNQwf1UX1dCcIVosCJKw+ST5wk08zEGZh7jCoFKyXOzXlv1PfGrvX+pT1WwlilCL/Rr4zGOFS1m6CrnqE7nQYP1d3fdkJs8jiFICZWK8PNwnBnN6UCohOw5r/Gy+i7KgxJv/uHnAsvCNm5C1L4m9O/6O6XqfBRcX6Dt9+2Tv0ln8aTVWmNlZQXPPfccvv3tb2M8Hi8J3Pi5Lr53IJzcbWxK2zniiR3ea/ziFtsb+X0YYx/bVuNw5RiQhJtt3G90jXojDcPjLno2PnebAygvvHgR1/fNlYdre24IdOpj6029rZ/qe1lmtdo2g7axiYFw6BgavmIzyZO0x62Hx/2G33OEV/j83L+h6QVAI8ycxyZ21DXGeF8fbpubm9je3sbKygqUUo38Ouvr60sAW0rps7NyZeTV1VVUVeVrRUkpcXZ21rgP7meOOJrP50jTBGVZkYCvNKpKo9frI3Oh671eD4vFHLokYTufzXDvnXfw9ptv4Px8hCJfQABIhIQAFWpjLEsVDtxasQZWCGhUgGhu4sKFNauE2JXKGsf4sklF1gqNqJ1omZnhGjnE+YqgAB6bL2qmot6smwCljQ2N/8bveZ6E34Vm7xg4NADDI8CJ673GOr3o2Nhs1Lb+wGwVa4ehGccyAGEOhdY9n8HAQApZF8SDdSkCmr5Z3JaiiIIWr/kwG3koI0OFkF0SQnkXygL6vVo6d7yegaYfZXj/3GJlIj5fzKaErS1i6b20DzhAqT3sqUUDj4jmbGsCZAxyh9GpQkaCFk4jJzqf3zIN5zo/ulobYJBSYrFY4Pr16/jYxz6Gr3zlK37zjQGWv8VoQvhzCekMQ83J8rgWTkDeZOp6DE1TSXj9sMWgJnZMC+3SbXRwW2bJcBKHQitcgG1mF1648YKO7zemeENQVQOrJrsRaypS2iVWLAYyfJ74Ph4tKND4jr/neww3+DZT1UVA9KJxu+j6j2rx5hWPGfuNhL4nnIuE75UZC553IXOSJIkHtVtbW7h69apnYvI8x9nZGQDy99jY2GjM2fB52F+l0+lgdXUVw+EQyoX+8vej0chrhSyUGaAQ+GNATKapNMmwvbXjUwZ0Oh1UukKR5zg5Oca7776L/b0HmI4n0BVVjBWSTaCB8YbHyga6s6WKr5CBv5MBjKYq3kpKHzUmJdW1loLMh/Tc5HPH1RW0VYCQgPudcNp/DVpEDYZ4XCXVfAGzA4L+HWeEjZmQts22zWR0EaBpzqt2X5T4b2ziqdfuI5xdW+bwk8x/gXpPaJMf4Zq+SE4+qfIQnjf+d5scqVncGljEe8hFz9jsp2WmLAQ7scIXrvtHXaPtmsx2PWn7QAOUUDi972YtDJra8KM2urAtLQZ3vrbvw8Hl1wsvvIC9vT28/fbbS79pczyLJ7uQAhJB3ZT3oEXHgCa8vzD750U+H/H9hsfHG1e8eQNoFVh8vmaYcnMs2s7FG118vTZhFD9vSA/TC43fhn1AfwEGpHyeNvAThuGGGlUbSxULlVDrDIFJIwV9iyYT90kbSHs/rU3oh9flMQvr7PD3xhgPwBmchN9ZSyGhvV4PxlBkzfb2Nq5cuYLV1VV/HKeF73a73jQTglZmb/i5QyYnBNsbGxvegZY1VZ6zVVWh1+v5++UxS9MU169f92xMp9OB1hpnp2c4OjzCvXvv4uT4CPliXhucfWVsKsjW3p8hC0p+RKL+kO5BCBgHNKDorwEgkgQCCbEiVkAITpIlYV3OIgjhi0vWkUcuCucinwvpnlsQg9wGUOK5sHSOSGa1HRMrLfW528FD2zniOR3fw0W/f1Jw4kayfh+t1fA9gb/mPcX7yRMBokD+toGNEJw07jO4Dt8PIBrMf9v1Q4WcjwnlUpvcjWVAOC/aZE64lnhdPmn7QAMUYLmz3lOztmE/jBdV22bYdn1/upZ0XfGx4Qa+vb2Nj370oxgOhxiNRv4ZwsUb/pYzXrJQFxaNzeoiM8xF93IR8AgnOW8qMZION/qLQFQMFMJ7irXeUPiwFk1OmBcno4tBXxvrEy40/nfo8R7n6QjDmvkZ4j5q02guer64r9rOE5uf+LrMkrBpI+7zuL//rNqTnC88JswjEgrj2KzDDsDMqvAYdLtdD76uXLmC3d1dn9gtPNdkMkGWZb7PwjnDQCg8PkkSqsas9ZLpaDabef+d0FQEUN6UoigA0Bq4evUqnnrqKX9MmqYYDoe4d+8+Dg/2MRgMoKsKSgoYU4GzaSopYd0ytmHl6nCjcQys4rnsTQ0Ac8CwBlYLGENMB8kGyqMCS+YaKRJfowlSklEn2jDDv43NTPirkkOl22zZH8MzNy0mIG5tzEobaIk3az5vuIk9CcAIPwuPiX9z0e/j84R/G2sbdikMt/W3wXVC02bbPYTv25iRNiDR9myxHAjXRLgnhOAhHDP6LTvsNhnl8Lj4d+FzxntP216y1FffLQzKk6Lgtt8tbbBBp4XaajhYj7qetRYX+Es2fhtqx1JK3L59Gx/72MfwR3/0R1gsFg0tM/wd30sjgsE2AQKf93EbzEUbZvj84XF8DyGlHtslL3rmi44JQUyI2EMNi7S3ZiRB/Pvw/uJna3vumG1i8wON8cXUavMay+ddBk3L91MUxdImwe/D8YujXdqcnMPrtoGUNiH/pI3vI37u+LyxsGOHb/5tmBQt7HuOIuM8KUIILBYLXLlyBZcuXUKn02n0rRDCsxccoTOdTrG+vu6/Z8G6WCz8b/v9PsbjMcqy9AwPZW5V2NrYwuh0hDIvydnVGiQqgS41ep0eqrKCVBLXrl3DnTt3kGWZ801JcXx8jL29PRwcHKDIF6jKElIQUDOlhpDsPG3cX9uIBqEquezIBM+8BltZ/Z0Q3kQjAAhDjImFgbEaQipASkgYWJG4YyWkopIOfo6BQt8VAw1nzhEAyJelfs/RWaGvR5uvyUVgYcn/o+WzcN7UY91uIgrP73Fdy7nCOcP30fY+BmjxvTTO6zbxGJzEv29TuFhWtykW4b/j+2pT+niOh2actr/N97WD7UVKLP27aS2IWe0QvMctBqlxC5/5IoX4Ue0DDVDC9l4eurmJWR8SxS3cxHgCxdkw32+LkenGxgY+/vGPYzwe4+WXX/aaZRswCu+jqipIUW/a4Ub2OCD1uBb/PlxADFK4X9pYlYt+33YvMVBZ1lLEEtMRC0m+D/7uIuYr9DmI79/d0WP7i+/pomcJAcpFoCEWdHxvPPahaScWahf1Y31v77897jyxIGTGhDf/cC4ymxUzRpw9Vgjhs8MWRYHV1VXcvHkT/X6/VdCtrKwgSRKcnp6i2+1iNpthY2OjcZ0kSXB+fo6yLLGysuKZEGblAALZi3yOXr+Hjc0NzOZTZMyYCPJp63Y7MDBYXV3FrVu3sLq6islkgrIscX5+jrOzM4zHY1RVAViNNJGANajKHMqRGDRLGOjz3HT9aOELVXofMmZYgk3dCutO5uYKBCTPUW1gNOXOgZWwMLBWw2gDrTSkSiAT95IKShKjoxIJqRKUBt7cI7lyN2oTkGgBI21zQwgBmSh6pgiUNNbx0rpeZjiAdsARzULXJRcDlEdd46LvuC0DLzLXtbUnWZvxdUIAxnM2vHYIUB71LG2N/ad4n1AqgbU1k8PpDYDQFN/sm1CZCHPIxDI1ZjEvGgs+NvrgMT1WtyfnWlraP/7H/xhCCPydv/N3/GeLxQI/8zM/g52dHayuruILX/gCDg8PG7+7d+8efuInfgL9fh9XrlzB3/t7f6+RSv5JW4zM3kvzwhhukIKXFBKJSshJzL0Ee3s/6nXBPcYDGA5+WZZYXV3F933f9+HWrVuNTStmA0IUzTZP3iCWtJbHTJon6Z+LXuHmGrIboQNUONEfda74+cLrsymgKArkee6zr/J7Dl0N34fpzMOIlzbwE2v1bfcaniMEDvErPq6tn+Lsm2VZ+uq2sxkVBgzDcePU74/rx3js3k97lMAPNUd+PmZBer3eEiBpA7Es6BiccC2cmzdvNqodtwG5ra0tTKYTP968DkLAPJlMvEmHvwvzzhRFgbwsAAGsra+h2+u5EF+6Z200eit97O7u4vr165BSYjgc4vycCjbu7e1hMpkAAkiUQpalyLKENn7JkTekdWvDz+sEBFEEBFishYSFEgJKCLcRejxCfiOSvlMSUMJCSSCREokULhElnUPAEjgxFWyVw+YL2HwOm89hFjOgmANlDpQ5RFlAljkUNF1fCqiEEgOmrgAizVNFLIzzexEXRM7AAXEbCUA/brV7sHcSDtcE/dZAyIvnXpt5Kd643+urDQSHzcsmH9HT9nLRUBeECYfykdc/Jx9kZ/I4FQNwcXK8x8nz2Im+DVTE43PR5yx/2xjc+JyxvHkSWf+k7X0zKF/96lfxL//lv8THPvaxxud/9+/+Xfyn//Sf8G//7b/FxsYG/ubf/Jv4K3/lr+C///f/DoA68Sd+4iewu7uLP/iDP8D+/j5+8id/Emma4h/9o3/0vu7l/Qpj+vHyR36iiKBug30SDXX5ZG2/YYHNC9QYKtf+gz/4gzDG4N13320gXWCZdrOWQtvYK18i0F4bt7Q8MXgCvtfWNlEvAkPhImm7Vjhh2yZ3/cwk7OtNrs6NEi8y3jAvFnROr204mXKuAsqH0Pa7NgAQHxO3tuy5sZNrLABibY+dPv9XtUfN7/i7MKEcgwEGAgz4whZqhexMCxBzdP36dezs7HjNLwaqDMx3d3fx7W9/G6PRCOvr695Zlo8L/Vp6vZ5nT8JQR8oqW0JKgU4nw8pKH7P5DAYWSgDaanQ6GQDhAeR0OvVA2SdedHhDg/w2pEqQqMSBEFdY0L231lHklv4npaJ1C/jkVRwOLP2cATm/uh9KCCgwmKlzpgghXG4ONikJJNCQ1kJqDVgJXSlK8JYkkGkKkaRQnR4F+lgLaQEhlMvdwzSPi/aRwt96PD2ECKGH+wwITM/W+8IITq0fHuvXVp3oMFSC2uYg903bvIxlUPw+VBouarFDuxDUB6J+Ov+i84RP3mxtfhtCLJt+4vcxYxUy6c3+CX8fsjPE2tWma/q+qsrAElDL31hWxYrIReAilm9tzxN/R3PhO+yDMplM8Nf+2l/Dv/pX/wr/8B/+Q//5aDTCr/3ar+E3fuM38CM/8iMAgF//9V/Hhz/8YfzhH/4hPvvZz+K3fuu38Morr+B3fud3cPXqVXziE5/AL/3SL+Hnfu7n8Au/8AsNZ7YnbRdNOIHlyRja0wi905Fha9uQ2jaqpesGlC23x4V+CSE85b2zs4PPfOYzmM/n2Nvb89+HkyScEMZaWD6/AITinAfRM7zPPe5xG3Pb8SFIYA22jY24qMX9TIuNHqL+nMPLl+9L63Ymrk14xd7kbY8X+uPUi62+bjg3QvBBlW+j8Yr8dy4SlvFnj+p3PsfjztnW4s2gVZgE54ojnkKWgoVhOFeNoVwt/FsGZPy76XSK7e1tXL161ZsOubWBtk6n4/1K8jz3NXQ4KywAny2WfVt4bPh8RZFDSEAbSgK3strH6ZmE1gLGaljn3zGdzDEejz3wCc/BMkQqBtAALCg/iRSOGXH3bg2MKZ3/CGfytJSFlJ9NAEpSpWSBwGlV0ImlJXBNoCYA5qKOFrOegTGQcInhgvMICMAApjKwpoIpCyRpBpUkQJIhSTJ3bUVgQgpYIWCCEGUh4kRmbjPj+ePGSbrruW3cf2Ot89ML/PDi8YaNN+F6rnKLN/5YceO/cQLHsMVrJF4D9fwjpqwJTGT0b7i+b27stbN/E2CEDvph+H1432EZgbiPQlNO3Qf1XKd/K5Bi13QXMEYHxzQTHNbHLKeM4OPafE5iGRePDX/mGc9H+LTE7X2ZeH7mZ34GP/ETP4HPf/7zjc+/9rWvoSzLxucvvPACbt++jS9/+csAgC9/+cv46Ec/iqtXr/pjfuzHfgzn5+d4+eWX39N9PMmG2Ua9L1PgTVtNLaDr81hbU7T1Thb9Du3UVnx9buHnPNg3btzA5z73Ody4ccPnhQCa9N1FjEM7m9HuEBb3U1tftvXZRa+QWmRNlic9h5bxK8yTEd9DvBAuGuN4HGOAwO85EiasAcOvxWLReLGJKHzFv2NHTTbFFEXhC9Pxa+EqEfN1+RWDs3i8LhqHtmcPf/+nbY8DorF/SXgMV4Ruu7dwLEPBy9FoaZri8uXL6Pf7vk9DdjFmybIsw+XLl32V4LbsltPpFEpR5fAwsZsQArPZDMYaZFmCXq+LTidDt5uRiUZJkJmEXvP5HNPptOF0y89V/5XOyCJBdEQCiARWJoBKAZnAqgSQCipJoTodJJ0uZJICgo0zlEVaSYXEMytkGkmkhLICwgpIKz33UG+NjjWBceYeA2k1hNUQtnKfBy+rqU6DroByARRzmMUU1XyMajGBzWcw5RyoFpA6h7QaEhoKBtIaCFNfyytBzCyHGrMgcGOlJPbBfcbWEprnhpQ5L2PdKQS8T2C9jpuyJjSthmU7HiXnG/IqOl/bnA9GHLAOGEICVvj34WcsZ9vAUrg22szA4bFtfnWhXAz9Qi4CWfw+NseG5w3lIx8b5ygJZRPLPS52yfd1kawOfxv6qgnRLHT4uPaeGZR/82/+Df74j/8YX/3qV5e+Ozg4QJZl2NzcbHx+9epVHBwc+GNCcMLf83dtjW3O3MJ01XGnhM1Y88jIGv+7pX9bLwqEAx4c8eePsdYh6brFYIE/a2vxhgzUZoHr16/jB37gB/AHf/AHnkkJgUnMyoTPH05Ifjh2YHuSzS+8v/fTLhqT8G9of+ZFEm4y7wWoxNcJ+z9ciE/SwnuMN9rmNdrHr3mOi88fb/Lh3/cDOGKgEt/vo9qTXDO87xBs8nXixHVNza52AmaAIiWlvr906RIuXboEYwwGgwGqqsKNGzeWhC8D+CRJcOnSJbz77ru+EjSHHfM15/M5pKTcJZPJpDEHJpMJVCJdHR2KOGK2hYEIzUUDpeSST03stO4ZEBvPc7cTs5BWae0vlkggIeYT1sJqQ2YgUVHpCtC/DeBylSyH2dN1rPdBkYLNLZQxlk0+QjC76p6BcuzDColEGKQoYI2AtQWsLbCoZlAqgUoySJVApRlkkiJRCkmSQqoEMArWgTHrzMqUSIp8+awAjGDuRMA4FkelLEmpFow1VLEbQnhWCP5X1H/WODZGcAkRALJl4xfsjtxsFlhaF9YYXzdNBBVl2zb7ixSAUKEUQhBrJpq/jd+HciSUSaHc4k08/D6uEh6eN3T+ju+X3l/MioaKA/tpMcvZdi5mexhctbEuFznNhsAq/M2TtPcEUO7fv4+//bf/Nn77t3+7oTV9p9uv/Mqv4Bd/8ReXPo8BQYxIn0TUtx1jg+9s+Gm4LoRY+m2Dk7lAGw7vL2ZEmA6TUuLKlSv47Gc/i6985Su4d++eLzfvny3a+OPPPWrGxWnq43uKP4s/f1LQEpp2YsaAG5tXQpTPNH+cvfVx9xALhJjd+dOAs1AbqwFgfVys6fA9tAm8RzEkbWDnotY2LuG4vxeA8iTghAVPqGVxnhIWko8SOsyqMXAwxqDb7WJ3dxdJkmAwGODw8BBSSvT7fWxtbXkQxPdgrfWmnJWVlYYjcagVJikVCQTgtT1rra9onGZdbxbhewqr3jLl3u32oHWTjWvVWp0JpG0D8PNAUOyNFQJCEUgRTB4Q2kWlC1hLNXes0RDWwgoLwZFrUnq6W7h91f8FfHQPXZPC81nXFxCAdGYidrDVFaRV7iYEpAWs1oCpYEwJSAG9cCAjzWCyDEnaQdrpQyhXNiBJYIVC5e4VIKAgXD0y4ysFgwBZEKVEFqc63b4U5EWnvGrIzHTIFRHlH7MUFmTuZnnndubWuU3nMa5valaqbd6H6zhem6E84GcMw7LD88SmkLZjQuUSwTO2XTOUr6HCt3yNpvmZ12soE/kV+qsATRDGspllAX/Gf9vMy6Ecik3D3zGA8rWvfQ1HR0f41Kc+5T/TWuNLX/oS/vk//+f44he/iKIocHZ21mBRDg8Psbu7+3+396WxlhzXed+p6u5779tm5XCGFIekKFk0tYERLXokB/khwooiZBUCx2AM2nIS2KETKTIcyXYcZYEiIwESOIGiIJv8w0oEO7AUR5HjMNSSKJCpJaItWjKphYsoaobLLG+993ZXnfw4daqr6/Z97w1FijPDewYP8153dXVVddU5X52tAADHjx/H5z//+U69GuWjZXL6xV/8RbzrXe+Kf6+vr+O6667rlMk7TkTQKL283HNFfcJzLw1K34cFWsao1621OH78ON74xjdieXkZDz30UIdR5gukD3TItYvfke8HFOz2bIrCc78E/V0TYeUoHWg1DIrY99OGHID1Cenn4tvLN9hbNdzneNbXlr3qeTY0b+6l9/fzvnQMU2dTdRjVM3LSiIFcG5Q6zCqjqus6nrMzHo9x7ty5mKvkzJkz8QydlPFqorbt7W0MBoNoRkxpZ2cHo+EIhw8fhve+Y+LZ2NgI6fQlQkWBsDEGVVXN7HCJ0AFme4HH7s41/RG/sKA7ENFIFPxDKIKOsrRShj3gHNg7cNOAvRNhTqohESErGEtNLPp+Eeoeoj0xMAC1vxt40fyCwK4GcwMEcGDYtRsspyAh6JAbi3pSYGoKlMNlmGIIMxihqAagcgCUg/B+1X8oWJD2EpOALgIkqZwAEzVvMQuwsUEbFBxVpHudDagkUtRjJPLxz3ftu83n/Fr7jv4Q3/w7d67tYz4o5Vo4vaZ/K3/PzTPpvXyzk4Oo3TajCupToEPUHkmRakPTnz6NjrZpHn+b3dj1bzp3o4sCKG9605vwla98pXPtp37qp3DzzTfj3e9+N6677jqUZYl7770Xb3vb2wAADz74IB577DGcOnUKAHDq1Cm8733vw5NPPoljx44BAO655x6sra3hlltu6X2vnn2xG+WCWhfsbpEn83at+USft/vNPb77JoYy6fRDpRqC9J15exSk3HrrrRiNRvja176G7e1tAOjsWvsmqwoD0dLsH3DkAubZCtDcTjlvgqY7hvxbpSnT04Wi/+d23LzO9Dv2zYO8HalAAtoxToWUvLN9ZjehNQ80pWNEtPv5FLsxyYsBbfmzOi9z7Zo+l5twFGSoaURt0qpJTQ/tS7VOQBuBZoyJDuEnT54EM2M8HmN9fR1LS0twTnw/nn76aXjvcfDgQVRVhaZpsLm5idOnT2M4HOLAgQM4c+ZM5ywiYwx2dnawtLQUTyUGRFN39uxZnDt3Dtdddx1Go1GYa602cjAYxHZXVSVZaMtB3DnqhiE1reYCJteudOaeRttRACjB0VIFNIjgEHb9YJgihCAD8E0D70IIsRfzExHkZGMYNM0UxCYCA08MNgCRBUyIjiEGw8GpUoIZJQHMDmBErUdpBSSRV+2z9L80FZgYjXPgMcPZCbwbg6cVUJRAMYQpCpTVQMxDRQFCKe8Ozr3eSVSTIQsDAqgQbxYSQ1WYeUFnQr2aKS2Tmkfy9a3gj7N1E8sSRSDWJ9DnAZs+wBG/uyHI8m01BPl6zs2g6bzVd+g1BdVpufR+7o+Y86kWNMxugJTfpO/XzUfqD5nzhNRvMO1H/i10o8ncHvCaal6MMSgCX98PXRRAWV1dxate9arOteXlZRw5ciRe/+mf/mm8613vwuHDh7G2toa/9bf+Fk6dOoUf/uEfBgD86I/+KG655Rb8xE/8BP7pP/2nOH36NP7e3/t7uPvuu/cEIXvRzAT4Huva7e/8nekkToVpPlFzTUJ6P10waZKuQ4cO4dZbb8Xa2hoeeOABPPPMM/GZ1Bk1tQdGUOC7+Tj6kG1fH/sWbi6Q5wnAvI994KRPWPeNebqI8oWUL9QcCObX8vfli2vet5jX393GQo9a7+uPUtqnFMjuRbuV2Q28zANzeT/SXV5qdgRkvo1Go3i4XwpC0rrycdfcJNvb27j++utx6NChCAAUoCkYefrpp0FEMbfKhQsXsL6+jrW1NayuroKI8OSTT8Z09mm48ZEjR7C0tIRz586BiDCdTnH27FkwM1ZWVlAUJcQZtv32an/Xb+C9R1l0ncvnCal8DfWXETACnWOmBSdpGC5I85sAhkSbYIsS3jm4poFzU3huJHKPPYxnWFvCeQ9uHCwRTEHBt4JhiIFwknJoXfSqU0wg5iGAAogx7AGSa8we8B7eAzACLFxTg7mA4Qm8K0FTC6CAtwWasoQrSpTlELYaAqX4sVhToLQKeRhgH6IPQ+o5ao1Ujjm2KTZQtUVz5nMc/URIpr/noDLcjsOy2/ecx5O6z0jz2mMIZvl7n38GEcUot7R9+vs8h1tdN32a9O6Gys/woJRy4NMX4p+2az+bVeW56Tvy8bqYze5znkn2X/yLfwFjDN72trdhMpngzW9+M/71v/7X8b61Fh//+Mfxsz/7szh16hSWl5dx11134R/9o3908S/THQFk4hOSAdeF2PlCohJVT/G0mtmKu3/6XDiFuvLdfbxP/eYNbSuHMgHmSvuJ4nvU3KG7xOXlZfzgD/4gVlZW8NWvfhWPPvponNzKYHV3mraFmUHGdibbbrv+3Wg/z/UJ8RywzHtunlDt+10Fi16f58Gfj3/+kzMFrSsFOfmzOfTtB2qzDCcfv5wJ5YBoXt3zaK/vs5/vlzKR1Jk59Q9STQPQ1SIqpeM3mUzgnIsH7I1GI1x11VWxX4cOHcL111+P73znO9je3sZ0Oo1aQj28DwAOHz6MlZUVEBHW1tYiEEkjhA4cOBB9tXTdbG5u4umnn8ZNN90Ud4Fp2LD2LQVj3vs2o2oPUO/7yccwPksAgq+FSkUKER/ih0IhsoWi86Yh8c/QvT4Tw1sDKgYwVAEuROIErQRTEPjWwBiAuAGYJWqHEU5EllBZ8ZOwIONDWwDlSBw0MAYMnebOCMgRFxOK9RI3MH4qpiMndaK2gC0xhQ25VoaohiNQWYHLIciWEsJcGJCVcWEmgI0AExJkRCwtysOXoQYubYeCkwSkkM7hueCEElAzH8ToGsiv6fUUGHgPOAjgSjULffMj9y3p8x3Rv1PNnGpU9ADMvnbou1uwPcurcpoZF+rPxL0bX8r5XPp87itzsfLnewYon/70pzt/D4dDfOADH8AHPvCBuc9cf/31+MQnPvG9vroFKCQqSgCI7tymg18Cyc6Ckj9z9h/m/sz1mXJIlzVi+FxcIIHSWHjvPZx36vQuC9CIt7owBG7b7H10cJU/xdP6pptuwoEDB3DgwAF885vfxPqFdUyn05hbIgdL3jnAzE6uveRefl/+5na+c/rf/nb9uwGUvZ5NPceB2QWdqzj7FlQKYoDWnjoPwPSpOvdL6WLsY37z+jjv3l70bEFnH6VgV1XTqulJw421j+m45qrnNEdJXdc4ceIEVldXO2rpq666ClVV4Rvf+EbUiqyvy7w+fvw4Tpw4gaWlpVjPaDTCTTfdFM1C+r2GwyHKssTW1lYcz9OnT0dAI+HN08780D6mY22Mge0BKDko6dvh9gEXTaxGClA0n0lw1jUgcEgGpsBWeAahricADIpqCLJGnFHlmGSQcxL6ywzjRdvhfIMq+L0YABpoSCz+LoYpZIUVQc8suUmMvjvwMyAE5wS/GAsSkGMAQnDidQ4EQhkibogLsJ/CmgKeS7CbYDLZwpQsuBrCVkuohkuoBgxTCS9mIyHX4pfiIijT7PvKD72qUkg3oxx9ZHTc5bnoSgzk90JpIxfbDaI+kQnP9JvmAjl1GDeGQF7mjW6adH6nmo6++TFvPqVlUxDSp+VNgYXKif1s+NKxkXVX9pbJN3Pt38G/Kv4+6xvTmsYZTSN+SO4issZf9mfxMKt9d1YdzwGQtBcRp7UQtZoMZjXPol0a8bFZwMLt8z58FJt8sHwn3zJuBJWmHMdO6h9CbXQIQLCmFVipIJhOpzhy5Ahuu+02HDl8BA/+8YN4/PHH4RsfyxCJ3dc5B4KJPijtBJs3mrkqL/3hhHVlCLqD0lvNUl/Z3Shn9qkWSMcgd+JKn+sDBPp77vCYti0HdfkCS8v27QD6upe3JdfWpO/eryPwXvRsxryPcg2SzquqqjAcDuP1tE86v9UJD0A8HDH1Ybn66qtjfp+0nkOHDuGWW27B6dOncf78eVy4cCEmY1NglK4H9X3R7K7M3MmjAiDmMnnZy14WfUvycUnL5+A2Bb99Kvq+MZ+ZkwiCkXV3H8oCAixChI+ehyNRNrJ+mRiS3YRBbFGYArYIx254B+8cLAhFOGfHCPcHuTGYXets62tIRtuwwyaAWMxE0sZgcHIcgQsBMZMskTixapKvcIxQ8CXRrVoLcMDhdGZvIdltLVA7kJ+iqTfhtytQMYCtRrDlEEUpDrcwBmy8tIYMvCZtIxsQi4HClYDkYhgzJ2Ou8qD9xqJdNzZEMen3Cv/n6zylfHORAvXWPEmwKGBty5/S8vMASlpvOpdyIKDzNF1rOZhJ29vyFa1P69cEbsjGR+KjtLyebixgugXNcTaTjJ7002J2PXDyvgCWTctnnds/b7rsAUrfx9S/g/4vKZwoADJEmNax391oOnkik0vqSZl70uAIhtqPnKDg0G7vu8xf7yujrqoKN9xwA5aXlnHo0CE8/vjj0e4OtIfP7devp094zuvzjJYh11PNaF/61YF9defvUJqnXcjr7Vvk+fWcKeTtS6/1OUDP8yuad61dmN2okz6ws1s932u5/H19TDn9rvkYKuBYWVmZKZ/uxNT0qM6lCkgOHDiAtbW1Xqc+Nf8cP348CoFvf/vbOH36NA4dOoThcBidbNWMM51OY04k/W5FUWA0GqGqKkynU5w4cQJra2tySOB4jKIUs4L3s+GX2qb0UElm7gidPpCSjlH6v+7QNUeGMRrY2t0giYT1QEh/rwLWGAuqCBxS2FtTwFIhY2YcmBvYohAgYY2YeIhgsQJmD7ga3NTgegxyNbyfSpQQO5BzkthNQ2NBwYciEYJB2wMKzqzaWHUM1dBsP4V3jNIi5HcxIlgYIWrIoaQGxBP4xoKdAdclmnEJLodwpkRdVihHSzBVBVNUMGUFtgQHCzYCUJgK0YCTC7xcAZLqfTQ5nJnR8DJzSNAGSftPgadQ90iJed95N62HtQYWPrD2Lu9I50S6DvN36Zj3aVLSZ/Q51XCm4CrlXd136vtm/e7mge50Teeb/3TzopQCqJT63B6eNyfZS430qAhWgBCQXvRBT9CcUKsZkbHlmf/b5yIuD9fmqd/lHicLYlaTg06bcn8WfVImRqjFd8/USXfZ6QS6+uqrsbq6irW1NTz66KN48sknMR6PW01DbBUCOEI0S3XGkg2AbvRFrq3wmPXvSPvZjvLsRN0P8Msnfd/9PqCSO4vtl3bTOOzWlvz6fgFKHwjM37NfQPJc0zwGlM4FYDYNtt5XwKAZdNMIpaIoMJ1OcezYsRnmlmtqhsNhjO57/PHHsbGxgccffxwHDhyI/ihpJmAiwtLSEpqmiefmKCNcWVnBkSNHIrCR/53IL56NBuky3O58mgdM+gRJnxAT3mRavwpK/Cf0GrprR8ZPAEiMvID8bmEFsCSHzQnYMDBW+KIFg3wNuBrGN4Cr0dRTNNOQRZZ9eL+IeEMesEF7Aie+LQQAHpYsiqqAa8QMY4lCWDCBYUHEYE40KsHJ11jVCol2xsDBq3nJiH7IOwJzganbBtsSRTVAORiiqIYobBUz8pqQHM55iIksKsNVBySxT0wWcv6RxkxJuYZdm5WXIMDPULCAJ9oX/Rb6jRLZkG5w5cdFPttKl1QrE3gni5YiD9OdoTnLPwUxOnf1HelGWduWr89YfcaH9uI9u83/dPM2b4OYrm29Zudoq/rosgYoAR1E8EBotRMCVDj74PnH6lfLdoFNd2c024S2nI/hee0H9QFotKXa9rZEs22Z46iUmz2ausFwOMTLX/5yHDlyBI888gi+9rWvYWdnB4CcTaPnMuhCa4FQq2RitTjPEaZpn3KAkv+/F83TqOTfYj9AAOii9/0AobzNfXNgN9pt59zX1tkdTX/b52mJLgZ0fa80T8OkpxarfbuvTJ/mhYiiJu/gwYMzWpvUUTXdGV511VW49tpr8a2HvxXbpWeQaA4UdQ7X55eWllAUBXZ2dlCWZXSqHY/HUS2uZijmroNs/n1SNXrarz7Qor/3jeE8YANkW6ddwDWBZswW6u+QaqKIBCAwIIndrIHhEoYbGDAKguRVcQ0m4234poZ3YgJiVwf/uHCOUOFhTQNAAElhgYIAa0PytyC8DRmgMGBWECu8zFAwqVg5ldl5DrtCDtK/hnMTEAfgxQbkSjhPaLYNJraELQcgW8DYCrYahjDmAapqGcYIYCFjUXuGC8FKMgaA8w0kk66JZxLpmLcbNIEvjER2pN8gF7bJdQElrCJIfg/vSXloPKspqaBvM7UX70wduJk5pmDQZ1PQ0levyqKchxPNpp5P51M+v9Nr+lzqmzZz1l3Pxudi6LIGKKoanmEIcSagR1fQpfTD6vP7pVxIM4taFFDBn05sToH4HvUwTI/Ay8sQWgRdFAWOHDkSz0Z5/PHHcebMmU5CK6JkwoZ6wlYCoFnNSK4t0cWfUpqaOZq6evrYh+jnXZu3WOctvrR9fTvaeeCjt39Z3XvRXkBqN3ByKdE8rYb+rScDax6ReWOp5L2Px8k753D48GGMRqPOd8oZZXqvLEu89KUvxWg0wnA4xNraGgBE4K1aGf19fX0d1locOHAAp0+fhve+o0lUBi2angm8dzPZatM+5U7AffNq3jikZbSuHKTk1/ocJFPVffqMUppaIL4fgDcGLkTIGBjRQhAwZXGENMZgsLQG9h7e1UAjWhZX78BNx3CuhmGPkiicDwQQM7yTk5gVmKiTpBxzyNGUJcLbw/tG7niCS0NeDQPs0bga5OWQRmsMSjuA9UbAjLHguoSDBUwBsiVqW8AUFcrRCkxRoqyGsOUQxpYgKsQEBCcZclEDCHlXSKNawsGGIScNUfApMSlI1c0iYhlrEj4TxrjVrITyNMuP1LfDmJCxVrHZnM1f3zxK5ZKCFAAzOYB0fszzTUk3tjn47iuby8S+35nbc5EULGv96Un2aZoIIkLzfJ7Fc6lRrmZyzonzafCNYHSF7jwAkmonUtthzqzT8un/gKDwltnKou4DSXkbcodaIFkEPW3UnR9Y2hrDKlmiqF5644249ppr8fAjD+Phhx/G+XPnRZNCBtNmKgzG2rhrAAjOu953hQbHiIMUfeQCxojuPB7G1ddfrTf3NM+Fel5/Xlf6XM7sU4dKFTD5O/q+wzyaNw/yefVsgMizATC7AbiLfVffzj9nSGmuFj3/RsdYxz9NO6/jZa1FWZaYTqc4evToXJs80Obz0ec0NPmGG24AIEB4e3s7mjQ0cu348eN45StfiYceegj3338/lpaWsLS0FLU26Y5ufX0ddTOBtQbD4SACKE0olYZy5n3JAdQ8ykFFej0VMHl4eVpOmb2OeS4c+sI1ddxgLBp1KCUGs4HTjQVZsJFoHEdBAwKGYQ/LDWw9gZ+O4ZspfD0BN9tgX8N5ARveORSFJHRrnPiymMJi6sR8RhwEJzMKW4hZh4PzfnS4ZJAHjBHfFGKPkgDvprBGNCmGGAQr7sFMYG/AbEHOwNcG4+k5mKJAUw5gyhFsNYIpBzDlEEU1gLUV1KGWfRMASQFrSkkaBx3HlMeImT6OuQyqgCpiCTvPhH/LswGgNd3rt1EhrckNUz6vczr/hkDXFyVdL6mQ1+i4dL6pLOgDH3qWjs7hPPFiTjr/dS3mvnj6vnRzqpRuVlPH87i2X2xRPPkOyYsHFMhSp4zSbrtsAB3mBPTvVLTeTp3EiQ1ZJi6hFemELtKeV5dqITi7PyMMPSTkkDlkTZBIIlMNMBqOcPMPvAJHDh3Gww8/jCeeeAKbm5sobCE+O95HQMXswwFjc4QsodevpHcMQDC2295chZhrLtIFlQKPfJedLti8nP6uu4MckOYakrztfZQKgXSXsts49NW5XyA0j55vDUwfeE/ngkbNqMN1vlNMd03p/bIs0TRNfDb1FUpJtRxplE1axlobTylWcHLw4EGUZYkLFy5ge3sbx48fx8GDB2Mq/PPnz+PAgQMx8u3pp58OIccrOHBwDUUhZ/ao70p3vVt41/axT92dz6scPOTrIt9FpoJFyyso6TXdoDVzKa9L26XAhsnAezVeGJARJuTD8x4koCWcl2MJYAMABQqNrAHDNzV4sgVqJnDNFFxP4OupOK4ahvNiJjOOxOeDLGBKkCUwO7BBSLmvmts42RBkPizCecBEYJLMuWQ0OggwxkEglAcQor4MwYMBZwFM4Hkb07G0oRyMUI1GKMsRBsNVGFMCxoKoAEw4J8gEZ18y4iATgJNR3iVRDsGMxcKv1TsombbKB2TOKpdv/a5ynqTzK82OPY8fpQ7aKTDoO0IkBSTapslkMmOSVHCi4CFdq7udLqzv1OfTNZnOy76Nj87XHOg/r6cZX2qUq6JUs8AcErftob3Ir6WTpNWG7F/oqOYjrsfk/QpOciE3o0ng3XfJcdL7pKxAfhjbTtxyUOHEtddgeXUFh44cxiOPPIKzz5zFtJ6GhlJ0IusLwYztcaLv5FavOZdksXfRdp/KMNVwpAssXcx9YzxvIeTjqs+mp33Oq6tvp5zXn+9283Y8XyDi2WpLnkvStPZqa06/Vf6TMk1rLXZ2dnD06FFUVdVhjLmwTxm5Ugpw9Z11XeOHfuiHsLW1hQcffBBnzpzBN77xDRw7dgyHDh3C+vp6DIXWep944gk89thjMMbg2NVHMRwOsbq6iqNHj2I8HmNzc3MGBKffXX928xHSOZwmD8w3OF2H1n6A0gdkUpCs9afv7Y6Xh1FTQvLPaKKTQCbelzwoTAaNZxANYKwBrAfZIQgNSu9g3BS+HqOZ7AhgsTVAHgyHglgPSoYlCREmsGzYAkIhSK4TASZaroAloCADWIYHoWHhNQYUTjxGqEecbTncBzzgG3DjUZpw6nOzBd6eoDYbmG5uoCgGMOUAZCvAljDVEFQMwGRhywGYCY6DvwwF/xHiNsSbAMlZI1AKTFEjn35jY+Q6UTe5oVJd1zPml91kS9+JwnpdnxuNRnE96Tv1d42iM8ZEQKTh+jlvzc/R0h+dq2q+0fWZz8l0Lqa/p3VpW/QdLyqAkn9wdQh1zvf6n+SCL9/N6/307I15zGlmcnGSohkCTrxXT3i577nr85IzZAEorRNrX18BROfbYNoMZhUPOFlUHsE+6B1sWeDal7wEo+UlPP7443j6qaexvbMtzoPOC0OiLpjLNSYSkoewEPd2dpr9LrOJ1Pq0DvkCyMdnHtBI62qapnPwYJ/nfM5k5lG+0PoWc15f2v/ngvpA2fNVdx8VRRFVwX3rpQ9YpmO+tLQU09zr7i4V2KkpI90x5t9+PB7j6quvxo/8yI/gwx/+ML75zW9ie3sbBw8exGOPPRadZIkoHgA4mUxw/vz5GMJ88uR1OHLkMI4fvxpVVeHRRx/tnHosc0/xexdE5T85iEgBQzoP0pO703OX0nWUZrPNAXE67n0gPBcElggUz/4N2gBOADYjaHt9OHkYYaNDIGtAhXxrZ6tQJ6OCB3EDC4d6vI1mOoara/jpDgo3lvDikKaEgGA+CRoUAMyirZBklOpIqw6shKIsMfGNZGQFRfMKGSvtIwQnVANDRdiPhQy9waRsEY4IgMdksglX1EBVw5NBAwMTfFaoKMHVAEW1DLKV6HGIBIyEhGMeoS9MKIpwkrTOx0x+OJceYNj1v0hNiLkpX74lo6tjB5zr+hrlGkbVIqb1pNrJ1MSduy0o/9X5lh4QmEfoAd0zePrmbUp9sqzvzLiL2cxd1gAlFXgRTBjA+QAC9GALtKguF3x9DHd2V7K3WQaQw7sYaDUNBLgsBFn/SCdD/zsopnxO+xvbHPgPQ0LY5D3yrqaZJBPEo3YeTeOwvHoALzlZYGnlAM6dO4enn36qzboZ3tRjyGrbp7yRkp+Z0m3iunYyzqqqvc8zu3aNYRS45l6TWRYWR56R1h3HinO9ln4GAYLMqspH8reW8wJ2w8ZNTzLOAW37/aROa9PEe+i8ey96tgBkr7F6NvWqSpaZOyCl4xSNLtNSoVzXNYqiiFmOt7e38dRTT0VNQFmWKMsy3lfzRl9kjTLVN7zhDbDW4qtf/SpWVlaws7ODjY0NLC0tYXNzE8vLy9EnBhDmfv311+PgwYM4ePAglldGKAqDc+fOYWtrC+vr652TxNt3dvtFRLH/qUajz/SbMnPta26jz+tu51u3nu6ZTjLXrW0FqrxH5re8V7UMAhDSRdoqQDlbvsEOE7CLC4iATRmz1zJYGIBlEJUoByuowPDTMXh7HU0zgWNJDGfIiQ2HOLyLwa5ti/AsiLZXUAhgChhLKAwDLKDFhiVLQAKyCgBFyIabRMmEd8F5uMahNCUMeZCfisnLk5zYXE/gycAbC18OYYoBiqoClQPYskKBAdg4MAqATMi+m2zYGCCrvik63xNzvheen2qPvHJXJrAL35UdjE8AYzSH9c+pHIDo72nq+3SdKjjQuabnXKXrNZd36ZpLo4VEtrbzj2N70/nVXm95o7Y73ZD350uZR5c1QFEPYiUR3Ingzxw5cnVyumsC0Iv05qnhUmYWB1/0C2hnK0dh7Zmj9sFQ6yyXHn7X2UHpkmDMTJoUfHj2UreX/32YlDo5nQfqGnAuTEhTYmXtEKrhMoZLq3jqqadw/vw5GNOgaabwzoval4IDbiPnfURNUgqm5slD2kuTIJwn3TFLnXF0s/9b1eCsejEL5YPs+HziqMvsOmntc42N/i/AZDYEvF3Ms8/nzmMCZFTgdAeobx7lw9OnOn0uNSY5pUev6/tUtavMMF036f1c0KpDXepUV1UVRqMRptMpNjc3sbGx0TF1qL+FtqUsSwwGAywvL2NpaamjiSmKAq9//evx0Y9+FNvb27j22mtRFAUeeeQRLC8vYzKZYG1trZMLpaoqXHPNNRiNRqjrGs888wym00lMea8nKGt/gfCNo8Cf1ZLkGtg+rUpaLo24SNXvad3p3E7HM69f173UnWzM4lpSh/ZWC6Ebl5g7hAHn9QBICnlWio5glKa3WW2JPAhG/DhKK1lwjUExXAOtHgJ7B9+In4qvx3JWkG/AvkHjGxBPQy4UAjsJZ4YtwPBo2MO5Gog5UyTRGjceBlY0LWxDtl0DtiauLO85psUPEl5ABUjQQiNp+gsy4HoC0BQgCRCw0+DXVFQw1QhcDuCqIdhUoHIIWw1gqAR7AxOAMxA2nfLxwcG8BSeOwbawYGIZX4uQa0Y2bbpFstZEOWWM/s6SDdhaMGxHK6LgPAW6Ore0XG461DIqMzQ3ETNHUKNrOJ93rSaRknXRPXhVkr7Nysp0bSioERk9/8T23eiyBih9wibuwalffubHWOfMplMXJx8lqH7bAoJ2w5MAi1NYqi4ROyxp8XZ3jvmJbfTvxnlRXaILhNiLxoS9h4MCoOREX2Y4z1GL5BxhWrto8moaD+cZtiixeuAAQAaD4RDr6+exs7UhDJQ9EDQyZIwoPEPdOWDbS9W3n+u73Zv3fdr7Orq7lelqqeZpxbqLazaCaF75vcZjXrsuBZplKjTj5zAajToOsqnWUoW8Mqj0DB91kNXwYnV0zUGPZj1++umnJdtrUeAlL3kJbrjhhngoYdM0uOqqqzCZTPDxj388RugcOHAAVVWBWc7i0XEeDAYYDAao67qTQK5uJhKRkgiAVCVPQXsQBV7PGKVas/1QuhHK50orVPbn86I8KQ3r7KjgdX8UtZwtI9S+eYhWEBS89DyBkk2StVZML8QCRORpcTD1omfVzFMwBkwljCFY9ii4AYXQZV+P4Zoavp4Cbgx2NbxrACOROt6YcAihD9oHBolTiBxCaCys/CbgKu7QNemJ/B2cRSRqkiiajYJXiXwvMIwVPm0o+HjAwzRTENcA1/BNhenOBhCchXkwhLEDWDsC8QCWS1AhenJJ/BsAkXj2xjHXTajzXrQ4IXLKswAWhuSN8cwoSwsOIMWDZYNIXReD3EQtc8DFzVAKThjtRp0onJ9E3TnsvYd3Ht63jrLpJqXPjJhuJvs2TblGJi/fgph9LxsAlzlASZlcvAZEpArueqH0Aprsml5PnxFmlqnsdXEnu+rc6pGLJNL6uB+gRDSqbVVwkgpJtFqZxgtj9eyDxkAnno/+J85RCPSZjXZhL0y9KCyGS0NsXKiwsb6Bne0t1NMahQmajmBGAqudFp22p2OV/70fRr5bmYsVBvM0Xvu1g+bgJQc0+wUalyIg2Q0Epruo1HSjAKKqqo6zXDqOOt/02dRurc81TROzuaaMUt+RAhWtX00/zjmMx2MsLy/jvvvuwxNPPIEbbrghmog0n8nq6iqqqsLm5mYEVJp6P/YHLd/Q9uqZP4CeIi6q6z6NCYDea/Mo1YSk2rbUD0fut/XqGPUB344wyoRBvnvWf15PUFWtnhcBxo5aXxtqTeQGkv+krautjxMAJOcIWTSOxVfEGljyMLYBFQ24GgDeAV7yrUynE9STHfh6Au9rNM0UBVnY4DdjCgVBrcZB9OCSll+hYzSlK18zBhYhIocl54i1RaKeFPMPBWsSEUfeLbV6kG/A8LC2FI1xXcO5TXhbgaplsCuBooAtBrBFBTIFDFsQClgD1EFTEjVXBmDnwWwD36QojwScyMBOs7UE9rBoI4SMMRFk6FrZi19y6LGFatO680h5P6HNXaP3Uj7ZXScOmtwwnad98z3OvzCHU+fcroTcmy5rgLIXpWAg/7C77aT7gIwkV0l2mvpsspPs826e166USedAKxUCaXukPz5oURi1a9BkERSCjl3cFXpPcE2an6VbJxHBFgWGoxGAQ7BlhbIqsbO1Ce8auLoGxzSN3QnZx7i1T2lf9zMeffUpI5x3/2JoN8fcvExKKaj7XsHJ99L+54tSYZt+P2UsadROSmkeFKUcWOi5OIAI/pWVlTjfU7OmagSuuuoqqCbk2LFjUTOi6mnvPR544IGZHCfD4RCHDh3CTTfdJAdneo/l5WWodiSdPzKf2m+qGhZ9R2vq2tshcHa+9mvv1PSV7oR1XNNwzdzsk75Hr+f+NWou2w00pYIk/bappix10i168nP0aXZIUAqMLUC2CKHFPuShkoAFSwHMMGC8R+UmcJMx/HQMN92G4QbcTMWZ35QwxsJzA5CXBHHRmVcdSl1IthbgC6ep9EXrI7DGoY1OaL9P1FYFE5BG7RgKfiLeQ1xq5SgBgoevHXwjTsOmGsHVpSSHKyrYYgDiMmqiGjgYb0BW86wgYEIffAUZBCPab0CODggaF2aA4GCJ4Go594odwzGjMGU75lDTcpefa6SOCS8manmxbiLiwZvU3Rz08YHuNeXH3TLp2OagJdUAqek3NyXuRZc1QEl3I0CWo4LCwkwES5/g7GMq+bWomk2ZcbaDTJ+Zp6XJhdw8jQ4AMAUwoqAjOpNKPxrn4DzBMQen0OCX0ojDqYeEDTrnwa7tu+5ktd6madC4RvIQFAVGS0uiURkOMdnZwmRnjMlkDNc0YVHPan36xnOGke1C8+7ni+LZUr7r12t5vX0AJde87PaOvK6+RX+pUb5r13YqI1MnV7V/p0BXTT1KqV8VM8dnFcwoAEm1NLnQS31TWpAtNvjhcIhHHnkEVVXh3LlzOH78OJqmwWAwwMrKCm688UY88cQT8N5HX5S8bQwPZgfvXTRDqdYm7X9qRtFxUkrnTt/YpeV0XuSRSqnWQ8Zz9lvkURM6TltbW/De49ChQ5325Bud9BtruXR84/k+1JoRUh+i9N35e/RbwVg4smCSbARioZHoHM8esrUhsLEwhYGlJZQjh4Id4Cbw0wncdAdNPQUFzQ7YwZCHsYzCsviysPwE1QC8CxoA0+aFkb/lIEPvG3FNDeoEAmBMiKYCyeGHxIHPhuRywUG1sEBhBeZ434AKF3wLG5BrQL4E+xLeDeCaCby18EUBWAsDC5AFsyR2MxBtincCUgxC8jrIJpcRIk/VTATx94HXJGk+5K2StnKyUZZMvQQ5idjPzJt0/uXawLRMGvqff2O93jRuZv2n8ycPgujbCFNAay8agKKUDwbQovu+Mr1l59SpA9s0ktC5WwZQdfBez/eRmoS8TpAAqDwHdM2MJrGPK9hy6gQbDs5qmgBEAliRw5gsJN20NDT1F9D2pQKl5kYWiAFsWWDJLmEwKDEZ7mBnu8RkPAY34iGvAKdvEsa+KdOYwzT3Q+kjuwn4vOo+IJi242I0HH3zZV6ZeX9/v8DJxb5H26nMJc0WC3R3QJpPIXXqzk0ROVhRZzxj5LC+paWlaArK10cO4BX8aIbaPFzzwoULWF1djUDqZS97Gc6fP4/JZILRaITl5WU8/vjj2NnZ6WgZQN2wS/VPYeZomkrboOOUZ/3UtqcOv339yvuYRyjp+ChAScFOrpHVMa2qKjr2po7GfRuGXGCpWSkHXzkAU1CYg7YZAGXk0MDYZlhQ4D3ROddIJlcQid7ASOI08gPYsoYdraJ0DcgxqHGopxPU9Q6cn6LxTXDUJxS2hLUVPLFE2nhJq2DgAZaUbtYaFGA52Rlq7tD16ILTqgnAQA5YFFdBdbYV8GDIwJiQU0bDmQkhN4tEsDA7eGcBb+GcONJSWQJUSC1kQdUQhkuAgTK0zxDAVoxWjQMKyefbmv4JsKXMCWMpZkVX/xQT51MLctN8KAZhPXmOZSkxC6bzOzcVqiYmNRnmaz0Fy30AVudU33PMrdP4fuiKAChpRIGLg0/Ry3gezQMoOXiRwQVmgUgbWpXWN09T0mFeQAixS3aT4X/HHo0PPiaqok4mj1wDELJGusSkQ0SJdgcRnORahPTHsQPrKaOGJEKQDKypYA2hKC1GoyHqcY16MsVkMom5I3LKmZn+/uyoX2XeKcH95dKyfXOgDzjNK/dswFXO8PNr+6Xv5dn91p/urHOhlfqT5Dv19Pl0Z6a/58BG35P3pw/g5YLeezlbp6qqmPTtzJkzWF5extVXX40bbrgBDz74IDY3N3Ho0CHs7Ozg7Nmz+M53voOVlRUcOHAAw+FQDq+zBGuFqW9tbXX8T1QoF2Uxw8iV0jHom2MpKABaBq9rMAVu+pOenpyCgHQs1Fw1HA5jmv5U85F/nxSM6E7ZWhtzxKTCRNupodQpUMu/ffpez4xC8iGI4STyNrWKB4HqnZh8jISdSu4QMQ3BMlAyqPGwFcMMHQo3gWsmcpBhPUZTTzD1jZhSXDhR2Yj5Bwh+G+yijwnC4afRdwMEDn42MGL+kERz8jsZA1jRengANTMsm2A+Et87hLQVZFwEu0xO/G+YQ3bbAmQK0RqxBXMNDrlWrDGwKGCYwcbCk2h7jGXx8w3OtESt47n4n4jmQcY2OC7bAmXZXUtxDhKC+pl6WWM6R1TTmc5b3YDo2he5MSvXUh6f8pB0PqX5qPq0rnvRZQ1QnGtaJ1Hm6EAKAOzDwPU8tx+Bk+9E5lHLaLvgRJ9LtQ1xkas9WTUbCGCFNQpHwoO9l3wBOtFEcxI88BkAOTjXZmrV96c2e2WKecRFep1F1wLxjk/DyBwYcm5PUQKFKTCs5DDC8Xgc7ffpu1IVYDu593Z0na/V2F+5/m/S/j3vWm76eS6AwDzh+1yCjOeqrlzYpkBDd+tq4omh6z1auPSbpzQYDCKjmpetuI/S3ZfW/cwzz2B1dRXHjx/HuXPnYK3F0aNH8epXvxrf/OY3cebMGTAzDh06hHPnzuH06dN45plnYj4W1QpUAxHS02mNum5Awf5flpU4Vwa1u7YhZbI5UJkHuNLdZcq0cz+TVrvT1WbloABoz1MBEM9i0UMT1ZFZ81akPCc36/SZjvRdORhTPS8FIdn+HVIzwIcoH9FVkO7eHQMsAACeURLBMmBg4RDMQcFcwbBgAIXlsDEiWCzBuxreNxgQw4cTmOvJGMY3qCc7cL5BYRnWeIBc8Dxl+NBUDpE+kg021aT4wFgMiEOEptHvFJJWkoELYc025EQh9e0wRpxgiSEnJjMK9nLuD9cgU6AgCw8Dqh3I1UELYtCQAdkSMAaeCrC1IOvlmAAQAAvnKZpvSC06LdaKwROkGhEIj9bQZRDFqCAO3ySJN5XQ8USrpoduqjm2qqrOpr8oCkwmOzMgWOdrn/ZT/9aovvysrf3SZQ1Q6tqhrhuYQjzI2Tlo9FkHCCSCOj/PoI/yXTWR2CvTcL0QYxMWAreTn3cHNxL+q2pudV5qfR8k+saHA7qCcJdq40Fc3ivwkeid3IaYAgbNsrjrjw+LlIWpaEpIDx+0PFZUjRDVpjI6dVas6zqGcepOLVUbqi9NSnSR3tw6nrPoe/537JSaA1BSENVX7tloT7Se/YLcverpu/ZctFOZRb5b199TIZg+08eUUoCS7syrqoJnRmUtGtcIkw9rRWYUouky7UvaP63nwoULqKoKJ0+exC233IKlpSUwM86fPy8HAdZ1dI7d2trC6uoqdnZ2sLKygtXV1RDlU4pPgPeYTKaYTmto8ikFKKk/jJpC0jwlubYppT6ziQq+dnxm69EEVjlfSoFMCnY2NjYAtFl6c2fbdDyV52lfFDz1aVx0/YqGoBXYiPWR8LBp3YIddmEjob4nqmwQh9QQjQsEzQlMEPbBVy7qO4yBI0bjg8mGCvFdIdEyDMtljFYakJugnozR1GN4N4V3UzBPpW3EIbGa8CoR+WGmsYRMW5bcJdGcwyGZfRyHAmSthP2yAUjOODJkJNNu6BAFTYX4vggoYGbYmIsG8DwFXA3yYtJhKmDRAFzAmBrOGwANYAuQsTBUoqACVGqkkhffFrLCmoNc886FqFApY620WTe+jXOyWSf5CjEVZgA21irf83BOE7hxmOuSmE3mrMd0OruxEF4sp1sXhY0yTGSalJX7UsZaSuTC/nn/ZQ1QxNGJ4oLnED4GoMP4UiaaOvakAr1Tb8Ko9W8KaQ2ZEeyrLTDRf8QE4q49Pa1bgA3Bs+zYOKjOnNeJxhDP7MCgSCafhgl79domA2MLcYillCElKr4wCp7bPA/5ziptl6BsC4nRbwCWMyiC4lYSZ5MPvKp1kNJdtp7XUjc1nG/9Zti1uyody7SJe2kYcrnbX+biNWJ9QnCeViJl5qm2ajeSBa6h6RSv9dW92995H/q0FPulfJxym3Q+Brpe0h1QKqTT5Gapv4poJ6ayw5MNNxrvAnOlyMDIUAdAp1rAra2taMpI7507dw7Ly8s4dOgQVlZW8NBDD8XD/pxzWFtbw7lz5zAej3HixImoUVheXsbRo0exsroC7xucP38BTz/1NOq6hjFyGKKCk6Ioocsp3fWlgE7nQQrGgK4zbDuOprNeUpU6QiRK+lzfvNQ1RyQ+QsvLy/H7aTZeHac+nxitKy2Ta31mnCupnccCWOSHgyJFE0QCiDt9kYlaT/CZsJK8rIltMfGHwkss5FmNchENRcInwusNVbAYoFxaBdiBnYNrpmiaCerpDpppDddMUGEKw404pBqDggDjG1SWYE3YbBnl4R7kHaw6tlrJBB0UMjBGQ5ZDozzB2ABQSXLDFNaDbPu9SZPKaWBBMM0wnAAYZsATyDPITQNos7BFATYlYIvI5+ErGS5bgGFE8ySjJEiQE/6EIFegx6romDsYEpOR8w24dmEuiMO4aN1dJxlcd47o7+18MkZBiB4xg+SeAFCEnC+AhH5LHVPsly5rgGJMAjJY0rUDKcBoy+aMJC3XbwhCp5ygzK45IK2DmWFRdu73lfUkC1MYHIDgTMXc5jMBxH9GfGgSM0S4JrsWQBIcMZh8p23RbBOy/XU0Ksl4pBqEaDSOJqU2AioFTUSzSXxUo6Kn106bacw/kdsp47gkbUjHR+vt02j0ARG5NHt9N7ChtJsPTd6edMzmPdPX5hRMzGiR9qivr84cPF8s5WCkb8ef5i1II8fyfqbPpbvx1t+kvZ7nQNE69VRtrWNjYwPPPPMMmDkCDKXhcIjpdIrz589je3u7I1SdcxgOh9jZ2cHm5mbUfqysrGA6nWJ5eVnMVWWFnR2HyXiKnZ0JvAPYE6rBAIUN/jKmiGsoBYXzgHA+jjpGrbmmBSipCSefV33Xc9LnBVDZDmDU+3n5vF3z+qFtjs6wQci2AFvNO+3voqtotSvMITmY2iRI+JsPETNIDA6xBmYRsgZBYxsywcpLBZiEXTeD0bCYKcgOQAVQLRkMQKibGk1Tw9UTlPV5GCcnMfvpBOwdqkEpyeQo6IhJtMRkQz6aoCUBM8g7lNbCmAK2MEGbRAEo2ZjtFiDYgMxE2WTCOEiyS6JWW1RQOL+ZOIZFe4OQhVdMIfAG0wBsmAqgqOSAQ1OBjWaZlWy04DYCTJJ2EkwC8hG268wqJwjO+5BkDlEz32ro2vkswEXNgxbQXDpdjBJli2qf0MO7c03dxdBlDVBAIe4+ETTdHeFsXpLZxTkLUOSRTEh4WVppcWWq8QdhoXH6nkyjAoDJRRNO+g41QfX5iqRlAM0GqCo1QKvyQRvTApyuj0A/sZx7YQIAYoSj0sOEC0wi7Xe629JrslsyKCph8BrCqf4qqS9MauLpE3zzaD5I2Z3mgaH028wDCzPanz3nFDrl9gOW9tvuZwtMdmtbLtTSd6bhqCnlZrG0vnZetzv2dPcOtILTsZgYx+MxLly4gMcffxwXLlzAddddh8FgENu3s7MTtQ+DwaCTW0HByWg0wmQywc7OTszFkka+aDun0ym2trbksMwwT4fDYWx/nrMk7V+ucVJKr6V+OeIQ2w9Q0rrngZP0WmrKTX1J0vmrP327YC2TA8W8n/FeBCT9Wp1OG3vKdcx9LeTo1NP+wfG+HvHS5TNigmG4gAtEcCqPAhHKysIWFTAYouQK5KZo6hr1ZBtuMsa4mYK4gQGjMISisLCGwmGpCH54gPFSX0EWtrBwcMFkFPoJBrz4CgIk5iAW3xeSpgkPRjLeRsFeSN1vDGxACUSQfDHGAIZhnZPkdzaExLsGMHKGkKavs+VATE4hQy0zAGPhg+FK/W8YPvpl+mDG8iCQl3cbEodwY3TDJs7FqgBRh2MBcyLf5HuqXGTAO9GwhwzE+jbRpiVrBLrZf5GcZqw7HGD+bnTmmV5h0n0urYYZcUFE41HwRxFlQ+t/4r0gg1bohbMYOHHPYg+HRs7RyRwM+6JscgfY9Fr+ewqKWtC1D4FGonJk5rgfIqKwyzDwIZkRoW1v9C/JnW+D5kaZqH4X1a6oQGE3a27Kv1/f98y/337ASd9z6bW9tBLz2pUD1Bxo5VqKXGNzsWDj2exA9ltnXx9Tx8o+baCWS6/lZiMdl/xZnQeT8QST8Rjnz5/H2bNnsbW1hcOHD+PEiRMYDofRKVQjd9QBPM0QOxgMYIzBxsZG9JvR+ag+KNPpFOPxGAAwmUywubmJyWQSI1zURKJ96IvayZ1dc2Cg1/VZiYJoTUN9O8l54KTv974xT79NOtfmmYy0jXuBpPb+fICStmWvfu22hvK+9Y4D2vZYWwazQhegtZoACXU2cKiGHtXyGsg7wMl5Qc10AtfUGNcTcNOgYIOqMCgNobQilMkCIDFHOtQgEJxPtUcK0uWcM49ZzRhDw3wDQAe1kTomAAWjYywZYw0KTRCBwkgafOenwQFXNEyGDIxvgrOuZKplMqBiAMcAQ/LTgEMuLQTExyRp9QnQk6y9qLCCu4QJYIba8jLAYuqKDhTtPGJwkI2quRdNjAmnUHf4LotW7UUTxZP2PZ0cOYPcm+Yw/YhOAE/JbjvcYw5RQ1FIiYYl/g+WM3XiIpfJk57kq23Mf/J+peAkDVnMn8uZAmM//Z+vAaDwP/cMUc60dMKym3W+U4CizrSubqLASRlMd/j3iT7y3uwCRvL27zVX5j2X/t4vQPoZ7rx69vO+3UDUbvd2e2curLQunV91XUdtxCw4nJ1z3bbM+mEBogmYTqfY3t7GxvoGNjc2sLW1BeccTp48iePHj2N1dTU6XwNi3kk1jE3TxBORiSiafiaTCVZXV0FE2NzcBCCRRCk4UYCi0QuDwQCj0WhmzqZ9SQG3jmPfPNBy3Qyvpve5eYJ7L7CSti+fe0p9+Vb65sA8sAEg+ofkz+3W/nn9mPfu/Npu5UQpIGHiab/T+aW+Dw1ZMYEAsMUQhSXRnLBH6eRg1GY6RlNvw9VTTFgCE1BawIi5poH42HAwh5gg6GVOtD4YjXOgshSwAEDNQUbHIQh6a0NeE9LstxRBhOcGvjEhi62BcSHkGw5NkDmOAUCADClg4QKAAZkClkmiV4NjMRPi2W0UQpo55IyBxl6xHhxJQavdglIwwgn2khKfmcNZTIhRTw5eBgJyT88AAgiS6qO79tMIov3QZQ1QUjSru7KUsaQait18AfoiQ8JnEuhCQbGnR3oH7YgcBiUOXZJpD4gfXnRgAkRDefbikNUFlbPakj7AkgrS1PyTgxm9FwGQny0z+5wBfDPTnu5YkyD2pL5cza+/9+24UwZfliUw4A5g0brSfC5zQVen3v2beHLaC8n3jUN+vb9NXWGfRo7t1q55gEzrn3FiTCgFEHOBHXe1dUYjE0hV17OqegLBa1h7T7vz3Xv6vdK5bIyJGrTt7W1sbGxgfX0dO9s78OEU4xMnTkTNSRpxB0jU2mg0ir4XajYEEPPyPPHEE6iqCsvLy6jrGjs7O1haWgKgUTsTWGtjxA8RxcgfbX8fAMiFeO5HshuIkPFG514+d3Ss8rHN608dc1NNTd6GfP2lTrNaPuWNORhozVvdHfO8TUQf6M3/7uMns/Xlm6vAm+RNcRwlZ8xs7p3YFyJ4ORoZRLLD95q9lQBbDWGHhBIN4CfwTQ2eyknMdb2DxjUwzqEggikkjRpBhKs1AHk5NR7sAG59qEDilEoQjbNzDoUtw+n1krtKfAoZzrV+NW3fxZwCL+ClmW5DnYk9i8aDyMAURjABJNeKNSWYPZppA2KCLYewNmQXd8EzkyQSCEYyjDMLsPDMsERBg65RowZk9fR3B4SDG2vXwLmQxI3a3DqAmILJisOw8y6G9qebaflWFwc5LmuAIh+83/aaM4PdmPeM4Ag4RA/ZYgYcq8NRABsBXTr4Vq1oQpSOl/NwRLuitre2vez7zRtpm3fTrszb9fcK0+ReLkhnx3N2h7wf2o+Q1XKRiRZtKnVlvJPJpAOy+uru7+/umoM+JvpstTN9z/ft9mxc4F1BcbE0b5c5b3fcNy/yXTaRqInVvKEM1hgTfg9z1kvmYPZeQhjD3KYedVo6v9q12ALvpmkiKNnc3MTW1haYxbRy8MABHD58GMePH495PSaTSax3Z2cnCiHV6Kh2xzmHyWSC8XiMc+fOYW1tDdvb2/FcktTJdjqdglkccXd2dqIWRhOnpd8odQpOx3EeWMm/Vd+cyAFFDohy4JHmUukDgPnf6bzYqy194CoFk31zK69j3tik9eV8OG9Td+7m9el4Ba10vM69z3fbA9G4qDeomuiJ4IyJSTILa2CrIcxoBeQawDdw9RT1ZAfTWk6+puBkWljC0FhYyyDUMGwFpEDO1LGFtkVBCoFC6IYxEBDRpLwgGtQ7HIysauId1JejZeQEbgiegm8JWZAtQLaSWhzDux3wRKNVg2yyFsQlisEIIDl+kUgy5pZFAe88GtcAXlL/U3BjEI09o3YejRffScMcnWuJJTrJuybsyk3kE+mZUe0mfP+5kIDLHqDM7tJzJzwFBorAZwdndmfb2u1CqBYzPNsEaHA05bBvZ0/TOLjELwYkWpYOsAh+Kmn7U1CSg4/09/x+H4jJSXYi+zBd9DCNvSYSEQkoY1lkoea9n6HZnboyRudcPC8o1azkYzWvfTlzVJoJ934WAGU3UNKJfjCzJpP0/3lMte/ebmX76k9/n20Dx/ZZa1GUBcCizjZWnAUplJUoiQJVVaIoC1ib7ILnjHs+f1RjUlUVzp8/j8cffzz6fYxGIywtLWF1dRWHDx7CgQMHYIzBeDzuHNy3sbGB8+fP4+jRozGUfWdnp7MRAVpn3gsXLsToneFwGNeNfnN1otUU92ma+L2FXnfO7haRkzzVO1f2eo5oNiVC+l37/GTytucbnhzstPXm4D1WMBek5dfysOYcsPT1c7ZfiD9Gs722TQkawPltiX8TYIkRT2iOaEX+M/E9BDXHgBgMg6IaoRgyqpWgUfAOTT1GU0/h6gnGvkEBj4IMCvLhlGXGwEo7vHMwMaKxDu0KETshMhKkqfRtHOuUL8aknb7VthuTuhkrn5EuyVE+XiJ4fAPJCRPMM2QBU4BtAVMM4OAkrYUpYcsKVFTgcCiAMQVsSKdBFHJ01Q4eDkQFbFHAhHhwQsjLFTIgh+OZAVLN2OwaEu24wzRoPvdDVxRAAbo7oLSc93MEODhoPpIrrFoTTZgm19URw+uuE0bC2oIKvGGvPuaRcnOMHvyUM3llIvNAR8f8IwVmyvUK7v0K4gA2JMliOx6alRGgmNNCIpI5OEgpswnlmCSL5Mw4U5i/gSG50E9VMUGcCsuyjA6QaZRGqvLvjss8oa+q9VmNy36AQvoMJX1sZfRsHX0MPxc0u9G8+/tpb59mKR0rEq4fHOtMFD6azFC1gx0poffDj+a8mAd4cyGZ54yx1mJtbQ3Ly8sYDCQj8erKKpaC/8fG5iaaYHoxxmAymeDMmTMoigJra2sAELUr58+fx+rqKlZWVjCZTFBVFYbDIc6ePYvJZILDhw9H/xQFO8457OzsRO2JRviolmVWgJtWkLVfqdPPeQ6n+bj0CVO9n2tF8lwmu4GPvL5578zbp+Gwkt+izVsCaJgsZvre149UO0hEnUijvmf6AE5eLh2bqHVqC2J2E0SxrRE8EgBKTUE65xWghAR4OsYMMDEcID4e1kQ1+XAoOVea6RjT8Ra4rtH4KRo3FVOPr7G6PIA80qB2Do7F3cC7RhxjrQKQACq55V2a5IUR05pIjyn4EYVEghxAkJ5mD8+Sm8o5SZMCBB8TjsEK4ohiAS4AdvBugunUAaYADUagcoAJyqARsSjLcEZTkAcUNlulLcJJxBZN8CFrGkmSasugLU6c140xGAxGkQcpPzeW4JoXSR6UvoXSWfiAeCdzmyOFqDu9iQE4qFUHwn4lSY/3IamalBThrJNDNSxQbUr7/tREkQMIZjlrJ6WoHfE+nqNDqv6jcJ8EAIHDZBVf7Zm1mu6aiNS5dQ+Qwtp/I6F20BMu2kRjnjl6cWuCPG4fb4FTYCWk50Ck6kltI0L8v44duhoSGJKJH1SDefh1ClaMEXsux2/Stfm35GYY4yxg7f6tO7m2WDB/9AjjeXX3zdG2/n5GPe95vZ7uonPNWtq23Nxpwhk08R0ICbuka5CzSVqAykxwrobnQnJVEECGw66pX6ikoMh5h/F4jLIsURQFjhw5AgAYjUYYDAZYWlrCaDQSf5LpVJg0qaAkPPnUU7iwsY6bbroJg+EQ2+HcnM3NTZw/fx5ra2sReOh4qMNrqhnRsajrOmpQNLR4NBr1RtgQmV6QoMBF50P3R79Pql3p9xXp21j1+cCk5fo0Jvlc7NOw9H0j51teGMNQw87MKDjdZX72zc12fPqA9OxYtdfDWiPNXRV8JDol2l9a048J5Sn+H3+PfE+fZpgAxsIZw+IvEXb7FPrMktIWxpvI20GSZKwYFrDFAOydmIKaKerJBNPJDp7Z2sZwUKAqRuCQIM46D2YLcqI5LwzBhs2dA4t1iFSbgnbcAcTdYEpMsSfW2GQkJW+WuEgaPTIIjhCASi2hwOxgiwoDcmDfwNQN2O8AEIdiJgM3LcTJ1pQgY1BxSLDGYsoxLCkpCmvQFARbGNhKEtn5usF0KtqmQTUEkSQXrBuHadCmlmpy2ydd9gAlX+wd84eGAsYHILtBJMABgCQhU8GPeJqwZHxt7W3MLGHFCW8xia+BOBG5uLjacipAfLcubm30+p6UofaZc0DU1i9dmimXmyJmxHDfDtskTE4XSfjfB9WdcF4BHyaElvXHtHd3OZFhsQIZntmFp99Sd07KY1JhDKCjYVHVsEQDzRfw7S6RO+/pjouOak45+EWvAOmCER2yWa3WvF3kzFuT3Skwa9LLBVBfbpK4U7Sqxm2d8/REVsSdXSqIwzckOZMJSMOoZaetYZ2pCUWdYVVQ6e96vocCCI2amU6n0dyiJxZba3Hu7Fk88d0ncOzYMZw4cUJ8ukL/z58/HyNltH5mxurqajT1KIhVQe29HDY4mUziM8vLy9EMpOU0+kbnElE3XD71Fcm/uYwBOvVoeR2j1DcpnQf9GWi7cyQ10+RzKp9bKVDIQQxRiCDpAC1dIyZ+293emQPzPufdbvvmz/d2rjpoKoNI7FOMEUFfDrjSerSstEHBlgm8Osx1rzxPVRb6o+GyIUu38sAQjQlTAmSBokJRLYMGDraZgtwOvJuGXCsEG3KHGHKwFEInQkLN2MDIJIIDLWQeFyTzFwFgEENytcTxMsEPrOVHjJAKIrBpPYeHWTX44tTbNFOZh2SAmuAbSKK5oE0DrDgYUwV1rGVbwhcjOTvIyAbSx1T+jIlrwGBURjQtNABGw4E44YZ+FEWBoixRVaUAvH3SZQ1QcuafLwwBFEjEYYgLZ929c3T4k9Bg0bQ47+MzPuzuDbrCYDfTip67kYKP1gO/ex/oT3rVZ+rpaEbCbocZvW2Jz/pZJpZSKnT7GB6Q7HkIsphJV78CoOS5BCTk3ypnmH3Ask/LkNanjrXqTClCCPF0WrXbyo+c/cEsx5xr/RcTh7+bMEjvPxvKgWL6e99P+k5mjk5oKXhTbYX+qB+IMikpplEa7Q5Tu5Hv8hUAdrI2ex9V1blw0LlsjEHjXExDTyTZT9fW1mKqd43EUcGt32UymeCRRx6BMQYnTpzAoKqwsbER27O+vo6jR48C6JpQNWJHx0bDowHEhIHb29sAECOCcifXvO9aXy4Q+7QSOYBJ686T3eXP9gHd3Km67/05SM3vz2uvLcrOt9LEd/Oe3e33vnspyfj1a3M61xKQQPFeUh/Nwpzd118KPBDnsmqmKSuXzl9ifTlCJti2QRpO7MGgwqIsKhRmAAMPdg1cPZHsta5GM91B3YTkcEUABpDzaSiAIQcPaho4hEihKqwxBQHew/lu5004YQjJWCqI4bDZBnczjAsfDM+BFarJSdAAwAJOiQqJ6mTxXwE51JMGTBZsCJ4IrGYwGLAnODAaEt1UYS18iCoCWYAsbFGiKCpUgwLT6XiXb9alyxugIPhChM2eCyFfHIBGCOHuMhp0BbphMVwwt+ny9Z8cFtWqq3WDHbBMyCTYalS8b7UgkZEnoKJlRF2hk6rqNS9I6qGfApyOUMfuC5bCAuvzGYh1cHskwNxSvNvNvAEq7HYX3H0alLY9XUfYdOxcwatHAAAaTUlEQVTUPq+CWMaFe51rRd7J/VRrdTE0b5ea39sPUElB2rx37AZ89T3pyaA6Dno0em6SUNNGXU8B8tHGnI5rLpi991EDkJ+Am86XdG0BiJoKZjlQchI0I3ptOBxiaWkpOrqmRyGosK3rOjrT3nTTTVhbW8POeIzpRCJwtra2MJlMOv4l2hdNtqZtUQddBSfqHAsgntCcrlNtQ2TkRDOakByE5OOXlp1nkukLKe6rq4/6vldeNp8D+XPyd6sh0fK5r9TFApIZ3pO0Rz6L+orMAuLwV+DP/W2+OJrf9o52N+FTXf5AQZYEn0PlSQzJQBsAnTzj4VgyxdqygLElUI1g2GG8s4lmMgaYMfU1vJsG3xEGuEFh5aBCS5AzggiYNjLXTQAzYNG0cNTwEtg7pJoko35imjlct9gJ++rlPWAwN+33Ca64ZCgKGPFlCan1EVITwMCjCE6KEs3jyIBJMifXtUfjGDBy2rMH0DQezheY1i8SDYoDt1EzLKOpCFntqilj6GP84nHB0emTwSHLX6s6YwbGdd2tD3qvfb9mUM2ZUapNySnXsqSCpV87k+y2uOv8q/9rbhFrLYrsEKe5FEBe2q5nQ2EvEgFIykR3q7NPgwAEVbTWTW0uiK5Q0TET8xoRoq+F+JDYjlDOxza0IOkBOu98PrQnaZ/nXU/HJBeCGkKrwCTtm2qW0sy9AECGA69r52efBiHtWzp3UzOIa2bHIh0rBTcalaMmnfF4HM06aZ2aFfbpp5/GuXPncOTIEVx11VWoEu1JXdfY2NjoCODU36ssSwyHw+g4q6nsd3Z2sL6+HpPBDQaDmH02Jx1f9WHR/urY9mlI8m+TA9jWbMQxjX6u+egzHe0HpMzTAKVga/b7UjD3zWp5cjA8DyT0AaV03syUBwBSUIzgzSacQu5RRCbp+D1bgNI3JvuhvvHPNxC55tI5BsOi9g619xAriJiT7GgFdrAEsJhKnavh6ima6QTcSBbl0gCj0oqvhwHqZiIgmQAK2mqpLewUmcBhV94eTMjgYGoBq+ZTzFq7yR4CA+yDU7Fkn5Xz1hoJzPEEYgNrCJqqn4PPCrkGQAGQhYGcJK3nKRHE4dZ5DyYnTsjsJd1WM9OUuXRZAxQNAaYAyZURp7vAXMhHzYnaph2j9g100foASKI2hYOfitHoHo7OrIAuMQjCDfBftSD5O5XSa3lytrxM/nvHHBSdw7rgpAN0InjLdwjpwqPgZxD+Spib/k2kKlgpn1NkAAxhROgu7r2EvDI5XUjW2mhJSindpUeQYvRwq9bnYPY9Mgzqm8DhYMY+4LobSbn0966Qbweh3QnmfU3flwqlNOol3dHqeKi2JBUsTdNgZ2enM/dd4q+hdXnvAqAVgZ6aVLRMHxPXNqlZJpSGagFTx+VcKFZViY2QUn5tbS0mT8v7rQnXLly4gDNnzmB5eRnHjx/HyspK1LToYJ49exaj0SieUpyOmTEGKysrWFpaiuadCxcuxOyxTTiQbTAYoKqqGd8S9WvpZoFtAXYqwPeaK2n/lFLh1wdQcpoHoOYByr20Gi2F3Xl2L1/v6fN9mpq8XWk9s3Vxh3tEXhK1cBwATLeffW3Kx76vbfnf+Vptv+/cLs3wynR+d85FKiymzRQ+gH9LJp5fxt6AjWRiLYoCBQG+mcLXE/l/sgNfjzFxNVwNGMvgcAggGQtjQhBwMNnEkA2bzE8w2DswCYDWoaWQHTblKemcisC+kPgfCpqRsGUPZnEGw4lzPBCMQgWYLRgFWvW6wRRA4xvJZmutRBgxYEzw9yEDC4eC929iv6wBigIDNcN47gob0yOMVfWrZZrGAQgqO+8D4kvBCodDfpNMnRQ8sZNMl/o+6gln7lu8OThJ25g+l15rfSwCqg6nUuXPdQQmdxdwH0Ahol4Tzgzz03C4nl1WvGaAaFvL6ollgrYmrz9tpzGmDcnOqONkHDyFPDcgA5TZLlDJew9rDDSToZo+9DsI05GTPvtAi7aPuftd8m/U0uy1PgbfAVrUOpqq2UZ9SdI6WrNN3WE++U5plnF3w47nCZz8fgoA1I8q7XJaJ9D6hRhjY26Sq666CnVddxKnpWM/nU5x4cIFjEYjHDlyBAcOHACAjg9LXdfY3NrE8auPx3D0FLhrmzVaZ3t7Gzs7O9HXxRiD4XCI5eVllGU5Y75JnVvz8ekDdTrufcKxD+Dk19Of3XxU0mvpvbzutNw8sBH/JoEJaf9myvTMi7Qdu1E+91QTEF89x8TbByzyfuy12ZnX7j4zXc6n+upO+XMq5GO9enAhgr8WacYSDgnhQsAGWfm7sDCmgi0boFoCsQNcjaaeoGkmcH4K5xuYhlEVFpU1IuTDxpiIQaxZzFMXgJD+QjfTnluw0jOfWTevrL4pJsjAGiCDwooZVbQsetZaYPBMaIFK8F3R3DVEgCN4UwTzukQGAQTHBn66fxXK5Q1QfHuy7zzh3goW7mVmAnLU67kNuWtzfQQM6boaBv0/1u/bD55O6NzZNf19N3CSl81BgfyPGYE5s+vi+R4onedCOuj0nV0GqPXN1tGpyzOYQvxcz7tiXzJekgs55nSxdYFCOj6itPIwBr3MQ8k5CSdUZ0/vAaIiCNrgZ+QA77izM58FKq1wTgFFzhx98E/Kr81jxNbauKtPBaW0vRtirdfqxOzYAW2s/WmdHsVGnbatK4xSBpbv7vN5aq2FMw5N00ampPNcTYxlVWI0GmF9fT2WU6fYdF5477G1tQXvPQ4dOoTV1VUsLy9HnxFjxPluY2MDrnFYWlqa6W86xpPJBFtbW1hfX8d4PI5mpaIosLS0FNPl67inJw2nvif5Ok+/c5+JR+vLx7TvuXyM83ftl3arZ943Fr7XBSh97+wT2PPq6yvTkq6dxH8pMakqaOkDIPsBJn00r919fd3tnta127uZPWzUAAWBTgbOBRARonIabs+poXB+DjPJicoVwZQ1bDOFNYzpZAfNdIztpsZ46mANUBqD0hqJCuJGviBrcABAxsA5wUPMAIfxbvlV3gf9vgKwAEJTSzJEIoIrHApdG4WJm1PmlL97aJZfA4OS5MwgJoIxFuw4pHkRAERkQPWLBKC06vrdJk+XaavgaRlJu1Rctvvk+Hz7OVguggBYVc0z4nIPbk3yDIcEexzUYCrkwnWjlxQoIQEmyWOqICVjg/qNozNwxw8GPZFMolmDbhbi5kV/2v/aOhMwoBonYVbdse1lHoqg9yATshemNANQ4k5kFqi1jF/dodW50YRNQVo3Q7+gmHYk0sfatE8hFNe3OxIV8rOCv/906S71a1C03bkDqmpL1DyoAKTPBKjvKsuy8/68LblJQdS0/aHI84RNDqQBjaQiONcCfQ3pVcAxnU5RBEdW5xzOnTuHgwcPxgP80u+sfiorKytYXl7G0tJSTGGf7g7PnTsXzTv6ns6cCnN1PB5jc3MzAhw17aRp7XNAlvubpA6IfeVzPxL9P9WEpN87bWOf38gMmJzzLebNqd2AQi/4aL3ZO3XPAzrz3jev/i5wl3nX1pFvSDQ81scNVw6W5/V/HvWVVR8inVPa7BxE9vW3T3OWvovYtbw1gJSCgoNpcCz17OC8C6Z5Es0DGXEmBUBmCDMYwvsG1dISymEN30zBzRTkG7CvMfUN2DlQXcNCnNFtUcCW4bRvJxsjCpLIUKvl12CBtF9EwQ3CB+MRGxgqYYz40TAZgAmeEw0fpf/7YIoXR19DBo416xhHXyORfwCYYHCFZ5LVybezsw3nXTjSumV4KrhN8Ej2qXYDqtUIH409iAqQlfwNngCoP0oEAIChAmCEM3Z0IUl7nJPDo0LQVXiXtKXx7Wm9zGqHpY6gjA6qAQxxpw7fAiUffAjSscCs4O4Ic8+AExuoZ3TOAQIQU/UzyTg53zpVymmUKqA8vGvk2G+02itKAREz4P3MWUPdbzPb5vS7pf4Y2vdUADvXBIYi4cZkDLzT59uw4ny+pNqLVui1ZdpxC4zRCuQ0mlAyzAXFmfEay5hhD7tqF1h1tSREFNO4azucc6FeAWqcOL+1QCXV6sxq2FLNhgoK7XtfSKmWy0GnllcAoOVkDF0AU1NJZlUU8F7AxXA0ggvz/7HHHsNoNAJYnMmd89FUtbGxASLxWTFGkq2dO3cWzIjOvuw9NjbWcfDgQTRNHR2A8z4zMzY21rG5uYXJZIzxeBK1Nhq5I46qmkk1PwYhmBDBAFP085LvosIypALnWU2U5s/QRUpEwVFRIgzlGPquaSYKQJIspvOEZfqNdZ0UhZ35jqqhpI6WRBhNBEFU9G4kVHiKkJ2l9l0yWL3AKLwt5ctkdKy0hPA2dfI0RgCvaENbP6B2w8adMU0BlG7YdNyYQ7K5GS1uCyKFb3FcX315aOL3S/zedOy7a4RRUCORORHYyqn1zkkYhrEWSOYMM8V8W2IeMTDWyCnEHpJpm4HSlCiqAsQNfHCudX4K8gZ+OgVzA2skz1BZlXLWjw/jigZkdDMuvJ47614S1sETmB082g2/MQbkGaidjK+VvrWbPR+Sn3L85iUZWJZoWh8G3HF4F0zILeYxHU+TsdudiC8Gll4i9K1vfQs33XTTC92MBS1oQQta0IIW9Czo29/+Nl7ykpfsWuay1KAcPnwYAPDYY49FZ7orldbX13Hdddfh29/+djyP5EqkRT+vPHqx9PXF0k/gxdPXRT+fPxIt5wauueaaPctelgBF1ZsHDhy4oidPSmtray+Kvi76eeXRi6WvL5Z+Ai+evi76+fzQfhULs4H2C1rQgha0oAUtaEEvMC0AyoIWtKAFLWhBC7rk6LIEKIPBAO9973sxGAxe6KY87/Ri6euin1cevVj6+mLpJ/Di6euin5cGXZZRPAta0IIWtKAFLejKpstSg7KgBS1oQQta0IKubFoAlAUtaEELWtCCFnTJ0QKgLGhBC1rQgha0oEuOFgBlQQta0IIWtKAFXXJ0WQKUD3zgA7jhhhswHA5x++234/Of//wL3aSLov/9v/83/uyf/bO45pprQET42Mc+1rnPzPj7f//v48SJExiNRrjjjjvw9a9/vVPm7NmzuPPOO7G2toaDBw/ip3/6p+NBbJcKvf/978cP/dAPYXV1FceOHcNf+At/AQ8++GCnzHg8xt13340jR45gZWUFb3vb23DmzJlOmcceewxvfetbsbS0hGPHjuEXfuEX0DT7PxHz+aYPfvCDeM1rXhOTHZ06dQq/+7u/G+9fCX3so1/91V8FEeGd73xnvHal9PUf/IN/MHMg3s033xzvXyn9BIDvfOc7+Kt/9a/iyJEjGI1GePWrX40vfvGL8f6Vwo9uuOGG3oMO7777bgBXzjd1zuFXfuVXcOONN2I0GuGmm27CP/7H/3jm7LPL4pvyZUYf+chHuKoq/o//8T/yH/3RH/Ff/+t/nQ8ePMhnzpx5oZu2b/rEJz7Bv/zLv8y//du/zQD4ox/9aOf+r/7qr/KBAwf4Yx/7GP/BH/wB/7k/9+f4xhtv5J2dnVjmT//pP82vfe1r+fd///f5//yf/8Mve9nL+Md//Me/zz3Znd785jfzhz70IX7ggQf4/vvv5z/zZ/4Mnzx5kjc3N2OZn/mZn+HrrruO7733Xv7iF7/IP/zDP8xveMMb4v2mafhVr3oV33HHHfzlL3+ZP/GJT/DRo0f5F3/xF1+ILvXS7/zO7/B//+//nR966CF+8MEH+Zd+6Ze4LEt+4IEHmPnK6GNOn//85/mGG27g17zmNfyOd7wjXr9S+vre976XX/nKV/J3v/vd+PPUU0/F+1dKP8+ePcvXX389/+RP/iTfd999/K1vfYt/7/d+j7/xjW/EMlcKP3ryySc73/Oee+5hAPypT32Kma+cb/q+972Pjxw5wh//+Mf54Ycf5t/6rd/ilZUV/rVf+7VY5nL5ppcdQHn961/Pd999d/zbOcfXXHMNv//9738BW/XsKQco3ns+fvw4/7N/9s/itfPnz/NgMOD//J//MzMzf/WrX2UA/IUvfCGW+d3f/V0mIv7Od77zfWv7xdKTTz7JAPgzn/kMM0u/yrLk3/qt34plvva1rzEA/tznPsfMAuaMMXz69OlY5oMf/CCvra3xZDL5/nbgIujQoUP87//9v78i+7ixscEvf/nL+Z577uE/9af+VAQoV1Jf3/ve9/JrX/va3ntXUj/f/e5384/8yI/MvX8l86N3vOMdfNNNN7H3/or6pm9961v57W9/e+faX/pLf4nvvPNOZr68vullZeKZTqf40pe+hDvuuCNeM8bgjjvuwOc+97kXsGXPHT388MM4ffp0p48HDhzA7bffHvv4uc99DgcPHsRtt90Wy9xxxx0wxuC+++77vrd5v3ThwgUA7WGPX/rSl1DXdaevN998M06ePNnp66tf/WpcffXVscyb3/xmrK+v44/+6I++j63fHznn8JGPfARbW1s4derUFdnHu+++G29961s7fQKuvO/59a9/Hddccw1e+tKX4s4778Rjjz0G4Mrq5+/8zu/gtttuw1/+y38Zx44dw6233op/9+/+Xbx/pfKj6XSK3/iN38Db3/52ENEV9U3f8IY34N5778VDDz0EAPiDP/gDfPazn8Vb3vIWAJfXN72sDgt8+umn4ZzrTBAAuPrqq/HHf/zHL1Crnls6ffo0APT2Ue+dPn0ax44d69wvigKHDx+OZS418t7jne98J974xjfiVa96FQDpR1VVOHjwYKds3te+sdB7lwp95StfwalTpzAej7GysoKPfvSjuOWWW3D//fdfMX0EgI985CP4f//v/+ELX/jCzL0r6Xvefvvt+PVf/3W84hWvwHe/+138w3/4D/En/+SfxAMPPHBF9fNb3/oWPvjBD+Jd73oXfumXfglf+MIX8Lf/9t9GVVW46667rlh+9LGPfQznz5/HT/7kTwK4subue97zHqyvr+Pmm2+GtRbOObzvfe/DnXfeCeDykjGXFUBZ0OVLd999Nx544AF89rOffaGb8rzQK17xCtx///24cOEC/st/+S+466678JnPfOaFbtZzSt/+9rfxjne8A/fccw+Gw+EL3ZznlXS3CQCvec1rcPvtt+P666/Hb/7mb2I0Gr2ALXtuyXuP2267Df/kn/wTAMCtt96KBx54AP/m3/wb3HXXXS9w654/+g//4T/gLW95C6655poXuinPOf3mb/4mPvzhD+M//af/hFe+8pW4//778c53vhPXXHPNZfdNLysTz9GjR2GtnfGsPnPmDI4fP/4Cteq5Je3Hbn08fvw4nnzyyc79pmlw9uzZS3Icfu7nfg4f//jH8alPfQoveclL4vXjx49jOp3i/PnznfJ5X/vGQu9dKlRVFV72spfhda97Hd7//vfjta99LX7t137tiurjl770JTz55JP4E3/iT6AoChRFgc985jP4l//yX6IoClx99dVXTF9zOnjwIH7gB34A3/jGN66ob3rixAnccsstnWs/+IM/GM1ZVyI/evTRR/G//tf/wl/7a38tXruSvukv/MIv4D3veQ/+yl/5K3j1q1+Nn/iJn8Df+Tt/B+9///sBXF7f9LICKFVV4XWvex3uvffeeM17j3vvvRenTp16AVv23NGNN96I48ePd/q4vr6O++67L/bx1KlTOH/+PL70pS/FMp/85Cfhvcftt9/+fW/zPGJm/NzP/Rw++tGP4pOf/CRuvPHGzv3Xve51KMuy09cHH3wQjz32WKevX/nKVzqL5Z577sHa2toMY72UyHuPyWRyRfXxTW96E77yla/g/vvvjz+33XYb7rzzzvj7ldLXnDY3N/HNb34TJ06cuKK+6Rvf+MaZ0P+HHnoI119/PYArix8pfehDH8KxY8fw1re+NV67kr7p9vY2jOmKdmstvPcALrNv+n1zx32O6CMf+QgPBgP+9V//df7qV7/Kf+Nv/A0+ePBgx7P6UqeNjQ3+8pe/zF/+8pcZAP/zf/7P+ctf/jI/+uijzCwhYAcPHuT/+l//K//hH/4h//k//+d7Q8BuvfVWvu+++/izn/0sv/zlL7/kwvp+9md/lg8cOMCf/vSnO+F929vbsczP/MzP8MmTJ/mTn/wkf/GLX+RTp07xqVOn4n0N7fvRH/1Rvv/++/l//I//wVddddUlFdr3nve8hz/zmc/www8/zH/4h3/I73nPe5iI+H/+z//JzFdGH+dRGsXDfOX09ed//uf505/+ND/88MP8f//v/+U77riDjx49yk8++SQzXzn9/PznP89FUfD73vc+/vrXv84f/vCHeWlpiX/jN34jlrlS+BGzRH2ePHmS3/3ud8/cu1K+6V133cXXXnttDDP+7d/+bT569Cj/3b/7d2OZy+WbXnYAhZn5X/2rf8UnT57kqqr49a9/Pf/+7//+C92ki6JPfepTDGDm56677mJmCQP7lV/5Fb766qt5MBjwm970Jn7wwQc7dTzzzDP84z/+47yyssJra2v8Uz/1U7yxsfEC9GY+9fURAH/oQx+KZXZ2dvhv/s2/yYcOHeKlpSX+i3/xL/J3v/vdTj2PPPIIv+Utb+HRaMRHjx7ln//5n+e6rr/PvZlPb3/72/n666/nqqr4qquu4je96U0RnDBfGX2cRzlAuVL6+mM/9mN84sQJrqqKr732Wv6xH/uxTm6QK6WfzMz/7b/9N37Vq17Fg8GAb775Zv63//bfdu5fKfyImfn3fu/3GMBM+5mvnG+6vr7O73jHO/jkyZM8HA75pS99Kf/yL/9yJxT6cvmmxJykl1vQgha0oAUtaEELugTosvJBWdCCFrSgBS1oQS8OWgCUBS1oQQta0IIWdMnRAqAsaEELWtCCFrSgS44WAGVBC1rQgha0oAVdcrQAKAta0IIWtKAFLeiSowVAWdCCFrSgBS1oQZccLQDKgha0oAUtaEELuuRoAVAWtKAFLWhBC1rQJUcLgLKgBS1oQQta0IIuOVoAlAUtaEELWtCCFnTJ0QKgLGhBC1rQgha0oEuOFgBlQQta0IIWtKAFXXL0/wHnPXFtqCjO7gAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"cv_img2 = cv2.imread(r\"/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/license_plates_recognition_train/0.jpg\")\n",
"print(\"Image Shape: \",cv_img2.shape)\n",
"plt.imshow(cv_img2[:, :, ::-1])"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 210
},
"id": "0LTHZYXX1W1o",
"outputId": "fa3a3e98-d3e3-45af-f54f-633f9655a4e5"
},
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Image Shape: (20, 89, 3)\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x79a12f2e2d40>"
]
},
"metadata": {},
"execution_count": 8
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACdCAYAAAAUuhorAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvSElEQVR4nO2deXSVVZr1d+YACQkhkBAgIYCMMihIDGKXflAiZTuVX4uKVUEcuizsBq1SwGoci8Iqu6vFobEdSqUcEP0ELcsCMQq0iiDzoDKGOQNTRjKQ5Hx/uEgbzn6UW4Ybbty/te5auu+T957zvuc99/De/TwnzDnnIIQQQggRJMKbuwFCCCGE+GGhxYcQQgghgooWH0IIIYQIKlp8CCGEECKoaPEhhBBCiKCixYcQQgghgooWH0IIIYQIKlp8CCGEECKoaPEhhBBCiKCixYcQQgghgkrk6TrwU089hUcffRQFBQUYNGgQnnjiCQwbNuw7/66+vh4HDhxAfHw8wsLCTlfzhBBCCNGEOOdQVlaGtLQ0hId/x7MNdxqYO3eui46Odn/605/c5s2b3a233uoSExNdYWHhd/7t3r17HQC99NJLL7300isEX3v37v3O7/ow55p+Y7msrCycd955ePLJJwF8/TSja9eu+Jd/+RdMnTr1W/+2pKQEiYmJuPza6xAVHd3ovUOHDnnxbeLi6HGS27f3tCMlR2lsXX29p0VF8odCtbW1VO8/4GxPO3jwII0tLi72tPj4eBpbXl7uaUeOHKGxiYmJVC8rK/O0utoaGsvaERMTw49L2hYZwc9bVVUl1TMzMz1t27ZtNDacjNSkpCQaW1JS4mnWObaesNXV1XlaREQEjT1+3B8XsSeN3xN8578IvkFlVdUpx1pjk/XP6nNsTCtPizTuhcpKfk3j27b123b8OI2l59j4vOM1/pjtkNKRxu7fv5/qrVu39rROnTrR2Mhof9y3JX0DgLzduzwtNjaWxnbp0oXq7F6PjObHYPe6dZ8WFBRQvW1b/36w7tP2ZD49eKiIxrJ+s/sRADp37kx1Ni6sc19X58/fhYW8z+3atfO0KuMes+aLPXv2eNqAAQNobGmx3282jgF+nx037hvra5uNgVpjro+MivK0qEhfA4CSkmJPCydzSGVlJabcfgeKi4uRkJBAj9Xw+d/67t9BTU0NVq9ejWnTpv1vI8PDMWrUKCxfvtyLr66uRnV1dcP/n/iijIqO9hYf9GQRDQCiyUU4+XgN7SMD3TpumPHFEUNuONYGqx1mLBmo7DxYx7Xiw8L44GXHsI7LzpH1RVVbx78YWb+t/rHFRyB9tmKtL2I2LqzFB8gxzPEWwOKjlrTBwupHIIsP1mb7mvK2RZNjBHKOrc+jnxXAPWbp7N4F+OIjtpW/OLPaYbXNOsZxsniMIotBAGhFFlHW4sP6vNhW/jFg/NLNPs88LjmfVd+Y47/ruABffLRu0+aUY622sc+z5nSrbezYVttqa/zFQ40xvtm4j2ySxQf/PDZ/W997Ncf97yG2+DjBqVgmmtxweujQIdTV1SElJaWRnpKSQlfgM2fOREJCQsOra9euTd0kIYQQQpxBNHu2y7Rp01BSUtLw2rt3b3M3SQghhBCnkSb/2SU5ORkREREoLCxspBcWFiI1NdWLj4mJoY+KLr74Yu+xF/ttjv0WCRj+hwj+KKiG/bRhPBqzHksdJb+JWXTs6P9OzX5HBPjv6mef7ftLAGD37t1UZ49BLc8He2S+a9cuGsse/XXo0IHGnjweTsB+gujfvz+Nrao4dsqfx85nG+PRqPUIk40L5hkAuI+HPXIF+DmuJ74jwH58yfwd1m/XbMxafqT4eP93Wut3Z+tcMI+R9Y8K9jt+z549aWxRke8xqDYe5/fr14/qzFexfv16Gtu+g3+fWj6AbVu3elpmj+40ds2aNVRvRR7nL1n2MY0dPny4p23cuJHG9urVi+rs3FVV+fcYAOzanedp1r3H7oWhQ4fS2GXLllGd+fu2bNlCY1n/LD8S+76wfGN5eX6fAT6fvvLKKzSWzVnWT7eB/BxrweYy67BsvrDa8Oqrr3raJjLeArGQNvmTj+joaAwZMgS5ubkNWn19PXJzc5Gdnd3UHyeEEEKIEOO01Pm46667kJOTg6FDh2LYsGF47LHHUFFRgZtuuul0fJwQQgghQojTsvgYO3YsDh48iPvuuw8FBQUYPHgwFi5c6JlQhRBCCPHD47RVOL3jjjtwxx13nK7DCyGEECJEOW2Lj+9L97N6eAXEDh8+7MUxIwwArF692tOsIjXM6FVbz012liGHmTItgyMramQZpCKJOcky2VqG06NH/eJqVgEkZtRlBkKAG85YLQ6AG/0AYOfOnZ527rnn0tgdO3Z4GitSBnAzXWlpKY1NbMuL4TCTZI8ePWgs6x8z3gHAsWO+Cc0yb1rjgvUvEEOtVfTprLPO8jTLDLtv3wGqMyObVciLnaO5c+fSWGZE3rBqFY3N7N2b6rX1fk2IOKNQITvH28l4BYBu3bp52ksvvEBjhxrbTOTn53uaNb6/+mKTp8XF8TH0xjx+PpPIPJKenk5jWQmEiooKGssM9XPmzKGxvY3rxEzZV1xxBY1ldT7YXAEA+/bt8zTLJMnmJgDITM/wNKvAHxsXloGb3WfWvWfpzFxeX3fqBf7YeQeARFIwjF3/KmO+YjR7qq0QQgghflho8SGEEEKIoKLFhxBCCCGCihYfQgghhAgqWnwIIYQQIqicsdkusbGxXkYGK4PLnNUA6Ha+VkZBzXHfnW/tSGmVxh0yZIinWQ5olnVhbcl8kJSU3rBhA439yU9+QnVWovurr76isSxjJi0tjcYePeRnH7GMpG9r29ixYz3t3XffpbGsDD/LVAKAa6+91tOOHDlCY9vGGSWzt23ztIwM3+kO8PLK1i6jbFxY7nUrg4W50pl73Yq1rinbit4qxR4Xx7PHWHl0615gbbauKWtHv8GDaayVlVZReerlrlm2UxLbtgHAP//zP3vafffdR2Of/K//ojrLrmFbUgDA22+/7WkzZs6ksQsWLKD6F1984WlPP/00jf10+See1qVLFxrLSqm/YGT+WJlGbI678cYbaSyrH2Vtg/Ff5NyzuRsA2rTm994rf/6zp82bN4/GsvnUOm9WFgzDmi9Ydlx0lLETN4Fl4gH8PmXj1drugKEnH0IIIYQIKlp8CCGEECKoaPEhhBBCiKCixYcQQgghgsoZazjdt38PWp9ktmMm0uQOvgkVAFI7+UbUmpoaGltccsgXjTrhcTHcIOXqfUNdq1heqvZYBTGAfrmZxjKj3vDh59PY8T/7OdUHDhzoaVYJ62eeecbTWkVz42Ql0cddfwONvf7666l+9tlne9r/LF1GY1vH+kbEbqTUMQBcc/VPPc0qd+5fja/5Pxdf7Gnt2rWjsY/PmuVpkZH89mpNDJXW2AwnZmEAaEPM01a560piIqsxTJZRpM0DDTO0dT7LSn09b/t2GptMzIKDBg6msaw0din5LMA+n6x0/5o1a2hs1wy/1Pj8+fNpbHGpX17fKlV979SpVGf35DPPPUtjc3M/8DTLZLs7j5cJ79PLL6X/8xvH0dhj5f4WC1YJ81tumuBpzJwOAIeLuJk5o4tfzv2h+x+gsQ899JCn3XnnnTR2RPZwT1u5ciWNtcy+l14y2tN2bufn4vBB/7vF1XGzaDiZiazS75Hh/P51Yf4YCA/ncwj7PrVM+WxssfnNmvPoMU85UgghhBCiCdDiQwghhBBBRYsPIYQQQgQVLT6EEEIIEVS0+BBCCCFEUGnybJcHHngADz74YCOtd+/eZjlvi5iYGK88dXm57yjfs2cP/ftDh/yy5IlGaeTOnTt7Wt/+/WhsXl4e1Q/s88tSW593/vl+tsrf/vY3GsvK6E413PI9uvWg+qpVqzxt7dq1NLa60i81zxzbALzy9wBw00030VhW4h3gGQxHjx7lbSOle63y438mJZCt7IPqKr/PAHDVVVedUhsAnmmSnJxMY1k7WFlkwC533LatX9rc2j6AHdv6vOnTp3sayxABgBtu4JlNzDGfPWIEjb3yyis97cCBAzR2Fskomjx5Mo394ssvqV5FrrU1Nq+6wm9bUjueXfe73z3iac447iOP+LEAv9fP6uGXqgd4VoFVXj8nJ4fq//iP/+hp1tzy6quvelrfvn1pLBububm5NPbk74oTvPfee5429pr/S2Nvv/12T7v00ktpLJu/p02bRmOt7KEP3l/saew7BOBjy8oSY9fPyh6xtiBg5errHd/agLXDKvHOxibblsDaqoBxWlJt+/fvjw8++N9UsEDSb4QQQgjRsjktq4LIyEgzR/pkqqurG/1rkm26JoQQQoiWw2nxfGzbtg1paWno3r07xo0bZ/40AgAzZ85EQkJCw6trV7+4jBBCCCFaDk2++MjKysKLL76IhQsXYvbs2cjLy8OFF16IsjK/Qh7w9e9tJSUlDS+2jbUQQgghWg5N/rPLmDFjGv574MCByMrKQkZGBubNm4ebb77Zi2fGUiGEEEK0XE67EzQxMRG9evXCdmNvB4u6uuOoq2vsvM0gey0kJ3P3OXP+W4ucHTu2eVp1Nc8GsDwpzFRbVFRAYzuldPC0cwf7+68AwIoVKzyt5CjfJ2Hpbv7z1sVkj5L5/+8t3jbi1Tl8mH9eUZGfUdQ+iV+PL43sg0GDBp3yMQoLCz1t+zb/2gHApo0bPY05wQHu5AaAK664wtMs8zQ7RnQEj62q8DNYqo/x8WbtUXKM7OFgjW+2TVEbsk8OAGz5wr9O8a15RlFRPh/fbP+bfJINBvBzlN65C41l19/KjEpu357qSz7w90SJN/brYRlM90y5h8Zu3uyPNyujqLqS78GT0c3/yTlliz9XAEB0lJ9VsGUnn2Mrj/lZggBwvMbP/DlymO+10rGDfz6tn9PZnla78vjeJ61a8TEbF+fP38s//4zGRkf7Y4j1DQC6dknztL17dtHYSy65hOpHjvrZf2HGXmDFJX7ml5UREt863j+usbdLVISxIxXZYyzSyNqJIHvJhNXzz3O1fiYOm0PCjb9nnPY6H+Xl5dixYwc6dep0uj9KCCGEECFAky8+fv3rX2Pp0qXYtWsXPv30U1x99dWIiIgwdzUVQgghxA+LJv/ZZd++fbj++utx+PBhdOjQASNGjMBnn32GDh3440MhhBBC/LBo8sXH3Llzm/qQQgghhGhBnLGlR6uqqxF+kjGHlaU+dIiX/mYGwLKyEhrbu3dvTzt4kBuvsrKyTvkYr7/+Oo1dvny5p1mGzHPOOcfTHnvsMRrbv98Aqvft08fTqgwzHDP1WWXJWU2WCy64gMb+/ve/pzorH85KYAPcUGmlZjNjqFWS+Ne//jXVmWGQlaoHuMHZMhzW1vqmsB49eGl8q5w/O29WYT9WEt4q/b9gwQJP+4CYNAGgXz++BcHgwYM9bdGiRTR2ypQpp9w2ti3BpvUbaOx55/P7tCe5T62S0m++8Yan1RolzJmZOTWN+9x27txJ9ZjIKE+zDO5JxJRt3ae7d++mOrtHLDPkunXrPC0zM5PGsjmkf//+NPZsY95j87c1LthTdetcrF+/3tP6kPkR4GZ/AEjpmOJp1r3H2tGtWzcae+4gfxsDy3C+YcM6qrM5h22DAfDrb30eIyEhwdOiovwxbKGN5YQQQggRVLT4EEIIIURQ0eJDCCGEEEFFiw8hhBBCBBUtPoQQQggRVM7YbJdjFWVwrrGz/ORy6wDQgZT9BYD9+/0sCCuLoqDALxNdcYxvhHcgfx/V49v4mRSVFfwYLNshLIyXyy0r8d3uliO5yijbzFzilgOaZVEcKvTLqANAfLxfDpiVDgeA2CjuPmd6RSk/b8z5b5Uwbxvf1tPqanhWQ0oyr0GTEOf37535C2gs60fJ0WIay7JPSot5JpY1Lli2Q63Rv/z9BzytVQy//kzft4dnFN1yyy1Uv/vuuz1t88ZNNPbJx5/wtJdffpnGsoypbt38LRcAO9OMje+B5wymsWxLiE6d/fLcAN8m4Morr6SxPXt2p/rnn/vZFSs+/h8amxjvZ9eUGWPIKlefn5/vaSxrCwBGjBjhaVZZBdbvs846i8bOMjL32NwyPieHxtaQ+8maI9uTsvusjD4AXHTRRVT/6osv/M+r5N8t7NwXHvDPOwDsSvCzoMKN0uhm6X5yLqwtIdgxYox5OoxUTa8kc30Vub8s9ORDCCGEEEFFiw8hhBBCBBUtPoQQQggRVLT4EEIIIURQOWMNp53S0tCmTZtGWkmJb6iyzELMcGSV105OTva0unpu3jty5AjVWclky9TpnO/eSUvjRjZWZpiZsQCgXbt2VK+t9c8FK1UOwDvnABBOzEYAN0NZZY1ZPwBukGJmSgA4fPiwp1nnjRk1LfNmz549qc768umnn55ybN++fWlseXm5p1lm6JEjR1L9k08+8TRmkASA//iP//C0efPm0djbbrvN0zZs4CXMFy5cSHW2BYFlAGQl2q+99loa+/hjs/zPyh5GY5/4z/+k+gU/+pGn7c7bRWPZ2IoI5+XHWalxq2z35s2bqf7+++97WmeyhQHw9QaeJzNsGD8X//7v/071Xn399rHjAsDRo0c9jY1jgJ8L657+6KOPqD5q1ChPe+SRR2jsjTfe6GlsCwsAGD16tKfNnj2bxlol4Y+V+f3esmULjWXbP1jjgmHNWSkpfol3gJvyrZLnbdv6pvw9u3gpfnYMZlitNOYxhp58CCGEECKoaPEhhBBCiKCixYcQQgghgooWH0IIIYQIKlp8CCGEECKoBJztsmzZMjz66KNYvXo18vPzMX/+fFx11VUN7zvncP/99+PZZ59FcXExLrjgAsyePdssr2sR37o1zbw4meSkRKpHRfgu4ePVvCTtEVKWnJVhBuyMGZatYGWlRIT5a77kJF4m/sABvzS2lUUT15qfL1YGNwLcRd0+0c+Y2VfOM4pYO44f51lC1rlg583KxGHubOu4zIlvOe4jIngGA8tssrKdunf3S2YfPHiQxm4nzvjeJOsDsMtS5+Yu9rRqY3xnZ/vZJ+PGXc/bRjJmrr6alwm/4YbrqJ6QkOBpAweeTWM3b97oaSNGDKexBw74mRgDBgygsXFkSwGAZ20cOnSIxiandPQ0K6NoyZIlnmZleE2YMIHq4264wdOsMfT444972pQpU2jsj3/MM6bWrFnjadb8ltHFz7qZfu9vaCzLbJo1y89UAoCnn36a6nPmzPG0bt260Vg2Bv7617/S2P3793va+J/9nMZu/fIrqrMS7VYJ8+LiYk9j9wcAHCryr3VcnF9GHwCijG0lXJ0/5sKMb/kKkrVjwebT6hp/vqkhmkXATz4qKiowaNAgPPXUU/T9P/zhD3j88cfx9NNPY8WKFWjTpg1Gjx5tphIKIYQQ4odFwE8+xowZgzFjxtD3nHN47LHH8G//9m8NmwvNmTMHKSkpWLBgAa67zv+XUnV1daNaDyxPWQghhBAthyb1fOTl5aGgoKBRgZiEhARkZWWZRV9mzpyJhISEhldXo6iOEEIIIVoGTbr4OLE1/cnV11JSUui29QAwbdo0lJSUNLxYRTghhBBCtByavbx6TEyMaTAUQgghRMujSRcfqampAIDCwkJ06tSpQS8sLMTgwYMDOlZxcTFqTsqcaN26tRdnuYHZXhsdO/rudYDvGZJouOXZfiYA36/FWlRVV/r7mVgwl7G1Twbrh9UOtt8LwN3Z1h4OrM/W+amrq6M6u6aWw5/tc8D2+wF4m9meIwDvMwB89tlnnmZlYDEH+8b1fE+U7BEjPM0ab3l5eVRne+JYe8mwDJ2PP/6YxrL+sUwOwD5v7FysXr2axg4cONDTrH0r2N5Fzz33HI219uVg2Q5W7O59/lNYK+Nix44dnmaN+csvv5zqbM8PdlyAX39rfF9xxRVU79Wr1ykfY+XKlaccW1RU5GlWltA3vye+CZurrbmejWW2XxfA95JZkvshjbX8h08++aSnWXM96581T7PPY/unAHzeBPj8a2UgWhk6DHZPb9261dNqyLi0aNKfXTIzM5Gamorc3NwGrbS0FCtWrEB2dnZTfpQQQgghQpSAn3yUl5c3WsXm5eVh3bp1SEpKQnp6OiZPnozf/va3OOuss5CZmYnp06cjLS2tUS0QIYQQQvxwCXjxsWrVKlx88cUN/3/XXXcBAHJycvDiiy/innvuQUVFBW677TYUFxdjxIgRWLhwoVkYSwghhBA/LAJefFx00UX0t/4ThIWF4aGHHsJDDz30vRomhBBCiJZJs2e7WByvrsbxyMZlrzP7+oasD95fRP9+53bfqFVeWkZjmUmHGboAXloX4KaeqKgoGmsdmxEd6R8jNpqbm6ynS+zzamtrjWP4Rt02bXjJ5bg43/TEylcDQE0Nr3DLjK+tW/N+sGN06MCNZc75Zr8ePTJpbFgYX0zn5/vmxHbteGlk1g9WDv7rWP/cV1Xxcv6HD3Pz7b59fqlxZsgEuNnvnXfeobFsrKw0avS8+Oc/U318To6nvTV/Po194403PO3mm2+msddf75eEZ+ZGAKbBnRnnLLPv4CHnelp6ejqNXbBggadt2+Ib8gCgn1FKn11TZrIGgBtIKXbLnGzVWGJz1i9/+Usay9phVa2+8PwLPO21l1+hsdY8tHGjX3Z/7LVjaezw4X45/t8+yP/xu3PnTk+bNGkSjc3IyKA62/KAGZkBbny3zKL1tf6cZW39YOmM40aCQi25/pHGcR3ZKmD71m2ndEwLbSwnhBBCiKCixYcQQgghgooWH0IIIYQIKlp8CCGEECKoaPEhhBBCiKByxma73HffdISf5Lx99tlnvTirnDfLSrHKNrPUYcuFbZWq/b5lba3P69Chg6cdO8YzI6zsGtYOq2xvPXE1JyUl0VhW7tgqxW6dC5ZdwTISrGNb54KV17dKY1tjiJ0jqyQxK/Nu9YOVJc7KOo/GslLOADBhwgRPsxzwI0g59xkzZtBYltWQ0b07je1u6M89/7ynWVsbPE9irYyyc8/1s0+sc2yVsI6K8cfFhg28DP6Ue6d5mpVR9v7773ualRljlRr/4IMPPO3888+nsSzzZ+3atTSWzZsAL21vZcywDA3rXi8t98uEx8fH01hrDLEMpMoqPmex8upWWfqePXt6WmYmz4IbMmQI1Vm/d+/eTWPZGGDbHQBARJg/D1mxgWxjUW+U+Wfl3K3vIbaVAtsGo874e4aefAghhBAiqGjxIYQQQoigosWHEEIIIYKKFh9CCCGECCpnrOH0eHUdwiMaG0Ezunbz4wwjIyvzbZnFmHHSKmtswY5tm1Z9A5Bl3oqJ8g1yVmxhYSHVk5P9EuTWuWAGJ6uMMjP7WW0oK+Ol7WNi/FLxbdq0obHs2FYJczYuLBOaZXBkZlirfDw7x61a8X44coreX7SQxs6Y+Tuqs/FZY5RRvuW2Wz0tKZn3uVUrv5T+tm1+GWUA+Pl4v4w6ADz44IOetnzFZzT29ol+Oe/MHtyEuH2nf/0iw7nJlhmOAW6ctMbsxnXrPW38+PE0dty4cZ5mmSytMcvG4btvvUVjf3bjjZ6WlMzL6z82649Uv/baaz0tbyc3Tubn53val19+SWP/4R/+wdPuvPNOGrt85QqqZ2VleRozagPcBL5kyRIay8zXc+bMobGWKZ/NWUuXLqWxzIhuzYXt2/nGfsvAeYQcFwDS0tI8zZq/Gey7EODzAktwCA/ge1NPPoQQQggRVLT4EEIIIURQ0eJDCCGEEEFFiw8hhBBCBBUtPoQQQggRVALOdlm2bBkeffRRrF69Gvn5+Zg/fz6uuuqqhvfHjx+Pl156qdHfjB49GgsXcje/RZu4Nl656NWrV/txrbg7lznNkxK5wz8y2nfM79uzn8ZajvJj5b4zuqbWKK/OHPr1fol3gLvMWYlgwHYqs5LpgTi5rcwYlvlhlSpm5XkBoxwwaa+FlanAyjNb/ejatSvVWTaP5RxnpYZjYnhWEsuMSUpKpLFvvvkm1dk5srJdWClmK5uLZQQ9/PDDNHbXrl1Uv+uuuzytU6dONJaVx+/ZsxeNZZkqbPwAdkYBy2DKyMigsYsXL/Y067xddc1PPW3Pnj009qPcD6n+1oL5npZsnLf//u//9rRJkybR2AsvvJDqy5b6Zclff/11GssynlgGBAD85S9/8bQf//jHNNaay+bP98/FU089RWPZ+F6+fDmNnT59uqfdfffdNParr76i+po1azzNKtHP5iFrG4yKigpPSzAyo6xMKratgDVnsbne2q5i06ZNnsYya6zsU0bATz4qKiowaNAgcyAAwKWXXor8/PyG12uvvRboxwghhBCihRLwk48xY8ZgzJgx3xoTExOD1NTUUzpedXV1o3+NsM1uhBBCCNFyOC2ejyVLlqBjx47o3bs3br/9dnOHSQCYOXMmEhISGl7WI3AhhBBCtAyafPFx6aWXYs6cOcjNzcXvf/97LF26FGPGjDF/m502bRpKSkoaXnv37m3qJgkhhBDiDKLJy6tfd911Df89YMAADBw4ED169MCSJUswcuRILz4mJoYaX4QQQgjRMjnte7t0794dycnJ2L59O118WNRU1njZLv169/Pi1q/x918AgOpK3/lflF9EY2Na+4uf9kZmDHhSClyt/0ZUBN9fovqYn2lSW81r+B8r893HX23mLuyjh/i+I7m9cz3twIECGlta6mdoMDc5AJSU+BkF0dE8o+SLL3ibw8P9IbhmzToaW1npZypYn1dV5V//xYv98wAAe/bso/qqVas8zUrECQvje4wwrKyUQGDnLTaW384sQyMigjvuExL8bK7du/nTyMOH+XiLjWVZKfzGiYz075HCAj9zCADi2/p75Vj7HEXF8kwMutdGEf+8HTvyPG3LFr7PzbvvvudplvO/oIDfe0dL/bZFkb2dAGBXnp9JM3XKvTQWYXzQxsb41+nAgQM0tp5MfNbP6a+88oqnvfrqqzQ2Kpb/w5M9KWf7TgFA586dPa3gIJ/rX319rqdZ+8uwTEMAiCXXhGVRAUCHDh08zcp2Yceod/y+iSD72QBAHMmCsTIQT/5+BQBXy3+hiCIZmtXH/Pae1myXQNm3bx8OHz5sptoJIYQQ4odFwE8+ysvLsX379ob/z8vLw7p165CUlISkpCQ8+OCDuOaaa5CamoodO3bgnnvuQc+ePTF69OgmbbgQQgghQpOAFx+rVq3CxRdf3PD/JwoK5eTkYPbs2diwYQNeeuklFBcXIy0tDZdccgkefvhh+TqEEEIIAeDvWHxcdNFFcMbvUACwaNGi79UgIYQQQrRswty3rSSagdLSUiQkJCCla2fP6Pj222978azMMMDLwVrmNGa8YUYhwC79zcprW+nFrGy3VdaWGXiawrBYUMANWazfVtl2dj6tUr5WOWB23qxYZtRq146Xu2ftsK6HVSaalaC3bhdWMj3SMIUxamu54dhqMzt2dDQ3JzLdKjXPzlvfvn1prHUuWGnzpHb++QH4/WT1mRmfa8HPm/WklZVot85b/XH/2NZ5a9PGN8OyctmAbU5s3943uWf27EFj2byQZ5S7t/rHjIjWNgjt2id5mlVqns1PVmxENDdfsutkGTXZ/cv+HuD3mTX3WtcvIc6fn6xzzMYsGysAn0/ZdxMA1FTxMcTiq4ytNNi8XlPJ5+8lS5Z42vPPP+9pdbW1WPf55ygpKUFbozT8CbSxnBBCCCGCihYfQgghhAgqWnwIIYQQIqho8SGEEEKIoKLFhxBCCCGCymkvr/73kpyc7Dl3mXv2V7/6Ff17ljFhOYdZ2V7LcZ+YmEh1Fs+yJQDuzrYc0MzVbrmwLYc3c5qz0ugAz6KwMgdKS0s9zcoGsHTWP8s5zmKtPrPrYWXiWE58y13PYBkMloueYZUltjIjeMl0Pr6Z494qmc+yAazxZp03lgVTTrYJAALLKGJjsy6M36dW9lAE/DZb14mNb+s6Wfc6wzpvhYWFnra/gJf4ZtfaKsVtZV3t2+dvK7B7924a2zbRz9Cz5kh2/Tp27EhjS8r5PMTOhTUu2Pi0zjGbh9hnAfbcwrbHsOYKVkrfuvfY/GTd07HRfE5m2WPRRtvYPFtyhG+ZwMY9y2qzskEZevIhhBBCiKCixYcQQgghgooWH0IIIYQIKlp8CCGEECKonLGG0/r6es80dPPNN3txllGTYZXRZuXOrRLmluEskNK4zKhjGTKZcc46rmV6Y22rqOCx7Nhm+ekAzEWWAYyV+LVKPLPzZpm3WJstw5p13libAzHDWn1mBkDLIGmNN3burc9jsdb4ZqZuy5Bnld1PTU31tGMV3OzLrl8g/ag8zq+ddT7jWvkmQmtcsHvBmkOYHsg2AQDvd9kxbvZlJvBI47iWYZjdT5Y5lRlO2d8DwKFDhzzNGitW/5jROj09/ZRjrfuGzbOHDx+msUlJfkl5ACjK902kVilxZiK15iw2Dq3tIwIxSccZ35FsfAZy77H2BrJbi558CCGEECKoaPEhhBBCiKCixYcQQgghgooWH0IIIYQIKmec4fSEYYVVz2MmslrDWMQ4bpipmPnuuGU4NYxsrB2WITOQftSS8+DquanHMtmxc1lvVCc81b8HmsZwytrcFJ/H+meZoazjsjZb5y0gAyi7HkYbAtEDMosFcFzrvFnHoOOt3hhv5NiB9CPg88bGBW8ZqYVqj806dk8b9yPvHe+3Wak1nJvOGYHMC1bbao+T+9Q4LjvH5j0dwP1kfR7TA7lOVhvM/rG2BdI/634iutnnQM5bAP0zY09xzjqhnYrxNMwFYk8NAvv27UPXrl2buxlCCCGE+DvYu3cvunTp8q0xZ9zio76+HgcOHEB8fDzKysrQtWtX7N2710xlCmVKS0vVvxClJfcNUP9CnZbcv5bcNyC0++ecQ1lZGdLS0syU4hOccT+7hIeHN6yYTjyGbNu2bchdhEBQ/0KXltw3QP0LdVpy/1py34DQ7R+rm8WQ4VQIIYQQQUWLDyGEEEIElTN68RETE4P777+flhJuCah/oUtL7hug/oU6Lbl/LblvQMvv3wnOOMOpEEIIIVo2Z/STDyGEEEK0PLT4EEIIIURQ0eJDCCGEEEFFiw8hhBBCBBUtPoQQQggRVM7oxcdTTz2Fbt26ITY2FllZWVi5cmVzN+nvYtmyZbj88suRlpaGsLAwLFiwoNH7zjncd9996NSpE1q1aoVRo0Zh27ZtzdPYAJk5cybOO+88xMfHo2PHjrjqqquwZcuWRjFVVVWYOHEi2rdvj7i4OFxzzTUoLCxsphYHxuzZszFw4MCGaoPZ2dn429/+1vB+KPftZB555BGEhYVh8uTJDVoo9++BBx5AWFhYo1efPn0a3g/lvp1g//79uPHGG9G+fXu0atUKAwYMwKpVqxreD+W5pVu3bt71CwsLw8SJEwGE9vWrq6vD9OnTkZmZiVatWqFHjx54+OGHG23IFsrX7pRwZyhz58510dHR7k9/+pPbvHmzu/XWW11iYqIrLCxs7qYFzHvvved+85vfuLfeessBcPPnz2/0/iOPPOISEhLcggUL3Pr1690VV1zhMjMzXWVlZfM0OABGjx7tXnjhBbdp0ya3bt0695Of/MSlp6e78vLyhphf/OIXrmvXri43N9etWrXKnX/++W748OHN2OpT55133nF//etf3datW92WLVvcvffe66KiotymTZucc6Hdt2+ycuVK161bNzdw4EA3adKkBj2U+3f//fe7/v37u/z8/IbXwYMHG94P5b4559yRI0dcRkaGGz9+vFuxYoXbuXOnW7Rokdu+fXtDTCjPLUVFRY2u3eLFix0A99FHHznnQvv6zZgxw7Vv3969++67Li8vz73xxhsuLi7OzZo1qyEmlK/dqXDGLj6GDRvmJk6c2PD/dXV1Li0tzc2cObMZW/X9OXnxUV9f71JTU92jjz7aoBUXF7uYmBj32muvNUMLvx9FRUUOgFu6dKlz7uu+REVFuTfeeKMh5ssvv3QA3PLly5urmd+Ldu3aueeee67F9K2srMydddZZbvHixe5HP/pRw+Ij1Pt3//33u0GDBtH3Qr1vzjk3ZcoUN2LECPP9lja3TJo0yfXo0cPV19eH/PW77LLL3IQJExppP/3pT924ceOccy3v2jHOyJ9dampqsHr1aowaNapBCw8Px6hRo7B8+fJmbFnTk5eXh4KCgkZ9TUhIQFZWVkj2taSkBACQlJQEAFi9ejWOHz/eqH99+vRBenp6yPWvrq4Oc+fORUVFBbKzs1tM3yZOnIjLLrusUT+AlnHttm3bhrS0NHTv3h3jxo3Dnj17ALSMvr3zzjsYOnQo/umf/gkdO3bEOeecg2effbbh/ZY0t9TU1ODll1/GhAkTEBYWFvLXb/jw4cjNzcXWrVsBAOvXr8fHH3+MMWPGAGhZ187ijNvVFgAOHTqEuro6pKSkNNJTUlLw1VdfNVOrTg8FBQUAQPt64r1Qob6+HpMnT8YFF1yAs88+G8DX/YuOjkZiYmKj2FDq38aNG5GdnY2qqirExcVh/vz56NevH9atWxfyfZs7dy7WrFmDzz//3Hsv1K9dVlYWXnzxRfTu3Rv5+fl48MEHceGFF2LTpk0h3zcA2LlzJ2bPno277roL9957Lz7//HP867/+K6Kjo5GTk9Oi5pYFCxaguLgY48ePBxD6Y3Pq1KkoLS1Fnz59EBERgbq6OsyYMQPjxo0D0LK+FyzOyMWHCE0mTpyITZs24eOPP27upjQpvXv3xrp161BSUoI333wTOTk5WLp0aXM363uzd+9eTJo0CYsXL0ZsbGxzN6fJOfGvSAAYOHAgsrKykJGRgXnz5qFVq1bN2LKmob6+HkOHDsXvfvc7AMA555yDTZs24emnn0ZOTk4zt65pef755zFmzBikpaU1d1OahHnz5uGVV17Bq6++iv79+2PdunWYPHky0tLSWty1szgjf3ZJTk5GRESE51wuLCxEampqM7Xq9HCiP6He1zvuuAPvvvsuPvroI3Tp0qVBT01NRU1NDYqLixvFh1L/oqOj0bNnTwwZMgQzZ87EoEGDMGvWrJDv2+rVq1FUVIRzzz0XkZGRiIyMxNKlS/H4448jMjISKSkpId2/k0lMTESvXr2wffv2kL92ANCpUyf069evkda3b9+Gn5Zaytyye/dufPDBB7jlllsatFC/fnfffTemTp2K6667DgMGDMDPfvYz3HnnnZg5cyaAlnPtvo0zcvERHR2NIUOGIDc3t0Grr69Hbm4usrOzm7FlTU9mZiZSU1Mb9bW0tBQrVqwIib4653DHHXdg/vz5+PDDD5GZmdno/SFDhiAqKqpR/7Zs2YI9e/aERP8Y9fX1qK6uDvm+jRw5Ehs3bsS6desaXkOHDsW4ceMa/juU+3cy5eXl2LFjBzp16hTy1w4ALrjgAi+tfevWrcjIyAAQ+nPLCV544QV07NgRl112WYMW6tfv2LFjCA9v/PUbERGB+vp6AC3n2n0rze14tZg7d66LiYlxL774ovviiy/cbbfd5hITE11BQUFzNy1gysrK3Nq1a93atWsdAPfHP/7RrV271u3evds593VKVWJionv77bfdhg0b3JVXXhkyKVW33367S0hIcEuWLGmUFnfs2LGGmF/84hcuPT3dffjhh27VqlUuOzvbZWdnN2OrT52pU6e6pUuXury8PLdhwwY3depUFxYW5t5//33nXGj3jfHNbBfnQrt/v/rVr9ySJUtcXl6e++STT9yoUaNccnKyKyoqcs6Fdt+c+zo9OjIy0s2YMcNt27bNvfLKK65169bu5ZdfbogJ5bnFua+zHNPT092UKVO890L5+uXk5LjOnTs3pNq+9dZbLjk52d1zzz0NMaF+7b6LM3bx4ZxzTzzxhEtPT3fR0dFu2LBh7rPPPmvuJv1dfPTRRw6A98rJyXHOfZ1WNX36dJeSkuJiYmLcyJEj3ZYtW5q30acI6xcA98ILLzTEVFZWul/+8peuXbt2rnXr1u7qq692+fn5zdfoAJgwYYLLyMhw0dHRrkOHDm7kyJENCw/nQrtvjJMXH6Hcv7Fjx7pOnTq56Oho17lzZzd27NhGNTBCuW8n+Mtf/uLOPvtsFxMT4/r06eOeeeaZRu+H8tzinHOLFi1yAGibQ/n6lZaWukmTJrn09HQXGxvrunfv7n7zm9+46urqhphQv3bfRZhz3yipJoQQQghxmjkjPR9CCCGEaLlo8SGEEEKIoKLFhxBCCCGCihYfQgghhAgqWnwIIYQQIqho8SGEEEKIoKLFhxBCCCGCihYfQgghhAgqWnwIIYQQIqho8SGEEEKIoKLFhxBCCCGCyv8HaG6sKQEonsQAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"# Verifying Annotations.\n",
"img = cv_img\n",
"img = img[276:326,94:169]\n",
"plt.imshow(img[:, :, ::-1])"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 411
},
"id": "z-vMCQmBKgLB",
"outputId": "db2cd2e9-4d7c-40ab-ff5e-96857ec32521"
},
"execution_count": 9,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x79a12b9986a0>"
]
},
"metadata": {},
"execution_count": 9
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAF4CAYAAAD0RJuuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMAUlEQVR4nO3de5DV9X0//ue5n72evcEuCywgggsiqCi4NUmtUh3HyVcrk7Hzs1OT2Ga0aL3NVJlpYifTFJtMozFBTK3VdFJLa6eYmoxaSyJOI6AuGhUVRJFdYG/A3i/n+vn9wbDJwvv50nNcPntkn4+ZndH3e9/nfM77c9k353ye5xXwPM+DiIiIiE+CU70BIiIiMr1o8SEiIiK+0uJDREREfKXFh4iIiPhKiw8RERHxlRYfIiIi4istPkRERMRXWnyIiIiIr7T4EBEREV9p8SEiIiK+Cp+uB964cSO+973vobOzEytWrMAPf/hDrFq16hPH5XI5HD58GBUVFQgEAqdr80RERGQSeZ6HwcFBNDY2Ihj8hPc2vNNg8+bNXjQa9f75n//Z2717t/fnf/7nXlVVldfV1fWJY9vb2z0A+tGPfvSjH/3o53P4097e/ol/6wOeN/mF5VavXo2LL74YP/rRjwAcfzdj7ty5uP3223HfffeZY/v7+1FVVYU7/uo+xGLxU/qDoQgZyVdZuVwu7zHZbJr2ZbLuxwsF+Ts1kUiM9nle1tmeSFTTMYGAe7eFwmx+gGiUv9EVCbu3z1q8BgIhZ7t1QIViUdrnBd2Pl07zfZFOZ8i28X0RjfI5YuMyGfc+AoCosW/ZsWdtXyTqnqMYaf+kx0smU+721AgdEwy590U0xucuRMYA9j5kosbrZVIp92s93pd0tpv7IsK3IRJxzwW/3vB5sLeBz3naeL35KvhPwWT/CSHXVxTwTrg1r4X25StX4AcMbBsC4NtmvdvA+oLG3y22DVmyj0ZHhnHL//f/0NfXh0QiQR8XOA0fu6RSKbS2tmL9+vXjbcFgEGvWrMH27dtP+f1kMolk8rcXhcHBQQBALBZHLD6Viw9+IQ1lyOIjNLmLj3hJCR3DFh/hML9YmosPsn2Tv/gw5oEsPsLGHy7WZy8+8v8jnsm4FzkAEI2cepyeUMjig21fzJg76/FCYfcf3WDYuIiRhUQsXtyLj7DxhzoUdh//hR4rRbH4MP6xka9CFx+T/u9X8oetkAXBGbn4MLatsMUHH8MXH/wfY9a4Cc/7ib+RpyNHjiCbzaK+vn5Ce319PTo7O0/5/Q0bNiCRSIz/zJ07d7I3SURERIrIlKdd1q9fj/7+/vGf9vb2qd4kEREROY0m/WOXuro6hEIhdHV1TWjv6upCQ0PDKb8fi8XMt5NFRETkzDLpi49oNIqVK1di69atuO666wAc/wx069atuO222z7147z9m7ecn3XOnT/P+fvlZZV8m+LuxU1ZSSkdk87yN4WGBoad7dZNiTmjb3h0yNmeGnN/Vg8ACLo/Z42SG0cBIFbCP78uibnnImp8xh+Puu9JCRk3JY6NjtI+L+Q+HMlLPd5HPq+MkPtHgE/4zLSAj6894+bkrEc+/zc+MmX3BaTGxuiYgHG/BTuSrc96I+T+CIt1rwN7LmtfWPcSsOeyxpSVleU9xupjn3tb9wexPmvurJtow8Zx7pfJ/koEdr/RZD/P5H+Vg/sYz7EbaD9hGwq558NSyDmT7/081nF8stPyPR933303brrpJlx00UVYtWoVHnroIQwPD+NrX/va6Xg6ERER+Rw5LYuPG264AT09PfjWt76Fzs5OnH/++Xj++edPuQlVREREpp/T9g2nt912W14fs4iIiMj0MOVpFxEREZletPgQERERX522j10+q65DBxFypB86Dh9y/n5JqftOdgCIkLRLY30jHVNZzdMzIbjvxi6r5NuQKK+gfaVl7hRKesz4WvGc+6755Kg7iQMAwyP9tC+Qc99BHYzw9WlFqfs1xcv5PMRL+DwEyDc5WskLdme8Z3zPajbJ59Ujd2tnjG/0Czu+ifeEELkznX3bJgCAfN1x0PhaZZBvvAV4IiJA0kUAgBBJp1hf7RwwvinR+ApnxrrTnr3cUIC/pkzKvQ8n827/4/hrDQdJEqzAfwZmPZ6sYdjcFU2ahBwrk14HpICkVSFpOJu142lOzRiT/5znctaLyu/xPO/T/77e+RARERFfafEhIiIivtLiQ0RERHylxYeIiIj4SosPERER8ZUWHyIiIuKroo3a9vUeRdAREcySKGQoyguqjZICbZ2HDtMxtbW1tC9MYpJVVVV0TF1dHe1jkTRrTJTFJI06U6EMj0GNkoJvyaRRJCvpLngVtYrHBY7RvlDYHTmOG1FW1meNiUZ5gb1w2B2FjBmF29g8ADzN5wX5vNKCb0YhOCvWmCF9JF0NAAhH3OeTZ0RmQ8YcWX0MK9wG8CikFY1lBfvMSK9Phb8KeR4ApyF/OnkKndfC4s35K+R57CFFvDMMVoFJhs1dPse+3vkQERERX2nxISIiIr7S4kNERER8pcWHiIiI+EqLDxEREfFV0aZdSkvLnHfIswJfVtolx4qFpXlKob+vl/axZEh72wE6xkrCsPRMQ0MDHZNIJJzt1dXVdExZGS/4VlriTocUckf48PAg7fMCRmok495P1h3UbO5YO2DPQ1mZu/BdKMS3IRYroX0BUsUrTJI9ABAhBfYKSYwA/G72ACkeBwBJcp4Fgnxec1YiqIAECDtvrT5rDJu/oJU0oT28z3o8yjjNsh5/TYyZOmBdBRaCY5tu1Do099Nkpogmm5UQo2OM12olTdi1t5C5s/oKS/3kv20n0zsfIiIi4istPkRERMRXWnyIiIiIr7T4EBEREV9p8SEiIiK+0uJDREREfFW0UdsgAgg6MmEhFhvM8bhQZWWls72mpoaOsaKxvb3uGO7hw7xQ3fDwMO1jEcDW1lY6hhWdY68V4PFcgMdPrXmIxdzxZqP2GMJGvDMaJn1Gvi2Tc0dC06M8Rt0zNED7urOH3B3Gi2qaM5f2sThrhBUGBBCOuqO28SiP9EZi/PGCIXesN2vMayjqjl5njVheNs2L5bH5c53jJ+SM/KmXJVFbI5Yai7jnwXoeGNeVHMuSGmMKmYeQdUKRcTkrPkm2z4qRWrFZGuU2YqSFFDOz+FWMzo775h8RnuzChcUQR/609M6HiIiI+EqLDxEREfGVFh8iIiLiKy0+RERExFdafIiIiIivtPgQERERXxVt1DYWizkrk/YN9Dt/PxB0Ry4BIAJ3dLG+rpaOOffcc2lfd3e3sz0e4dPZ0dFB+wYH3dHPxvqZdAyr2tp39Agdc/DAx7SPxWZra/kcsRhuPF5Kx8yYMYP2RUll3XiEVyyOhUgFWCNyNpbiMdwkqVicMao1dhxqp30gkcIYqVwLAOGoOxJaGuPzGonzx4tH3POKCK9CGysjkW2jWnAszLchSM6NYMD494+RGmRFhgNGLDWXce93zxgTtBKc5BizYrNZFnM14rlZIwpM46zGawqTObfmIWRFokmXFX/1Kxo72Yphu4s5apvP8+udDxEREfGVFh8iIiLiKy0+RERExFdafIiIiIivtPgQERERXxVt2mVG/UxEHImAI73HnL+fNRIMmYy74FWUpAoAoLq6mvaVlrpTB/397iQOABw5wlMo7A7hpUuX0jElJe4iY6MkrQEA+/bto32sKF5bWxsd09fX52y35vXYMff+A3jipqKigo5hhfRYoTzreQCgvNw9zrqL2yoayI69kRF+vOaGBp3tfeBzZ22f6zwCgGCY76fKGncqKRjmCZmokUqKl7j7rDGRqFEsL0C2w6iAFmGv1xiT9YwkDInceMa/6dgY+npgF2FjKaKCkiZG4sazEjfk2GNFQIFPKGJHtsNK4/jFTruw7bPG8BQdf2/AGsOPowA9zq33INzPNRmhH73zISIiIr7S4kNERER8pcWHiIiI+EqLDxEREfGVFh8iIiLiKy0+RERExFdFG7WdM2c2otFTY3gfkLhoKMQjRjlSFOzo0aN0zOCgO+4IAIlEwtnOYp+AXVAtRWLC1mtqaGhwtrMILmAXidu1a5ez3YrGptNpZ7s1r/0knmth0WaAx3ALnQfWZ8WHZ9TV0T42R1Y8d2hoyNmeSrofC7AjgGMjI852q1jewKB7+yJxHo0tLS03+tzF7WIxvp9iMV6ojo0Lh/m/pzIh9/wZiVCESOFCAAiRvGgwaFxWadrRiLIauVRakM4qlkde8GQXlrOCsVbBPhbdLSTeWWhxO7YNQSPSniNR1oDxYr0APwdZn5H+NkO98Nhz5R+1BStOaLyefJ5VREREZNJp8SEiIiK+0uJDREREfKXFh4iIiPhKiw8RERHxlRYfIiIi4quijdrW1s1APH5qPC8cc0cesykeQ2QVTnt7e+mY8nIeG3zllVec7cuXL6djrLjo3r17ne0HDx6kY2bOnOlst+K+8+bNo327d+92tltxtGw262x37bcTrPgdixwnk8m8x4yNjdExHR0dtI9FbcNhfqpYFZBramryageAxsZGZ7tVjddy7Gifs737SA8dMzbmjucOj/AIem8Pr9wcirj/nVNWws+zkjJ+HEXDZC6MWGN1wj3nRkFZREI8Yh0Mu49mum0AwlH3k8WjPHIcJlWJASBLzqhgiB+v7Fi2qudmjYhpJue+DrDrAwBkaOzTvlbmK2vEyS20Uq/x9QfhIOkzji8Y88qCs3bkmM85u5Z7Hh/DBEikNpdzV/F20TsfIiIi4istPkRERMRXWnyIiIiIr7T4EBEREV9p8SEiIiK+yjvt8vLLL+N73/seWltb0dHRgS1btuC6664b7/c8D/fffz8ee+wx9PX14dJLL8WmTZuwaNGivJ4nFitBLHbq3e51de6Ux7GebvpY7C5fVnAOAEZIMS6A3/H83nvv0TEslQHwNM6RIzw9wJ7r8OHDdMyyZctoHyuW19XVRcewFErEuDs/ZNxRz8ZZj8eYd9pn+B3ZAwMDznZ29ztgp6Y6Ozud7VbhO5YWshIy9fX1tI8lt+aVNNExHivuZRXWSvPzqXfAPUd9JIkDAL29PI0TI4mSaAlPp/T1uAsexkp5OiVR7j4vACBO0jg5I7kSTLmP/3SQp7MQMv6NGHCfGx4p/AXwtIt1nlmFFWMl7nmIl/DUSjDMIyDs2mulcdj5aYZJDGxYIQ9nFS70SDE6S6HF8jxWdq6AF5VjyRmcxrTL8PAwVqxYgY0bNzr7v/vd7+Lhhx/Go48+ip07d6KsrAxXXXWVGX0UERGR6SPvdz6uvvpqXH311c4+z/Pw0EMP4a//+q9x7bXXAgD+5V/+BfX19XjmmWfwx3/8x59ta0VERORzb1Lv+di/fz86OzuxZs2a8bZEIoHVq1dj+/btzjHJZBIDAwMTfkREROTMNamLjxOfb5/8+XN9fT397HvDhg1IJBLjP3Pnzp3MTRIREZEiM+Vpl/Xr16O/v3/8p729fao3SURERE6jSV18NDQ0ADg1IdHV1TXed7JYLIbKysoJPyIiInLmmtTCcgsWLEBDQwO2bt2K888/H8Dx6OLOnTtx66235vVYlZWVzjgiW8SMDg3TxzpyxB3DtaJl/f39tK+iosLZ/vbbb9MxVtSWxS6Hh/lr2rNnj7PdKupmFZZj83rgwAE6hsW6rEichY2zYq5sjFWEzYrhslSWFcu2jiP2XNa+ZazY86FDh2hfVVWVs70k7o54A0B1rTvWW1rKx7DIOADMIcXy6mfMoGOsOWJxTOs86+vrc7aPjvHn6Tdi1IxVhJCd6+yaAtj7KRp3x6itSDRjnbdB4zWxc82M3Ef447FYrzWGzbl17cgVEjE1rgMBcq6HosZXBeSftDUry5kviSVtCzhWaMG+3Kd/QXkvPoaGhrBv377x/9+/fz/efPNN1NTUoKmpCXfeeSf+9m//FosWLcKCBQvwzW9+E42NjRO+C0RERESmr7wXH6+//jr+4A/+YPz/7777bgDATTfdhCeffBJ/9Vd/heHhYXzjG99AX18fvvCFL+D55583/0UuIiIi00fei4/LLrvM/Ba1QCCAb3/72/j2t7/9mTZMREREzkxTnnYRERGR6UWLDxEREfHVpKZdJlMkFEEkdOpdwg0z3IXlDh5oo4+VJnfgZowbc/e38e8bWTh/gft50jxF0d8/SPtYobpQgO+eoSF3Gifg8fVkfy//9tiqqmpne0mMF4eKkwJamRQvLmQlTVhxO0tyzF3czkq7wOPbx9IuVgTcSlhESAE0C/tYc3holI45ZhRoCwTcx7J1537tjDpnuzWv1dXuYwjghe9mznSfzwBQSxI3AFBT434uq4ZUVZX7+LLGjI7yOWdpnNFRXpRyZMQ9pr+/j46Jx3mhuopErbM9FDSKxMXd+9Dat+EsvxZlc+7zKZTixeM8I2DBkitWiihCEjJWQTyQ667FSoawvniO7z/rFgbGek3WOU3TicY8sNcUCrn3RSb46ZcUeudDREREfKXFh4iIiPhKiw8RERHxlRYfIiIi4istPkRERMRXWnyIiIiIr4o2aptOp53RqvJydwGmCImPATzKmsnwyKVVxOu8pec628866yw6Zu/evbSvo6PD2V6dqKJj2NfVWzEsVlgL4DFXVggLKKwQnBWXYzExKz7GorvpdDrvMQDfPmterQJobDusiB2bc2sbrLgvU1rKY9RHjhzJ+/E++ugj2ldIQTUrej179mxnuxWJZo9XV+eOFQN2/JQd56zoHcDPwaGhITpmcJD3DZFrhxW1DZNCZ1YJDGseaGE545psXQfGUu74vHW8sqitWfSR9vDXxP6WWH3ZFL8WWdcB9nipII9/W/PKrh+eUQwuQK7xIfI8+YSX9c6HiIiI+EqLDxEREfGVFh8iIiLiKy0+RERExFdafIiIiIivtPgQERERXxVt1DaXyzkjliVlZc7fryjnEbuwozouYEdte3p6aB+LTy5ZsoSOseKdyaQ7WmZF9lhE0RpzrK+X9p119kJ3R5DHZkvL3ftiYIBXz82m+ZyzqJ/1eGwfWtVSrVjqsWPHnO1WdHfhQjJ3AA4fPuxs7+3l+4KxYs9WFJLF+awYYjDp/neJVbnWigKzY9yK9B48eJD2sXm14rmsz4r71tTwyrpsLqx5YM9lxX0zGX7tGBhyn+9GOp1W8bWq+46M8ON/bIxcc4b4v22tyGq81H1d6e93V/IGeNTWig9b2zBG4vPBCP+TWRJ1n4PDxs5gX1cA8Ci3dd4WErW15oFtH9uGUePvzymP/al/U0RERGQSaPEhIiIivtLiQ0RERHylxYeIiIj4SosPERER8VXRpl3S2TRCGVdhuXLn71t3pbMkQDqTfzEugN+hf/7559Mx7G5/S2trK+0rpGCZtQ1sjgopBGfdPR3gm0cTQVZhOVZIbP78+XSMlXZhc2QVj5sxYwbtY4XErPRMVVWVs926c99KObG00ODgIB0zPOJ+vXPnzqVjli9fTvtYUTAr7dLW1kb7WNrFSkaxYpHW8WolV1j6yErc1NfXO9utY6iigif5Gusb3B0hft6yY8+6PlhpvSw5P61jPJXlqbd02v1crCAeAIRIKsM6L8zrFEmaBHNGanHEXfAtHOD/xreSKx5JOcVKjWKfxvV1iAQX4xF+jAPufRuNuq9Fo6O86N3J9M6HiIiI+EqLDxEREfGVFh8iIiLiKy0+RERExFdafIiIiIivtPgQERERXxVt1NYLBOA54k5lFe6oLYtcAkCUxEUzRuQyZkTsWOzSiqVahaNY8Z69e/fSMVaEjCkjRfkAe/4YFlm1InbhII+3sSJxLPYG8FijFbW1CgqyOKZVCK67u5v2sein9ZpYUbw5c+bQMUePHqV97733nrN9aGiIjmHHirVvrXll224V5bNe7+7du53tH374IR3D4qJW3NGKZbP5swq0dXZ25r0NESMKWZVwf8WAVSyPHV8zGtwxYMCODwdC7uuXFc/NGPH50VF35NfjpwyNCRtDMGLEQun+4Ic/IiTeHDT+jT+a5MdKCYnWDw/wAntxo8BkjnwNQ8jj+yJDvo4iReZ7bExRWxERESlSWnyIiIiIr7T4EBEREV9p8SEiIiK+0uJDREREfKXFh4iIiPiqaKO25ZUVKCk5tRImi5iyqqwAjzVa1VKtGCKrxMlidIAdO2OxrvPOO4+O2blzp7PdqtTIKqxafawaKcBjl9XV1XTMGKn8CPA5t2KpLAK7Z88eOmb27Nm0r7a21tluVUu1Yq5sf7DqpgDw/vvvO9ut2GdzczPtY3NhRa9ZrLG9vZ2OseaVVaO24rlsXwC8grQVtWX7wtq3rMIwACxatMjZbsWye3p6nO1W1Lanh0e5R4fd18OPSFzVUlpgFL+6zr2frONhRr077gvwa+Vso6JyIODetywGDNhVk9lXOliVoEEqyrLqxwAwZDweO2fY1wEAQNC4VgZISfHRHD8H2d9bVgk3aUSHT6Z3PkRERMRXWnyIiIiIr7T4EBEREV9p8SEiIiK+0uJDREREfFW0aZdIOOK8AzxLbimeMWMGfSx2V79HCu0AdoKBpV2su9wtLDViJSJY4Sjrzn0rWcASJVaBKpYwYkWeAGDUKOYUJcX8rCQTK/Jn3RFuJXhY4sZKK7FtAIDGxkZnu7Vv2R311jHJEjKAvX0MSwlYd+53dHTQvldeecXZbqWzGhoaaF9Njbug2qxZs+iYjz/+OK/HAuzEzYIFC5zty5Yto2PeffddZ7uV0omTAmOAVYyRX9vYnCfHeLHK9r5jvO/gAWf7nj3ugoYAEI7ydM/ixYud7R9+zOcoR07Psxe7E0mfpDrhTvdUlPFrR2W5+1o5bCRaImH+7/9Ewv141r61rr2e554k6x2IXNS9RGCP5YFfJ/N5XhEREZFJp8WHiIiI+EqLDxEREfGVFh8iIiLiKy0+RERExFdafIiIiIivijZqO5wcQy54avyTFYOz4phWxLSQMawImxXdtaKaLEJpFQtLJBLOditqOzbGi/6w12tFK1k01irKFwzy9S6LAFpj2Gs6doxHA62oLYtLh8P8VLGikGyOrKgtKz5WaOFCtg+tYmb9g+7jyDovrKg5K4RobfeVV15J++bNm+dst/Yt23a2jwAelQaApqamvMew7bOOVyuenkm5Y/o1Vby4Y91M/rUEjFWUkp2Do0aRsWNHeGy8tf91Z3uOVW4D/6qArm4e/w4F+fFfWeW+vlrnzOxZ7v2eML6uIBzkUXN2LbeKHXZ382tEIOC+jlp/OyOkL0OKXFrR+ZPpnQ8RERHxlRYfIiIi4istPkRERMRXWnyIiIiIr7T4EBEREV/llXbZsGED/uu//gvvv/8+SkpK8Hu/93v4+7//e5xzzjnjvzM2NoZ77rkHmzdvRjKZxFVXXYVHHnnEvLvfJZfL0WSL8/dJoRsAqK11F446cMBdEAkAyowCQuzOaqvw15w5c2gfKypl3YXP0i5WcS9rPtkd9awoH8BTKFY6BUF+x7o5jmB3arN9BNipjBS5i9sqcsYKwQE83WAVe2PJmrlz59IxVkE19njt7e10DDtWrH1kFbVij2fNXSH7ibUDvICjtS+sZAErumg9HiuAaSXbrDka8dzPZR3/85vcSaFFi3gRtuFRXnSOvV6WmAKA/ca1d8+ePc72rMevXyxlcaSrm46xkoGpbP7pv33V7oRRRSm/hlp/F9m196KLLqJjrIQRuxaFInwZUF3pLrCXGnOf61Yy62R5Xe23bduGdevWYceOHXjxxReRTqdx5ZVXTjj47rrrLjz77LN4+umnsW3bNhw+fBjXX399Pk8jIiIiZ7C83vl4/vnnJ/z/k08+iZkzZ6K1tRVf+tKX0N/fj8cffxxPPfUULr/8cgDAE088gSVLlmDHjh245JJLJm/LRURE5HPpM93z0d/fDwCoqTn+sUZrayvS6TTWrFkz/jvNzc1oamrC9u3bnY+RTCYxMDAw4UdERETOXAUvPnK5HO68805ceumlWLZsGYDj38AYjUZP+Zy0vr6efjvjhg0bkEgkxn+sz7VFRETk86/gxce6devwzjvvYPPmzZ9pA9avX4/+/v7xH+smOBEREfn8K6i2y2233Yaf//znePnllyekOBoaGpBKpdDX1zfh3Y+uri6aFojFYuZ3y4uIiMiZJa/Fh+d5uP3227Flyxa89NJLWLBgwYT+lStXIhKJYOvWrVi7di2A47GptrY2tLS05Ldh4bAzIsiiflYo98THQid799136Zjy8nLax7Zh7969dIwVY2PFiqyiW2wbrHiuFZNkcb5qEh8DeHTLKkIVCfFDjsUxrWJmbBtqa2vpmBP3KrmwIlknH+u/y4pW5hMXP4HFqK2iTVbUls3fvn376Bh2TI6M8MiltX3s8VhcFbAjpqx4ofV4rACg9TxWZJVFd63rAPtH2Pnnn0/HWPspPeqOFlvFHVkk2oqTx0p48UT2FQNWsTzrOnWIvfttXL/YMT5sHK/WtY1Faq1zfWzY/VyH2vi7+QcPHqR97DrAiioC9jWe/T2x4sPs+I/E3Psvk/v0RVzzWnysW7cOTz31FH72s5+hoqJi/D6ORCKBkpISJBIJ3Hzzzbj77rtRU1ODyspK3H777WhpaVHSRURERADkufjYtGkTAOCyyy6b0P7EE0/gq1/9KgDgwQcfRDAYxNq1ayd8yZiIiIgIUMDHLp8kHo9j48aN2LhxY8EbJSIiImcu1XYRERERX2nxISIiIr7S4kNERER8VdD3fPghnUo5o3s0zmdEGkvK3dUBWeVCAOgd4HHMkmj+lVStGOLSpUud7akUr1BYXe2OYZWV8kicVXV0dNQdIaut5XE0FnAuNbYhHHRHLo9vg7siIos0AjwmxmJqgH3vEquKakXYmpqaaB9jbR+LLlqlB6xjj1VmZdFTAMjk3LE8ax6svkJi1FZMmUV3rSq07FixvmfIihaz6GJbWxsdwyKwJ9/E/7vq6upo34EPP3a2W3F39m3T1hc8Wl89EC91z+vMmTPpGKtKbjzu3h99RpVcVgGZRfEBYOkSXkm4sbHR2W5VTX69tTXvMWlyngHA4Ij7mszaAfu6cqy/z9leO9NdaRkAMqSScDJFqtoar/VkeudDREREfKXFh4iIiPhKiw8RERHxlRYfIiIi4istPkRERMRXRZt2yeVyzrvd2R31/F5/npawCilZBX8iQXdyxbo7f8+ePbSPFb4LBHgqg93FbSVDrD52V79VAIqlBKzUg1XwiqURrAJ77DW5ihKeUFlZSft6enqc7SwhAABnn3027WOpDCv9xO7ct44vK8HDEiDWPPSSO+Ot57H62P5ghfw+6fHYvFrJFZb2sgqMWQmQiy++2NluFfn78MMPne3suAOAhQvOon3vvrXb2c4SU9Zzvf7663SMlaa68MILne3NS5fQMVYxP7Y/WBoOAOqqa5ztVbXudsAu5ldfX+9st85BljR59TU+r4e7+HWFFeaz9u2MGTy5wh7P2rfsnMnBfW6ydhe98yEiIiK+0uJDREREfKXFh4iIiPhKiw8RERHxlRYfIiIi4istPkRERMRXRRu1jcZizthcNOTe5EiEv5Su7g5n++LFPCJ57NgR2sfincNjvODPK6/8H+2bP99dmKy2hsfEakgczYpwWoXl0qQgUJREGgEgQuKTOSMaa2FRNStaxgpoWfFcFum1xllRW6twFIuSWrFBFkceHubHlxVvZrFsK2I3OuzevnjUKBpoxJvZ6w14Rkiepxpp3/AgnyP2mqxiXB2H3NcOAEiOus+ns+bzaOyu13c523uPuuPVADBjBi/QxqLwVoya7Qsramsd4yzeOW/BfDqmv58X7sym3cUGrXOGndNVFXweYmF+bRsZdJ+DViybRe4PHjpEx/T2uuOvAICs+yBn2wYAQSPpOjbs/jqFAPjfDJDCcqWkKGUgZ33pxUR650NERER8pcWHiIiI+EqLDxEREfGVFh8iIiLiKy0+RERExFdFm3bJpTPIhU+96zlF0gixGC+AVlZWlvfzs8JVAC/8ZRW1YsW9AOAXv/iFs/2S1avpGJZ8sFIeVpE49pqsYnTszu+9e/fSMaUl5bSvkMJH7K5+VigPAOrq6mhfc3Ozs/3jjz+mYzo6eCKCjTtyhKepysvdc2QVtZozZw7tY8e/lX6ykitMJuNOKQC8SFyNkegaGBigfSwRFCd34QN8Hqw0lZVuYPvdKizHUhns2AfsYmGFJJnYfrcSU4VcQ62EjHWtZNcwloIBgEil+3rN0nAAnzuA76f9+/fTMYsWLXK2r161io55//33aV+CJHXYtRqwr9czZ7pTU4NG8ihqnE+fld75EBEREV9p8SEiIiK+0uJDREREfKXFh4iIiPhKiw8RERHxlRYfIiIi4quijdqGw2Fn3C8Ad2TPKlTEYmI1dbV0TNP8ebSvoqLC2W4VPrK2j0XffvOb39AxLEpnRfasaFkk4i4ulM3y6FZZiTuGVZ2oomMyWV75iEX9rHllhdusiF1DQwPtW7hwobN98eLFdIxlcHDQ2c6iogB/TVaUddcud8EyALjggguc7SzSCwB9fe7j1YrgWjE/1mcdk1ZUkxVQtKK2LD5vRdALKQBoPR6bPysaa0VgWdTc+qqAHLmGhoNGEUnj8eKl7lgqi1cD9nUqmXTv9xApKgoAuYw7npsGP4bS5HkAHuv9aN+HdAz7+oMVK86nYxbMW0D7fnPsDWf7ADk3AWCUFI8D+H63jr04OZZZATkVlhMREZGipcWHiIiI+EqLDxEREfGVFh8iIiLiKy0+RERExFdafIiIiIivijZq63meM6rl5dxxISuOFgq7Y3nz5vE4rRUtO9rjrkhqxSf7jvJoGauq2dXVRcew12ttgxVDHBx0x8QOHDhAxwwNuMdY8cmxJI9jsoipFdlj0UX2WIBdFZIdE2effTYd895779E+Fo+1Iqssem1FOK2qu+w1WY/HWJV1rYrK7PVa8WGrjx3/LIIL2JFCxnpNLIZrXTtYvLmnp4eOWb58Oe2zqmUzbB6suStkX1jHOIugA7witXUdsPZTIWNYNPzw4cN0DIsPX3JJCx3TQCrNAsD7pPLvgPE1AlY8nVVotuLktbXur6PIZvi++LT0zoeIiIj4SosPERER8ZUWHyIiIuIrLT5ERETEV1p8iIiIiK+KNu2Syx3/OZX7LtuQlXYJuftKS3hhrfqZs2hfZXnC2W7daczu4AZ4QaKj3fwOeHa3eDTmLvIE2IW/RkfcCYvdu40kR9qdfGBpDQCIkzu4ASBM7rYvJ4UBAZ6+sF5rZ0cH7fuAJHWsnESvVSSLpG7KjEQQmwcrndXe3k772LanjeOVsVJlVprESskwVsKCJR8KSfDEjGOSnZsAcOSIO/VmzUNdXZ2z3UqVWY9XkXAXlguShB/Ak2BWOsW6tllpCYYVxAN4CsU6hjKksJx15o6N8esUS3kEg3xej5JEo1UIbvasRtrH0olWkdJgkO/DGPnbMDzCk4GppPscDEbcz+MFVVhOREREipQWHyIiIuIrLT5ERETEV1p8iIiIiK+0+BARERFfafEhIiIiviraqG3W85B1xOmCJGprxvJI3Cpn1CKyYmdlJPpZUVFBx7DoFsC3fY4Rw+ojxYVY/M8aAwDDg+6CdFYBKBa/swpAjRixPBaxixnxyTAp4mUdD0eNaCyL6PYZ8TYrsjpA5q/GOL6CJGo7Z84cOqbcOPYaGhqc7e/v2UPHsHintW8tLKJrRaKtWC87VqziaKzPeh4r3snOJytqzq4Du3fvpmOsKCu7FlnxYTZ31r61zic2D1Y8d+7cubSPFUCztoE9VyH7D+DbN9MoBMeKeloFQmfMmEH7WNTWmtfu7m7a19jo/ntixdPZMZFvu4ve+RARERFfafEhIiIivtLiQ0RERHylxYeIiIj4SosPERER8VVei49NmzZh+fLlqKysRGVlJVpaWvDcc8+N94+NjWHdunWora1FeXk51q5da97pKyIiItNPXlHbOXPm4IEHHsCiRYvgeR5+8pOf4Nprr8Ubb7yBc889F3fddRd+8Ytf4Omnn0YikcBtt92G66+/Hr/+9a/z3rBAIOCM+7HgVIRELgEepQtFeAW+cMyIH5EKilYULGNEClmssbK6io5h21df745VAnY1xGzave0HDx6kY1gE0Krge/QojwKPJt3VFdNWjJpUUTQDX0blxVFS8bP7CK8wnKMVNXl10WFjjtJZ9+sdMyKcMxvqaV8NiXdalUWPHet1tlsVVq14OsNin4AdKbT6GHaNYBFJwH69rOKtFXevqalxtlvz0Nvr3hcAr5Jr7Vt2HSgkpgzwKOmhQ4foGBb7BIAlS5Y421k1XoDHZq0ot1UJetWqVc728nJeCZ0dk9Z2WzFvdqxYf2esqC0bZx3jpaT6djLjnlfrsU6W19Xiy1/+8oT//853voNNmzZhx44dmDNnDh5//HE89dRTuPzyywEATzzxBJYsWYIdO3bgkksuyeepRERE5AxV8D0f2WwWmzdvxvDwMFpaWtDa2op0Oo01a9aM/05zczOampqwfft2+jjJZBIDAwMTfkREROTMlffi4+2330Z5eTlisRhuueUWbNmyBUuXLkVnZyei0Siqqqom/H59fT06Ozvp423YsAGJRGL8x/rmOxEREfn8y3vxcc455+DNN9/Ezp07ceutt+Kmm27Cu+++W/AGrF+/Hv39/eM/1udwIiIi8vmX9x1i0WgUZ599NgBg5cqVeO211/CDH/wAN9xwA1KpFPr6+ia8+9HV1UVrSwDHaxBYdQhERETkzPKZC8vlcjkkk0msXLkSkUgEW7duxdq1awEAe/bsQVtbG1paWvJ+3EAoiEDo1DdmAuTNGutOe89zZ2QKLZIFx3YBQMjjd4RbdwGzwj5WUSQ2pqKU341t3VFfW+2+s5oVrgL4/Fl3XNfUuZ8HAL3f55hRCI4lDjzjpuuSkhLaV0gBNOvuc5Y6YNttOXjYSA8Y+R52HGWMyoqTWbjNYt3tbxVoY6/Jejyrj7FeE9s+63i1/iHGWPfBsdRIIpGgY9ra2pztVmLQunawx3vrrbfoGOscbG5udrbv37+fjmGJIKtoWkdHB+1j57RVCI6lWqwCdif+Ie/C0i6s4NwnPRe7hpVX8GOFHePBiPvvbTDw6c+xvBYf69evx9VXX42mpiYMDg7iqaeewksvvYQXXngBiUQCN998M+6++27U1NSgsrISt99+O1paWpR0ERERkXF5LT66u7vxp3/6p+jo6EAikcDy5cvxwgsv4A//8A8BAA8++CCCwSDWrl2LZDKJq666Co888shp2XARERH5fMpr8fH444+b/fF4HBs3bsTGjRs/00aJiIjImUu1XURERMRXWnyIiIiIr7T4EBEREV995qjt6RKKRBCKnBqTCgTckcJUhheaYjExK8pqYbHZIHi+M2REgaMhd1/IiC2FQ+5YnBWXs+LIIRKdqqziMaxw0B1DtGLFtTPcRc4AoG/QHSmMHz5Mx7Bvz7WirFZskMXRrNinFcfMkgjsCCmiZz3ex+3uSCPA5w7gscY+o2AZi1Fb38nDCg0C/Jgo9Bxk22ftW7YNhRbLYwUUrWgsi65b2zA4OEj7WOzSejwWI7UKoFn7nRWQs6K2VmT1d0t0/K6Kigo6hh3jVkTeKtjHIrpWwT42r0ePHqVjLCwuPWvWrIIejx3L1rWN9cXI103kyNdauOidDxEREfGVFh8iIiLiKy0+RERExFdafIiIiIivtPgQERERXxVt2iUYCDoLQbHiUFbRqFDOfReydae9UZeM3mlvPZ7Vl/Tcd2THwjy5wlIt1jz8brXhT8sqzIScex7KK/ld6UkjlRQrdd+xXl1dTcfMnz/f2W4VWLIKf7E7063EQSH73UpRsH1oPU9PTw/tY8+VSvF9gQLSLtacs1SGtQ3l5fkXSbSOf/Z47733Hh1jFYJjiZKPPvqIjrniiiuc7ew4BoCDBw/SvosvvtjZXlvLU2WsjyXHAF7kzHo8K0XxwQcf0L6LLrrI2b5ixQo6pqury9luFY+zjmX2eJa6ujpnu3XtsIpSsuPV2u6m+WfRvn379jnbl53H55VtX5icf1ba7GR650NERER8pcWHiIiI+EqLDxEREfGVFh8iIiLiKy0+RERExFdafIiIiIivijZqm0UAWe/UKBuLuXqkgBcAeKRAW87K02Z5rJFsAqy1nFHnCWzTs1n+mhizUFeQ7+40iUh5AV40jRX5Y0WeACAKHhPLFVAsrJQU6iozYpqVpGATANSTaKVVoKqtjRd8GxoacranjMdjBb6so4GdFwAQJrFsK0bdf8RddMszzotchu8nVoSQxbULfa6qGr5vs2l3bLC81H0MHX8ivn1jI+5CeqPD7oJz1jbMrOOF1g62tdM+tt+tApMsImxFm61IdCFRbquoGyvYx+La1jZY10OrkB47b+vr6+kYVnTOeq3WtY3tD+tct+LubI6sbWBFLtkYRW1FRESkaGnxISIiIr7S4kNERER8pcWHiIiI+EqLDxEREfGVFh8iIiLiq6KN2uZyOWdMKkCin54jljs+hiyxrAqYRmAVofwTsGZkj8WTrG0AiZB5RqaXxfwAHs1jsTwACEbc82dGt4J8HoKe+zWxuBfAt9uK+yaMqC2LB1qvyar42d/fn1c7AHR3dzvbreqYo6Pu2CfAI4VJI2oYJzFc63iwqm2yWK91Dg4PD9M+FoWcNWsWHcP2IYtIWmMAHnm0YtlsX7CKqNYYgB+v1mti211RwatRW3FRNufWsWId/6yibFNTEx1jVYlmrMgq24Y5c+bQMSyG+8Ybb9Ax1r5l1zArwnzkyBHaV0a+lsDaT6wycSTOz/VPS+98iIiIiK+0+BARERFfafEhIiIivtLiQ0RERHylxYeIiIj4qmjTLqFgGKGQa/PIHcpBfseuB9Jn3O0cYoWwwFds1t3THinCBgBho3gbR4rlGdsQDPFiU6yGV4BFhQB4ZBtCEb4vcjmeuAHbTwZrzhkrYcFSGdbzWCmBmTNnOttZWgMAGhsbne1Hjx6lY3p6evLvs4rRkSKEQyM8gZLO8n2bybHChXSI2dc/OOBs7xvgKQr2eLESXrCMFTkDgEjMfayMJnmC4f29e5ztzc3NdMzCRWfTPpZGqKqqomPYMW4le6y+c845x9luFWHbvXs37WPF0RYuXEjH1NbWOtsPHTpEx1j7lhWLvOSSS+gYdh2wznUr0VU/y13k0kr2HO3to30slWcV32PXPTYmZ6Q6T6Z3PkRERMRXWnyIiIiIr7T4EBEREV9p8SEiIiK+0uJDREREfKXFh4iIiPiqaKO2DItJGmkhgBQzC4b42ssqthMy+iaTkc6lUSePZWZRWJEsK7obIH2esTOs4mMeKSxXSATQio8VEi2zWIWe2PFqRSFZUTCr+JgVa2QR3cEBd1wVALo73IW1+o7xAmOFFPeyigZa++LgwYPO9kKKulnHl3WssMiqVSzsww8/dLYvXryYjlm1ahXtY/NnFTtk280iroA9R3PnznW2z5s3j45hxRMBfryyIpIAEI+749LW8WUdr6yII4s2A7xgpbUNx44do31z57kL6VnXgfZDHbSP7UPzKyJIH73uGsfJyfTOh4iIiPhKiw8RERHxlRYfIiIi4istPkRERMRXWnyIiIiIr7T4EBEREV8VbdQ24HkIOCrkscqUVqVSwB2Xs+K0hfRZYwpRSAwxl+FRp0CWzxGLTpkxV1LB0IrahvOIYo0/npF+ZVV3g0aVY6tSbyGsSo40El3AayopKaVjIhF3fBIAEokqZ3s6ySPCsxvclXVZxBWwq4SyOHLAiLubVUcPtufVDgAlJSXO9tGxUTrGKrTMdqFVJbf9kHv+Orvd0WYAWLJkCe3rPeqOalrxb3adsqKsVh/bTwsWLKBjWDwX4OdMJsOrJpeXlzvbrRipdX3t7XVHyq0KtSzuzrYNsCPHbPtmzJhBx1jxYVZBt7+fV4JmlXrZvrD20cn0zoeIiIj4SosPERER8ZUWHyIiIuIrLT5ERETEV1p8iIiIiK+KOO3iLqzGiq1ZBW1ygclNu4D0WYmbQp7Lejx2F3eA38Bd2Os1UiMsWUPqwwEARpO88FeI7NxgkB+mdLONMZ5nFdhzP6A1przcXQgOADIZd+ognbaKmbnvGGfbBgCRiFEIMeROKrACYwBQW1vrbLcK4ll3urOiZV1dPOXB7s4HeBrBKo7G0gPWeWYVQmTbPmvWLDqGbfeuXbvoGGs/lZEE1OHDh+mY0VEj3UNYqbc333zT2X7WWWfRMfPnz6d9LD1jFQ1kx6tZINRIu7Dnso6vhoYGZ3tpKU+pWUkTlliy0jOsuB3Ai+KxInoAT7vQdGROheVERESkSGnxISIiIr7S4kNERER8pcWHiIiI+EqLDxEREfGVFh8iIiLiq88UtX3ggQewfv163HHHHXjooYcAAGNjY7jnnnuwefNmJJNJXHXVVXjkkUdo0R0mk04h4yiSE8i510tGnS7KM0ZZ8bsci58aGxEyZprFwayiSPSxjEJdVrE1muLM8G0IhFgfHxMJ8ugiLwBo5IfJmJwRS80ZWeBslhTLM/ZFgIwxt8OMD5PotTEPVhSYJM3NY5zFXMMxXmAsUVNF+6pqq53tdfW8SJZVHI1FFI8dcxdaA4ADBw442yuN12TFO0eS7siqZ/yTLkuO193vv0vHxOP8nLlgxQXO9v3799MxLC5aV1dHx1iR4w8//NDZbkWl582bR/vYPiwrK6NjWPzUOsat44uxCsEVErW1iieySLT1eKwoH8BfrxWjZvF5j/wt8aWw3GuvvYYf//jHWL58+YT2u+66C88++yyefvppbNu2DYcPH8b1119f6NOIiIjIGaagxcfQ0BBuvPFGPPbYY6iu/u2/aPr7+/H444/j+9//Pi6//HKsXLkSTzzxBF555RXs2LHD+VjJZBIDAwMTfkREROTMVdDiY926dbjmmmuwZs2aCe2tra1Ip9MT2pubm9HU1ITt27c7H2vDhg1IJBLjP3Pnzi1kk0RERORzIu/Fx+bNm7Fr1y5s2LDhlL7Ozk5Eo9FTvoK5vr4enZ2dzsdbv349+vv7x3/a29vz3SQRERH5HMnrhtP29nbccccdePHFFxGPxydlA2KxmHkzk4iIiJxZ8lp8tLa2oru7GxdeeOF4Wzabxcsvv4wf/ehHeOGFF5BKpdDX1zfh3Y+uri56JzCXgyvJwAopDY0YxZKsInEFKCSFYo1hfdadwywRYRVS8grosx6P3SNtPc+wcXd3EO5xrDDa8b78x4TDvFBXNMpOCaNanvEGYjbL5sJIyJCnslI/VpEsVmQvwKo0AigrK3G2p5JjdIx11zzri0SsfctfE/sHS01NDR3T2NjobLcSMlYagRXdslIe7B9tY2N8Xt946ze0r6PD/Y6yl+XHKyvCZhVNs7aP7cOXXnqJjrnssstoH9tPVpKDpVDYPvok7JhgiSkA+NKXvuRsX7FiBR2ze/du2seOvaamJjom7EiInsDmyLrPkhUHHB5z/71Npz992iWvxccVV1yBt99+e0Lb1772NTQ3N+Pee+/F3LlzEYlEsHXrVqxduxYAsGfPHrS1taGlpSWfpxIREZEzVF6Lj4qKCixbtmxCW1lZGWpra8fbb775Ztx9992oqalBZWUlbr/9drS0tOCSSy6ZvK0WERGRz63P9CVjLg8++CCCwSDWrl074UvGRERERIBJWHyc/LlePB7Hxo0bsXHjxs/60CIiInIGUm0XERER8ZUWHyIiIuKrSb/nY7JkU0lkHEXShofd8cCckX5lEUWr6BCsaCxpt6JgnlXojFT+ytIwK9926zVZfTQKbBSjY0XsrBVtNMq/H4ZugzF3WTIml+FzByNiGmCRWmNMPOaOpQJAgFQUDFpVCMmcG/XwkMnx1+tlSHE0j8fiSmLucyZkRPmsSHuAHHthI2prFXVjMfRIlMeoy0jxsVqjoFpvby/tqyGRVSuWeuTIEWf70aNH6ZgxUmAMADo6OtwdxgWRnWdWLNW6trHrihVT3rVrF+0777zznO1WLLunp8fZnkwm6Zh8iqCdMDg4SPvYF2kuXLiQjrGuySwSbR2TlkK+m4vF3dncZf0oLCciIiJSCC0+RERExFdafIiIiIivtPgQERERX2nxISIiIr7S4kNERER8VbRR22RqFAHH0mgslXL+fiTirnIJ8LijVTXT6mOxwULiaJacla0krCq0JhLvDMGYB/ZcRjw3Z8SHWZrVjjCTqK0xJmfEEHOee/usqsRJ8DgfmyPreAiRKrTWPxVyOd7JotzW4cVerlU10zpnWDTPOl6jRmy2kMdjY6xjxaogysZZEVNW3duK5x4zYrhD/e7oZ98xHsdk1WutbbDmNUWuyXv37qVjWOQY4PNqHV8s5mrtCwurwmxt95tvvuls/+IXv0jHWMcXO/6tbbDiyOzxCqlYHCDXUNbuonc+RERExFdafIiIiIivtPgQERERX2nxISIiIr7S4kNERER8VbRpl5GREeddz9ESdxGvsMfvjPfI3dPWHdxmgTYyzno8O31Bti/M7+5mheqyWaugFN8GUnvPxAvB8TFWgoEETQqbO5Lw+KQ+9nhm2iXJC6Cx4yjkinKd6CN39ReUkAEQDpPjNWjEXXLuBIPHdhLMWowIBt2vyZpXSzjM7+pnsll2rPAxqRTft+x8j8d5ocFYzF3ci6UrAKBhpjshAwAxkkbo6eqmY1gypL+/n46x+lhRvIGBATrGKtD26quvOtvLysromFFSfM8qTlhC/pYAPOVhvaYPPvjA2X724kV0jFXsbWhoyNluFSHMZvnrTaXcqZaebvfxAAAeSSey66R1rT6Z3vkQERERX2nxISIiIr7S4kNERER8pcWHiIiI+EqLDxEREfGVFh8iIiLiq6KN2sLznDG8IEnmWcVxQhF3vLPQaGyAxOKs0KAVKWR9UaOQEknams9jviZWoM14Vey5jDQmIhEr05t/hJnFT61YaiH7olCFFb5z95lR2wKKJIaMeS1kHqz9xPoKPV4LiUSXl5c72604JiuaBvBCdZM9d9Z+Z9tXkaikYyor3X3smgIAo8O8QFtXjzvWa8V9B4fdMVIA2LfXHVlNpvm+YHMeNL6uwDy+yHUvR/Y5AHR2dznbd+zYQccsXryY9rHz9sCBA3SMFdlmx3khEetCrrun/O6n/k0RERGRSaDFh4iIiPhKiw8RERHxlRYfIiIi4istPkRERMRXWnyIiIiIr4o2auuRqC2LtwWNKqG5jDt+lPZ4dIuNAQCWJgqE+DZYUToESV/A2D05EnM1Yn4Zn+KT1prW2j4W97XKpbIKw5ZAHnGwTyMIXqmXxfmseCeLy1kxulyORwCzWRKLC/G5i8fdr8mqamtFF2ks2wqom9Hi/Pd7lmRJAyFeIbekJP/quRa235PJJB2TyvDrFIvasqqsABCLufdtMMyvN1b11Xi5u9rs7Nmz6Zi0cSyfc845zvYeo5pr37FjzvZeI0Y6aPRl2VcZGNvNKvXu3Mmjtp2dHbSPVUe2qtqyv49W31iKH3v5RmrzubbqnQ8RERHxlRYfIiIi4istPkRERMRXWnyIiIiIr7T4EBEREV8VbdpldHTUefd8KuW+WzwaKaWPFQy6X6ZVBCdgFCRid9qbj2cV8WJdJNFy/Mny34ZCtq+QYnmhAE89ZI1URiBXQHKFbLeZLppkVrKAJUCs7WN3pdtpl/yLsOWMFNHgoPsOeOtmdnaeWeOsMYCVnqEnDR2TzbLXy8cAxnUg7N6GUJAfD2GSKImEY3RMtoQno3Jl/LrHsMTN6Ogo3wbj2GOvqSKRyHsMADQ1NTnbe3p66JiBgQFnu1U0zXo8NhfWHLEUSu/RI3RMV5e7GB0AREhBVJaqAYBIjB9HbM6tfTsy4i4oGIm5kzjW382T6Z0PERER8ZUWHyIiIuIrLT5ERETEV1p8iIiIiK+0+BARERFfafEhIiIiviraqO1Q/wBS0VNjQ7ESd8QnmnC3A0AmzQvnMIE0X5dFo6SQWJRH7KyYKwsAWhEoFkv1jJhrzih8x7bPisRFIu5YVcgo1JVOTn3U1s8YLhMK8Uga2xeFxGmtPqvI3/AYK2ZmxVLzL8YYDFoRTquwXH4FrwCgtNQdS81meZQ1k+GvN511H8usHQACATbnxvUhwI+VdNYd/YxE+HkbK3HHMUPkfAbsgmXsOjWWGuOPN2LM0SC5thnHa93MOmf7rNmz6JgFyQW0j8WRh4eH6ZijR9yR2qF+dwwYANra2mjfMVIsr5wU8gOASIwXAGSxYys+fOjQIWf74ualzvZcjp/PJ9M7HyIiIuIrLT5ERETEV1p8iIiIiK+0+BARERFfafEhIiIiviratMtbb73tTFrMnj3b+fsj1fzO6vJEpbO9oqKCjrESEUNDQ852627s8vJy2ldW6d6O5Ch/TbSulsF6TSFyd7xdNM09JhTiCYFgzrir36piRxSSXJnsJIy13ydzG6wxZpqqgO0LRtyPx1IAAJBKsYSMlZbgY9jxBQDRKEu78OOVFcmyWPMaDrtTb4UcQ3bRQL7/2PlpbUIhx4OVeqPpP4OVzmJzYSVuWN/YGL+GWnPO9ntZGU+alJAkZqSJH0PNzc20jyVrjpBUDQC0HXSnUwAgRorOlZbyv00sCRMNuY+HHGl30TsfIiIi4istPkRERMRXWnyIiIiIr7T4EBEREV9p8SEiIiK+Krq0y4k7sbOsbgK52z6V4vVbkkl3X9RIclh3rCfJc1l3kVt3i7OkCXse4DSkXTLubciaNR1Y2oUnIqy0SyEvit2VbiZDAnwbiiHtUsjzeLRCUGHbl/HyO/8AIJ2yaqTw44ixzhl2fchk+DntZa26NG5W2oXV5wmggLSLURPDqj2DnLuvkPJFVvrDYs0RU0jaxbwWkfnLZKx5zT/tYr1W9pqyxvXGOp+SSXdSx0qVWY/Hzxk+r2nyXGNj7hTMiXTRp7nmBLxCrkyn0cGDBzF37typ3gwREREpQHt7O+bMmWP+TtEtPnK5HA4fPoyKigoEAgEMDAxg7ty5aG9vR2Wl+/s6pgPNw3Gah+M0D8dpHo7TPBynefitqZgLz/MwODiIxsbGT3xHrOg+dgkGg84VU2Vl5bQ/mADNwwmah+M0D8dpHo7TPBynefgtv+cikUh8qt/TDaciIiLiKy0+RERExFdFv/iIxWK4//776ffSTxeah+M0D8dpHo7TPByneThO8/BbxT4XRXfDqYiIiJzZiv6dDxERETmzaPEhIiIivtLiQ0RERHylxYeIiIj4SosPERER8VVRLz42btyI+fPnIx6PY/Xq1Xj11VenepNOu5dffhlf/vKX0djYiEAggGeeeWZCv+d5+Na3voVZs2ahpKQEa9aswQcffDA1G3uabNiwARdffDEqKiowc+ZMXHfdddizZ8+E3xkbG8O6detQW1uL8vJyrF27Fl1dXVO0xafHpk2bsHz58vFvKGxpacFzzz033j8d5sDlgQceQCAQwJ133jneNl3m4m/+5m8QCAQm/DQ3N4/3T5d5AIBDhw7hT/7kT1BbW4uSkhKcd955eP3118f7p8O1cv78+accD4FAAOvWrQNQ3MdD0S4+/v3f/x1333037r//fuzatQsrVqzAVVddhe7u7qnetNNqeHgYK1aswMaNG5393/3ud/Hwww/j0Ucfxc6dO1FWVoarrrpqvJrgmWDbtm1Yt24dduzYgRdffBHpdBpXXnklhoeHx3/nrrvuwrPPPounn34a27Ztw+HDh3H99ddP4VZPvjlz5uCBBx5Aa2srXn/9dVx++eW49tprsXv3bgDTYw5O9tprr+HHP/4xli9fPqF9Os3Fueeei46OjvGf//u//xvvmy7z0Nvbi0svvRSRSATPPfcc3n33XfzDP/wDqqurx39nOlwrX3vttQnHwosvvggA+MpXvgKgyI8Hr0itWrXKW7du3fj/Z7NZr7Gx0duwYcMUbpW/AHhbtmwZ//9cLuc1NDR43/ve98bb+vr6vFgs5v3bv/3bFGyhP7q7uz0A3rZt2zzPO/6aI5GI9/TTT4//znvvvecB8LZv3z5Vm+mL6upq75/+6Z+m5RwMDg56ixYt8l588UXv93//97077rjD87zpdTzcf//93ooVK5x902ke7r33Xu8LX/gC7Z+u18o77rjDW7hwoZfL5Yr+eCjKdz5SqRRaW1uxZs2a8bZgMIg1a9Zg+/btU7hlU2v//v3o7OycMC+JRAKrV68+o+elv78fAFBTUwMAaG1tRTqdnjAPzc3NaGpqOmPnIZvNYvPmzRgeHkZLS8u0nIN169bhmmuumfCagel3PHzwwQdobGzEWWedhRtvvBFtbW0Aptc8/Pd//zcuuugifOUrX8HMmTNxwQUX4LHHHhvvn47XylQqhZ/+9Kf4+te/jkAgUPTHQ1EuPo4cOYJsNov6+voJ7fX19ejs7JyirZp6J177dJqXXC6HO++8E5deeimWLVsG4Pg8RKNRVFVVTfjdM3Ee3n77bZSXlyMWi+GWW27Bli1bsHTp0mk1BwCwefNm7Nq1Cxs2bDilbzrNxerVq/Hkk0/i+eefx6ZNm7B//3588YtfxODg4LSah48++gibNm3CokWL8MILL+DWW2/FX/7lX+InP/kJgOl5rXzmmWfQ19eHr371qwCK/7wIT/UGiFjWrVuHd955Z8Ln2tPJOeecgzfffBP9/f34z//8T9x0003Ytm3bVG+Wr9rb23HHHXfgxRdfRDwen+rNmVJXX331+H8vX74cq1evxrx58/Af//EfKCkpmcIt81cul8NFF12Ev/u7vwMAXHDBBXjnnXfw6KOP4qabbprirZsajz/+OK6++mo0NjZO9aZ8KkX5zkddXR1CodApd+V2dXWhoaFhirZq6p147dNlXm677Tb8/Oc/x69+9SvMmTNnvL2hoQGpVAp9fX0Tfv9MnIdoNIqzzz4bK1euxIYNG7BixQr84Ac/mFZz0Nraiu7ublx44YUIh8MIh8PYtm0bHn74YYTDYdTX10+buThZVVUVFi9ejH379k2rY2LWrFlYunTphLYlS5aMfwQ13a6VBw4cwP/+7//iz/7sz8bbiv14KMrFRzQaxcqVK7F169bxtlwuh61bt6KlpWUKt2xqLViwAA0NDRPmZWBgADt37jyj5sXzPNx2223YsmULfvnLX2LBggUT+leuXIlIJDJhHvbs2YO2trYzah5ccrkcksnktJqDK664Am+//TbefPPN8Z+LLroIN9544/h/T5e5ONnQ0BA+/PBDzJo1a1odE5deeukp8fu9e/di3rx5AKbPtfKEJ554AjNnzsQ111wz3lb0x8NU3/HKbN682YvFYt6TTz7pvfvuu943vvENr6qqyuvs7JzqTTutBgcHvTfeeMN74403PADe97//fe+NN97wDhw44Hme5z3wwANeVVWV97Of/cx76623vGuvvdZbsGCBNzo6OsVbPnluvfVWL5FIeC+99JLX0dEx/jMyMjL+O7fccovX1NTk/fKXv/Ref/11r6WlxWtpaZnCrZ589913n7dt2zZv//793ltvveXdd999XiAQ8P7nf/7H87zpMQfM76ZdPG/6zMU999zjvfTSS97+/fu9X//6196aNWu8uro6r7u72/O86TMPr776qhcOh73vfOc73gcffOD967/+q1daWur99Kc/Hf+d6XCt9LzjSdCmpibv3nvvPaWvmI+Hol18eJ7n/fCHP/Sampq8aDTqrVq1ytuxY8dUb9Jp96tf/coDcMrPTTfd5Hne8QjZN7/5Ta++vt6LxWLeFVdc4e3Zs2dqN3qSuV4/AO+JJ54Y/53R0VHvL/7iL7zq6mqvtLTU+6M/+iOvo6Nj6jb6NPj617/uzZs3z4tGo96MGTO8K664Ynzh4XnTYw6Ykxcf02UubrjhBm/WrFleNBr1Zs+e7d1www3evn37xvunyzx4nuc9++yz3rJly7xYLOY1Nzd7//iP/zihfzpcKz3P81544QUPgPO1FfPxEPA8z5uSt1xERERkWirKez5ERETkzKXFh4iIiPhKiw8RERHxlRYfIiIi4istPkRERMRXWnyIiIiIr7T4EBEREV9p8SEiIiK+0uJDREREfKXFh4iIiPhKiw8RERHx1f8P15t8wE59Su4AAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"## Model Building: Object Detection - Preparing The Images"
],
"metadata": {
"id": "e1vBJI9j4GKv"
}
},
{
"cell_type": "code",
"source": [
"annotations.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "srERVOuq8OG9",
"outputId": "ac3f4227-c35b-400a-83e1-d2f895f2ddf0"
},
"execution_count": 10,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" img_id ymin xmin ymax xmax\n",
"0 1.jpg 276 94 326 169\n",
"1 10.jpg 311 395 344 444\n",
"2 100.jpg 406 263 450 434\n",
"3 101.jpg 283 363 315 494\n",
"4 102.jpg 139 42 280 222"
],
"text/html": [
"\n",
" <div id=\"df-2c4a52e5-a17b-4e3b-97e7-7fcc0b54828f\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>img_id</th>\n",
" <th>ymin</th>\n",
" <th>xmin</th>\n",
" <th>ymax</th>\n",
" <th>xmax</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.jpg</td>\n",
" <td>276</td>\n",
" <td>94</td>\n",
" <td>326</td>\n",
" <td>169</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10.jpg</td>\n",
" <td>311</td>\n",
" <td>395</td>\n",
" <td>344</td>\n",
" <td>444</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>100.jpg</td>\n",
" <td>406</td>\n",
" <td>263</td>\n",
" <td>450</td>\n",
" <td>434</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>101.jpg</td>\n",
" <td>283</td>\n",
" <td>363</td>\n",
" <td>315</td>\n",
" <td>494</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>102.jpg</td>\n",
" <td>139</td>\n",
" <td>42</td>\n",
" <td>280</td>\n",
" <td>222</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-2c4a52e5-a17b-4e3b-97e7-7fcc0b54828f')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-2c4a52e5-a17b-4e3b-97e7-7fcc0b54828f button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-2c4a52e5-a17b-4e3b-97e7-7fcc0b54828f');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-b0de04d9-ece4-438e-b485-c022ae464c8c\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-b0de04d9-ece4-438e-b485-c022ae464c8c')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-b0de04d9-ece4-438e-b485-c022ae464c8c button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "annotations",
"summary": "{\n \"name\": \"annotations\",\n \"rows\": 900,\n \"fields\": [\n {\n \"column\": \"img_id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 900,\n \"samples\": [\n \"162.jpg\",\n \"844.jpg\",\n \"307.jpg\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ymin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 75,\n \"min\": 14,\n \"max\": 525,\n \"num_unique_values\": 293,\n \"samples\": [\n 396,\n 358,\n 261\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"xmin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 142,\n \"min\": 1,\n \"max\": 698,\n \"num_unique_values\": 412,\n \"samples\": [\n 542,\n 316,\n 608\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ymax\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 71,\n \"min\": 121,\n \"max\": 547,\n \"num_unique_values\": 286,\n \"samples\": [\n 425,\n 287,\n 273\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"xmax\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 149,\n \"min\": 84,\n \"max\": 823,\n \"num_unique_values\": 413,\n \"samples\": [\n 136,\n 525,\n 718\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"source": [
"def get_all_files_in_directory(directory):\n",
" file_paths = []\n",
" for root, directories, files in os.walk(directory):\n",
" for filename in files:\n",
" filepath = os.path.join(root, filename)\n",
" file_paths.append(filepath)\n",
" return sorted(file_paths)\n",
"\n",
"directory_path = '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/license_plates_detection_train'\n",
"car_images = get_all_files_in_directory(directory_path)\n",
"\n",
"matched_data = []\n",
"for img_path in car_images:\n",
" filename = os.path.basename(img_path)\n",
" annotation = annotations[annotations['img_id'] == filename]\n",
" if not annotation.empty:\n",
" bbox = annotation[['ymin', 'ymax', 'xmin', 'xmax']].values[0]\n",
" matched_data.append((img_path, bbox))\n",
"\n",
"image_paths = np.array([item[0] for item in matched_data])\n",
"image_annotations = np.array([item[1] for item in matched_data])\n",
"\n",
"print(image_paths[0])\n",
"print(image_annotations[0])"
],
"metadata": {
"id": "GKahXyfz8NnN",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "fecb5387-ffaa-4b4d-bbef-a2768071b887"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/license_plates_detection_train/1.jpg\n",
"[276 326 94 169]\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(image_paths[0:5])\n",
"print(image_annotations[0:5])"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "rBfIILml9bZj",
"outputId": "4aa45a41-df93-4c2a-bf28-35287e4fa950"
},
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"['/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/license_plates_detection_train/1.jpg'\n",
" '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/license_plates_detection_train/10.jpg'\n",
" '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/license_plates_detection_train/100.jpg'\n",
" '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/license_plates_detection_train/101.jpg'\n",
" '/content/drive/MyDrive/DATA SCIENTIST_ASSIGNMENT/license_plates_detection_train/102.jpg']\n",
"[[276 326 94 169]\n",
" [311 344 395 444]\n",
" [406 450 263 434]\n",
" [283 315 363 494]\n",
" [139 280 42 222]]\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"class LicensePlateDataset(Dataset):\n",
" def __init__(self, image_paths, image_annotations, transform=None):\n",
" self.image_paths = image_paths\n",
" self.image_annotations = image_annotations\n",
" self.transform = transform\n",
"\n",
" def __len__(self):\n",
" return len(self.image_paths)\n",
"\n",
" def __getitem__(self, idx):\n",
" img_path = self.image_paths[idx]\n",
" img = Image.open(img_path).convert(\"RGB\")\n",
" bbox = self.image_annotations[idx]\n",
"\n",
" ymin, ymax, xmin, xmax = bbox\n",
"\n",
" # Ensure bounding boxes have positive height and width\n",
" if ymin >= ymax or xmin >= xmax:\n",
" raise ValueError(f\"Invalid bounding box {bbox} for image {img_path}\")\n",
"\n",
" if self.transform:\n",
" img = self.transform(img)\n",
"\n",
" target = {}\n",
" bbox_array = np.array([[xmin, ymin, xmax, ymax]], dtype=np.float32)\n",
" target['boxes'] = torch.tensor(bbox_array)\n",
" target['labels'] = torch.tensor([1], dtype=torch.int64) # Assuming all labels are '1' for license plates\n",
"\n",
" return img, target\n",
"\n",
"transform = transforms.Compose([\n",
" transforms.ToTensor()])\n",
"\n",
"dataset = LicensePlateDataset(image_paths, image_annotations, transform=transform)\n",
"\n",
"# Create a data loader\n",
"data_loader = DataLoader(dataset, batch_size=4, shuffle=True, collate_fn=lambda x: tuple(zip(*x)))"
],
"metadata": {
"id": "_bzFLszaC1YC"
},
"execution_count": 13,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Check if GPU is available\n",
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
"print(f'Using device: {device}')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Y1qzjxpeNl5v",
"outputId": "a0adf841-2ebf-4177-dce3-1e7029b08570"
},
"execution_count": 14,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Using device: cpu\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)\n",
"num_classes = 2 # 1 class (license plate) + background\n",
"in_features = model.roi_heads.box_predictor.cls_score.in_features\n",
"model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)\n",
"\n",
"# Move the model to the device (GPU/CPU)\n",
"model.to(device)\n",
"\n",
"optimizer = optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)\n",
"\n",
"num_epochs = 5"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "e81WsMjgIjff",
"outputId": "06902ee2-9b9a-4dee-fafc-58a8648c6fc8"
},
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=FasterRCNN_ResNet50_FPN_Weights.COCO_V1`. You can also use `weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT` to get the most up-to-date weights.\n",
" warnings.warn(msg)\n",
"Downloading: \"https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth\" to /root/.cache/torch/hub/checkpoints/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth\n",
"100%|██████████| 160M/160M [00:02<00:00, 75.0MB/s]\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"## Object Detection - Model Training"
],
"metadata": {
"id": "Wgumv-N7k-p-"
}
},
{
"cell_type": "code",
"source": [
"for epoch in range(num_epochs):\n",
" model.train()\n",
" epoch_loss = 0\n",
" for images, targets in data_loader:\n",
" images = list(image.to(device) for image in images)\n",
" targets = [{k: v.to(device) for k, v in t.items()} for t in targets]\n",
"\n",
" loss_dict = model(images, targets)\n",
"\n",
" losses = sum(loss for loss in loss_dict.values())\n",
" epoch_loss += losses.item()\n",
"\n",
" optimizer.zero_grad()\n",
" losses.backward()\n",
" optimizer.step()\n",
"\n",
" print(f'Epoch {epoch + 1}, Loss: {epoch_loss / len(data_loader)}')\n",
"\n",
"model.eval()\n",
"with torch.no_grad():\n",
" for images, targets in data_loader:\n",
" images = list(image.to(device) for image in images)\n",
" predictions = model(images)\n",
"\n",
" for i, prediction in enumerate(predictions):\n",
" print(f'Image {i+1}:', prediction)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "V9UakZmoKKcH",
"outputId": "0e27f40a-bb6c-4c83-e0f4-ca39cca86758"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/torch/autograd/graph.py:744: UserWarning: Plan failed with an OutOfMemoryError: CUDA out of memory. Tried to allocate 1.95 GiB. GPU (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:924.)\n",
" return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1, Loss: 0.07615862372848722\n",
"Epoch 2, Loss: 0.03915816918843322\n",
"Epoch 3, Loss: 0.035831901422805255\n",
"Epoch 4, Loss: 0.030199888588653672\n",
"Epoch 5, Loss: 0.028344693370163442\n",
"Image 1: {'boxes': tensor([[550.3762, 358.7343, 677.9983, 430.7127]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[126.0851, 345.3253, 289.3150, 381.6010]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[119.6156, 385.4326, 279.8712, 417.9468]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9999], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[132.4073, 287.3945, 251.0576, 358.6125]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[113.6207, 190.7163, 218.6503, 220.5956]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[122.9764, 300.1198, 269.8788, 330.4535]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[227.3320, 309.3314, 340.7388, 364.5479]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[216.9097, 332.9336, 316.1074, 367.8443]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[556.4076, 256.0379, 646.2369, 315.6236]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[164.6362, 317.0995, 272.0008, 344.3154]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[478.9186, 355.9002, 636.2266, 427.0014]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[235.2532, 390.5072, 386.4399, 427.7318]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[111.3957, 268.8809, 221.3886, 295.3795],\n",
" [152.3812, 244.8109, 180.6608, 267.1494]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9996, 0.0859], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 8.2511, 375.5995, 83.9764, 452.6188]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[291.0585, 457.6255, 456.6610, 508.4466]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[216.3443, 396.7602, 343.3618, 436.0005]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[257.9877, 405.8179, 437.6473, 452.5047]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[249.8752, 318.5378, 427.4944, 391.7934]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[137.7044, 347.1790, 218.6026, 378.8667]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[100.4984, 238.6420, 165.1662, 281.7096]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[307.5941, 294.5948, 504.8245, 341.3432]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[127.7940, 351.9169, 278.8888, 378.8846]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[119.4718, 238.5986, 216.9736, 263.1424]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 66.1662, 281.7346, 142.8298, 318.2379]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[207.4686, 392.7865, 341.1315, 427.2414]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[184.3913, 323.1795, 318.5835, 354.0364]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[363.7333, 249.7695, 501.7335, 285.2355]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[319.6003, 299.6798, 453.0472, 330.7295]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[281.2710, 338.0941, 461.5517, 380.1989]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[177.3695, 290.4965, 293.6812, 337.6622]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[253.0956, 301.9037, 444.0001, 343.8068]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[169.4568, 215.4311, 356.8970, 274.9377]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[355.0479, 256.3417, 481.7664, 281.9047]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[319.8215, 312.1340, 501.1668, 351.4324]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[423.8552, 225.8567, 527.8324, 265.7586]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[384.9647, 421.9991, 572.4318, 474.8304]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[306.2061, 314.5924, 416.3008, 350.3438]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[163.8029, 268.6357, 292.4172, 301.7675]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[128.5015, 277.5569, 193.5430, 293.9886]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9988], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[238.4823, 358.7845, 445.3304, 400.8134]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 89.6492, 280.3484, 198.8613, 307.0041]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[316.1655, 323.2272, 446.2627, 358.3412]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[156.8968, 284.5983, 260.7119, 310.0812]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[207.5606, 326.4051, 489.4260, 394.2786]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[384.0843, 308.7032, 507.2939, 361.1796]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 62.8896, 284.9295, 192.7267, 345.4270]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[264.5671, 329.6752, 441.7528, 372.9211]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[131.1372, 411.8764, 266.0392, 452.1956]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[163.1542, 324.2831, 246.9291, 345.7355]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[612.3895, 264.5654, 704.0111, 328.2415]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[191.2380, 361.3871, 400.8381, 448.6053]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[129.4782, 291.0062, 252.8891, 319.3690]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[127.8081, 334.5185, 243.5630, 359.7202]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 61.1190, 310.0948, 142.6407, 353.5034]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[284.7420, 389.5122, 464.3587, 429.2467]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[304.2709, 401.6355, 488.8136, 446.3698]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[241.4146, 383.1467, 443.6468, 431.0700]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[650.3442, 391.3228, 730.1881, 457.5797]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[109.2769, 307.9792, 211.1484, 333.4821]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[526.3721, 190.9308, 567.5511, 365.2033]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[114.8602, 358.1871, 205.6187, 410.4664]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[626.2977, 285.0050, 662.2313, 344.0888]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9977], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[107.7463, 217.3321, 208.7209, 250.8382]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[279.0667, 363.6062, 391.8292, 417.5562]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[131.2568, 350.6017, 261.5785, 387.7361]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[394.4752, 317.2978, 523.4395, 347.1900]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[320.2277, 194.1248, 354.8628, 337.9751]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[561.9574, 347.1856, 676.1776, 412.8123]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[344.1424, 341.4102, 490.8115, 378.5242]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[302.3817, 407.2690, 539.7074, 462.1516]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[125.1678, 374.8513, 268.6073, 407.8729]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[426.3421, 350.5702, 557.1813, 394.2200]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[171.0956, 307.1965, 280.1691, 333.5531]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[540.7261, 227.6750, 579.9240, 371.0627],\n",
" [476.0881, 214.9939, 532.6703, 387.3206]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9994, 0.1744], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[393.7190, 358.6527, 537.0267, 393.2508]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[313.5551, 425.4985, 555.8713, 474.7010]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[219.0053, 257.4871, 325.7793, 289.4016]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[376.2547, 295.0427, 478.7844, 323.5311]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[352.9244, 387.9360, 563.4852, 433.8764]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 38.3529, 275.4656, 95.2823, 333.4958]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[179.9436, 391.8682, 327.1265, 428.4451]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[196.8043, 413.3943, 329.9624, 463.4521]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 61.1190, 310.0948, 142.6407, 353.5034]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[143.1503, 176.8329, 214.3340, 200.3856]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[101.8276, 293.6066, 222.2152, 322.7175]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 68.0711, 357.2879, 242.0405, 395.7923]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9999], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 92.9428, 317.8138, 229.5462, 347.6651]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[295.1313, 367.9521, 533.5085, 427.7629]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[135.1551, 378.2052, 267.3687, 409.7455]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[282.5696, 437.9119, 529.4147, 493.4075]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[257.9908, 401.0913, 458.2908, 444.8502]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[197.2301, 376.1859, 346.7896, 441.5360]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[139.6303, 211.2136, 235.0204, 375.3689]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[203.9002, 329.9188, 391.5539, 388.4379]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[169.4568, 215.4311, 356.8970, 274.9377]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[275.1859, 401.9760, 530.5883, 458.9969]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[610.2939, 94.7615, 683.5805, 371.7884]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9984], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[341.6945, 340.7220, 490.9244, 380.2339]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[239.9777, 381.6073, 368.1740, 410.4992]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[162.5346, 403.5242, 292.2948, 450.4653]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[253.1146, 365.6383, 464.9532, 416.6044]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[171.6882, 355.5248, 262.7863, 376.5588]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[364.7844, 430.8194, 601.7643, 479.0175]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[657.2900, 301.3588, 758.9929, 359.3020]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[123.3518, 289.2815, 214.9769, 311.6693]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[140.7314, 362.0064, 290.0640, 406.7666]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[106.1274, 259.8621, 155.8541, 293.7358]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[461.1919, 410.3232, 664.9753, 510.3604]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 12.7903, 312.0610, 155.5721, 346.9557]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[265.0642, 363.4602, 472.8859, 414.6423]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[197.0091, 396.2503, 381.3981, 498.1100]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9999], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[606.4151, 265.3425, 711.5903, 345.5982]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 84.0889, 351.1261, 193.0847, 378.8145]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[554.2574, 237.7419, 693.3925, 287.6395]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[300.2415, 236.9605, 473.6454, 283.1890]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[130.4539, 323.2096, 258.8085, 351.1635]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[257.5010, 375.1461, 435.4731, 416.3227],\n",
" [321.9290, 332.0187, 365.5988, 369.1928]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9992, 0.0837], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[142.6520, 190.3197, 276.7188, 219.4447]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[340.5799, 256.5668, 590.7802, 323.9051]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[326.1084, 213.8968, 501.0259, 257.3379]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9984], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[380.6360, 387.8789, 419.8972, 486.3256]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[353.6429, 387.4539, 499.0961, 423.5714]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 29.8926, 272.1935, 154.9110, 303.3902]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[231.0132, 318.7346, 567.5019, 391.7512]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 83.0529, 360.1696, 202.7788, 393.7270]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 95.0005, 214.4183, 163.8615, 228.8367]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[515.2598, 319.4413, 644.2220, 400.4348]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 72.6396, 154.0250, 131.3555, 189.6942]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[165.4815, 284.2629, 288.1461, 313.6142]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[238.4823, 358.7845, 445.3304, 400.8134]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[273.8104, 455.4113, 495.2152, 506.8689]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[580.4171, 393.7224, 721.2859, 459.3974]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 34.5001, 146.3758, 265.0544, 188.0203]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[570.4243, 248.9484, 677.1999, 307.9041]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[246.5002, 348.4258, 463.0015, 407.7570]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[105.0170, 336.5633, 227.5941, 362.6324]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[195.2012, 255.7146, 280.0405, 311.9625]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[252.0168, 407.3338, 472.8099, 454.7104]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[345.0363, 314.7545, 487.5852, 349.2611]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[115.6049, 326.6485, 214.1528, 352.4621]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 52.1855, 111.2887, 140.2102, 171.2513]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 97.0296, 315.6845, 200.6467, 341.5018]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 56.5502, 325.9053, 140.7024, 378.3838]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 89.6492, 280.3484, 198.8613, 307.0041]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[505.0591, 78.2304, 616.9393, 347.8662]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[309.2378, 294.3659, 431.7911, 321.5502]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[128.1253, 176.3878, 244.1091, 213.1308]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 94.2382, 354.7932, 210.8800, 389.7990]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[439.1106, 157.7468, 472.4327, 302.1019]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[378.3268, 250.1508, 535.1609, 315.1364]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[347.4833, 267.1859, 523.1487, 313.7078]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[297.8082, 348.1010, 425.8873, 377.2406]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[125.4540, 302.7722, 230.7220, 352.6153]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[150.6948, 267.2248, 242.5178, 288.9996]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[149.0713, 353.0652, 287.4572, 384.6331]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[280.2730, 369.7770, 410.9539, 408.9548]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[296.5181, 443.6028, 474.4579, 496.7391]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 98.2182, 257.5062, 211.7813, 312.9817]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[307.2431, 393.1677, 462.9070, 431.2646]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 85.6461, 239.4073, 186.7066, 265.8783]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[235.4989, 273.1455, 466.3390, 327.9644]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[131.1497, 300.5722, 241.8773, 334.0283]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[189.3724, 228.2477, 279.4905, 265.8921]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[452.9337, 192.0797, 488.1231, 333.0630]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 55.7320, 268.6369, 171.7613, 311.5282]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[274.9902, 353.3433, 435.5077, 394.6521]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[296.3043, 346.1364, 461.0777, 386.1974]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[287.0246, 421.8051, 407.2495, 450.2548]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[106.2520, 226.9463, 221.2997, 257.6696]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[394.6414, 340.0039, 602.2125, 389.1702]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[364.0075, 362.2517, 566.8830, 408.2742]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 69.9640, 294.2351, 188.4378, 344.1691]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[448.6900, 381.2499, 565.4598, 444.3197]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[306.8422, 170.5684, 388.9093, 197.1373]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[217.5255, 394.5194, 373.9814, 432.2258]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[164.2807, 252.5183, 332.4456, 284.9659]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[353.3700, 196.9610, 477.9656, 224.5199]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[159.3079, 404.5794, 287.5489, 436.8822]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[122.9207, 283.9090, 205.8467, 305.9747]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[324.6821, 284.0920, 528.9727, 333.9892]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 93.0295, 362.4518, 206.0278, 435.3244]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[340.0355, 132.5417, 388.4586, 267.2370]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[532.4211, 353.5321, 633.0959, 412.8315]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[163.4789, 289.9644, 247.3369, 328.0448]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[386.5150, 292.8176, 440.6281, 419.7330]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 47.2340, 264.7577, 217.4297, 314.0706]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[119.1113, 340.1124, 280.6437, 384.8311]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[363.8401, 416.9260, 475.1164, 444.2624]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 97.3352, 368.9097, 209.1458, 446.8763]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[156.2924, 304.1367, 300.6109, 340.8692]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[104.4768, 337.9345, 202.6478, 370.3414]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 47.2340, 264.7577, 217.4297, 314.0706]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[102.2268, 400.9383, 245.7460, 459.9088]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[283.4949, 393.7628, 458.6276, 435.2076]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[378.3268, 250.1508, 535.1609, 315.1364]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[140.6093, 255.1152, 338.0132, 302.8059]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[131.8138, 190.3876, 216.3583, 209.9391]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[134.9231, 234.0565, 223.7346, 253.3703]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9981], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[134.7972, 348.2610, 246.4397, 376.6320],\n",
" [140.7937, 264.4439, 284.4582, 304.9670]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9993, 0.1516], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[414.4261, 442.1444, 570.0239, 496.6783]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[112.8904, 423.7598, 276.1738, 458.8613]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9986], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 91.7663, 254.2995, 191.1792, 290.3412]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[140.4873, 344.5043, 275.8766, 374.3667]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[112.0322, 114.2236, 253.2078, 162.0570]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[390.5762, 234.4599, 547.3926, 277.2830]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[435.4883, 153.0949, 482.5159, 332.4423]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 57.3442, 276.3248, 148.9098, 309.2803]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[122.0607, 329.0144, 289.0205, 370.9456],\n",
" [ 23.2572, 488.6922, 119.9606, 541.6988]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9985, 0.2536], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[265.9940, 239.2859, 381.0187, 285.8794]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[311.7308, 248.4149, 456.4442, 285.5500]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[280.6161, 296.5253, 547.6827, 364.9402]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[176.5344, 326.5681, 265.1086, 386.7115]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[515.2598, 319.4412, 644.2222, 400.4349]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[283.3261, 324.4916, 470.5666, 375.8541]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[281.7844, 290.0131, 390.0620, 322.2083]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[282.1880, 316.3401, 471.4945, 361.3305]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[167.5880, 305.8713, 419.2581, 378.0387]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[152.7854, 230.7010, 192.2203, 271.6912]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[115.3320, 203.7224, 253.8269, 247.8354]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 76.7035, 337.9909, 195.4166, 370.4484]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[395.5319, 149.7081, 436.1575, 319.9085]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[279.5931, 351.8941, 448.4902, 418.3046]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[138.3345, 294.8960, 287.2706, 332.2972]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[361.1591, 381.1547, 530.7186, 420.2241]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[237.8309, 205.5576, 425.1300, 247.2176]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[528.2789, 139.1963, 571.7183, 311.1379]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[253.2668, 151.5573, 330.0339, 256.1637]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[620.4223, 278.4042, 699.9087, 362.3940]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[105.2457, 248.2735, 227.5053, 278.6165]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[303.9647, 278.7131, 400.1009, 310.9217]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9986], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[189.4339, 359.2032, 290.5179, 389.7369],\n",
" [210.4731, 266.3690, 283.3574, 286.2982]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9997, 0.8924], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[113.8475, 325.1647, 252.5094, 364.3273]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[156.9612, 299.2797, 273.0391, 328.0130]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9986], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[146.7550, 310.0449, 339.0578, 355.1397]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[142.4175, 220.2741, 209.0561, 274.2825]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[272.9743, 360.2185, 461.0950, 408.9935]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[268.9698, 177.9411, 303.2866, 315.7159]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[189.3916, 302.8925, 332.9503, 332.5854]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[361.0230, 279.1055, 493.5384, 318.0592]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[237.8116, 344.9800, 507.9554, 405.4258]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 69.0461, 379.1124, 190.3913, 406.4247]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[412.5409, 250.3712, 444.4281, 370.4612]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9984], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[148.8664, 229.6566, 217.2266, 283.7079]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[121.4705, 314.3463, 244.4821, 341.7051]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[254.6847, 351.1639, 425.9529, 392.4901]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[211.0166, 358.7892, 421.9756, 416.3211]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 82.7375, 470.3312, 306.5241, 510.8423]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[449.6725, 189.8902, 484.1808, 338.6628]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9987], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 63.7924, 302.9358, 188.7888, 332.3243]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[130.4460, 360.5742, 245.4165, 390.5647]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[133.1366, 303.3747, 203.1652, 321.1867]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[300.4398, 431.1982, 493.9827, 473.0680]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[225.7422, 228.5454, 299.3613, 249.4146]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[357.6285, 213.2321, 477.9338, 245.6478]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[139.8354, 292.7906, 239.8144, 317.5313]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[344.2938, 343.9151, 471.3990, 378.0354]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[218.6488, 195.0689, 308.3595, 215.3295]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 59.9691, 225.8878, 149.1424, 254.3171]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[156.4947, 419.5378, 263.3231, 443.7295]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[379.4969, 270.0437, 547.2780, 342.4442]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[353.3700, 196.9610, 477.9656, 224.5199]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[115.6949, 392.9097, 286.0325, 439.8858]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[270.0167, 319.6548, 426.9096, 390.5245]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[323.8770, 435.0354, 517.7970, 472.3717]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[123.3050, 241.9265, 279.0009, 276.7758]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[117.0734, 389.0056, 249.7151, 430.6230]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 97.7996, 291.1966, 202.3257, 310.1683]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[195.3823, 253.0763, 287.9661, 272.6025]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9984], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[592.0392, 182.4510, 662.3294, 215.7165]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[263.3222, 370.3445, 453.5947, 418.9075]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[139.3408, 312.6641, 250.5684, 342.6901]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[498.7789, 362.3488, 600.6993, 425.7249]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[477.9887, 206.6253, 569.4402, 250.4318]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9988], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[173.4568, 220.5532, 251.3150, 238.6964]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9987], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[197.6271, 309.2878, 326.5360, 380.2762]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 32.4610, 424.7534, 141.7201, 509.9119],\n",
" [429.1440, 391.3111, 490.5219, 541.7544]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9993, 0.0820], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 78.4297, 430.6109, 271.1289, 464.6707]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9999], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[254.2935, 313.8254, 430.0946, 357.6531]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 96.6792, 280.8584, 202.8048, 353.9606]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[320.8458, 359.8797, 453.9262, 394.7099]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[125.3695, 271.2542, 233.5389, 301.5781]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9980], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[316.2864, 339.4514, 524.3480, 391.1215]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 86.1559, 324.6688, 213.5741, 403.3159]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[160.3311, 285.0997, 243.5551, 304.2874]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 44.4187, 360.4010, 109.6771, 409.7209]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 40.8371, 307.0919, 128.6096, 369.9868]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[127.1105, 337.0509, 212.7231, 362.4123]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[375.6024, 330.0248, 405.2300, 439.1015]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9973], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[301.3013, 261.1246, 455.0603, 299.7104]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9953], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[263.8853, 395.7994, 440.5800, 435.1225]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[256.1159, 379.2219, 447.8576, 427.8486]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[366.8348, 297.7814, 532.2281, 342.2276]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[576.1869, 240.5730, 699.1998, 301.8804]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[135.1818, 418.8708, 305.7394, 461.0316]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[108.1425, 232.5422, 195.5391, 274.5434],\n",
" [745.9504, 80.1207, 804.5262, 118.4626]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9993, 0.0510], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[304.7483, 422.4111, 496.8503, 459.7324]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[288.8204, 403.5561, 415.4461, 430.9701]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[456.2524, 158.5078, 496.1772, 327.5865]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[240.1492, 309.9316, 388.7922, 357.7394]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[332.5107, 295.6094, 473.8884, 328.8667]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[149.1852, 325.6644, 237.6862, 357.5570]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[560.1599, 154.3073, 614.3467, 325.8101]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[101.4475, 232.0623, 202.2834, 256.7432]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[258.9676, 323.3033, 445.6530, 369.5044]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[307.6302, 387.3609, 462.0570, 421.0558]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[345.5386, 331.8343, 520.7877, 375.9684]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[107.7791, 193.1764, 168.7933, 211.2659]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9986], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[509.5869, 481.3753, 628.0266, 547.0000]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[331.0429, 390.5515, 489.3538, 454.2379]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[359.1125, 312.5436, 561.9079, 360.8887]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[319.2743, 122.6993, 373.6796, 246.1095]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[302.3294, 407.2947, 539.7264, 461.9685]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[217.7816, 223.6801, 304.4029, 257.7146]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[136.3582, 411.5503, 259.9525, 440.1326]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[416.0821, 173.4729, 443.7816, 252.8969]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9967], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[278.6760, 337.7624, 387.7371, 374.5319]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[309.1490, 338.6474, 511.7295, 389.0315]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[449.8705, 280.9074, 536.7457, 330.4337]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[144.8729, 321.5261, 269.2615, 354.2899]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 69.7983, 346.8517, 150.8121, 364.2966]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[158.3396, 288.4668, 275.7089, 317.1831]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[153.1272, 406.1238, 265.9105, 441.4430]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[682.6992, 369.4935, 809.8608, 477.1291]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[207.9502, 314.6461, 429.0084, 364.9664]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[520.1998, 367.1625, 644.4150, 459.5850]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[408.6410, 12.7524, 480.1341, 121.2148]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[131.8778, 366.9085, 286.9279, 401.0117]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[256.8597, 362.2446, 461.4052, 410.6814]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[351.7849, 178.5752, 394.4507, 351.5674]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[348.8463, 346.0526, 451.7039, 372.4681]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[101.5743, 172.8672, 191.4445, 195.2623]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[465.2022, 296.3176, 592.7487, 377.3960]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 63.2455, 327.7303, 206.1524, 365.2373]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[421.9853, 282.4092, 504.6982, 307.0398]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9977], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[150.5399, 378.0361, 283.7560, 450.4955],\n",
" [114.1694, 324.9291, 287.7855, 443.7064]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9989, 0.1605], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[103.7952, 308.2887, 199.6178, 332.9055]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[174.6882, 466.1976, 560.8524, 529.8186]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9988], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[307.6252, 348.2599, 463.8746, 381.1724]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[207.8168, 137.2628, 312.6432, 161.1990]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 20.5176, 306.7790, 111.1817, 382.7781]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[108.2278, 371.9236, 264.6964, 412.1483]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[143.3335, 332.7504, 272.9537, 371.4458]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[104.4338, 294.4713, 215.9515, 322.1790]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 58.3624, 277.4992, 201.8645, 324.4847]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 56.6080, 298.5014, 166.6063, 374.5508]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[254.4398, 208.8851, 593.1687, 328.3372]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[282.7643, 356.9862, 384.3519, 403.6012]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[398.6243, 336.7488, 537.5717, 368.5660]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[303.9647, 278.7131, 400.1009, 310.9217]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9986], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[105.0012, 285.5589, 212.3657, 339.8563]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[319.2749, 286.1003, 441.3332, 316.7554]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9988], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[252.0264, 407.3246, 472.8110, 454.7211]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[424.8337, 147.3586, 461.7782, 315.0724]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[305.1786, 389.5357, 490.7954, 435.2987]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[123.4052, 338.2479, 212.8167, 370.1458]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[568.0026, 185.5403, 668.8066, 228.5060]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[236.8163, 358.7520, 436.7148, 410.4286]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[113.5788, 331.3108, 281.6516, 422.7552]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 44.8213, 146.3187, 216.7334, 279.3362]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 94.2748, 276.4361, 169.0107, 328.6786]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[308.8763, 362.9132, 564.5871, 417.0519]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[193.0224, 315.3620, 337.6372, 386.2170]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[118.0544, 172.6048, 191.6483, 189.8403]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[313.6619, 368.7762, 388.4424, 388.6902]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9952], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[157.2308, 340.8103, 274.0433, 367.5944]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[627.2733, 299.1705, 741.6656, 347.5718]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[223.3039, 262.0348, 437.3943, 312.4729]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[139.9363, 242.2421, 234.3324, 262.1778]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[408.2158, 212.1957, 495.8549, 235.9726]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 95.6898, 386.2545, 205.5897, 416.1429]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[575.4648, 117.2697, 609.8116, 203.4924]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[268.4614, 285.2188, 421.0828, 332.4096]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[309.8787, 333.8432, 459.6395, 368.4333]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[214.1877, 235.2350, 320.6180, 282.4993]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[404.0493, 383.9565, 551.9277, 448.9322]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[378.2296, 170.7977, 418.7611, 338.5808]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[254.2259, 272.2678, 385.6022, 299.4532]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[362.6468, 147.1229, 417.4639, 345.3871]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 80.4614, 322.3768, 179.2012, 404.3076]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[533.8558, 202.6060, 586.8070, 233.0834]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9986], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[437.6418, 269.0706, 540.4041, 320.8599]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[260.2797, 328.9242, 413.8325, 368.1261]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 98.7672, 405.6458, 238.4362, 459.1733]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[138.2430, 335.0161, 273.8163, 374.1808]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[103.7952, 308.2887, 199.6178, 332.9055]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[107.6186, 294.9465, 216.9245, 322.3196]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[100.8793, 257.7387, 193.7084, 281.0400]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[131.7840, 262.5619, 254.1261, 293.9622]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[129.2261, 337.2404, 280.4081, 372.1815]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[605.7830, 182.8817, 646.7616, 387.3676]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[148.0003, 286.7895, 324.7429, 337.1498]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 96.8666, 322.3917, 216.1600, 352.7906]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[320.8458, 359.8797, 453.9262, 394.7099]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[209.6000, 414.0850, 411.7561, 464.5280]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[328.2902, 399.9809, 501.7709, 434.0776]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[140.0770, 315.1863, 255.8822, 353.9474]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 62.3360, 396.2669, 172.3471, 472.9698]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[248.8351, 341.9891, 395.0573, 404.4584]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[295.4221, 339.4767, 393.9688, 378.9416]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[169.1733, 399.8421, 284.9750, 449.9427]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[202.1280, 430.6364, 385.8372, 478.2097]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[146.8668, 161.9504, 288.5194, 195.6557]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 92.4199, 248.2270, 165.6469, 264.4015]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[141.2031, 400.1554, 220.4830, 434.2016]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[551.8738, 189.7411, 604.6803, 382.2358]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 85.0128, 235.7588, 161.7064, 250.3196]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[382.5545, 264.7603, 506.3919, 311.7773]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[147.7020, 276.0255, 290.4420, 345.0314]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[133.1639, 420.0176, 271.7787, 451.0860]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[157.0392, 245.1811, 279.5558, 272.5537]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[432.2349, 240.2355, 541.3091, 283.4957]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 56.2808, 300.9571, 132.3818, 323.5056]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[432.2349, 240.2355, 541.3091, 283.4957]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[160.3916, 383.6058, 289.8939, 442.7892],\n",
" [689.6630, 194.5846, 770.2765, 217.3665]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9995, 0.1899], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[108.9281, 403.4979, 242.1306, 435.5821]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[173.5359, 276.4605, 290.5002, 316.1145]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[235.3649, 91.0171, 300.9042, 232.7985]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[235.3168, 310.3205, 335.3938, 340.2240]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[144.4241, 318.5331, 296.5118, 357.8657]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[217.2042, 310.2981, 334.9893, 347.4542]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[264.9827, 440.7197, 538.1708, 496.6555]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9999], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 98.1561, 274.0498, 208.6741, 302.0374]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[287.6338, 405.5771, 452.9216, 448.8744]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[516.1017, 298.1396, 616.2192, 344.6065]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[290.4785, 367.7550, 443.8814, 409.5811]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[108.8485, 342.8661, 275.5313, 414.3649]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 96.3265, 226.5536, 201.7502, 259.6414]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[225.2774, 392.4868, 417.3837, 437.9473]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[309.1490, 338.6474, 511.7295, 389.0315]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[254.4490, 212.9225, 399.6749, 268.1996]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[309.0815, 322.7456, 483.8478, 365.5229]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 90.9575, 273.3431, 248.1895, 342.8475]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[575.2182, 108.4828, 640.5840, 306.5197]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[357.7039, 441.8002, 499.6064, 477.2660],\n",
" [378.4761, 325.3670, 476.9969, 348.4142]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9996, 0.9865], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[108.1425, 232.5422, 195.5391, 274.5434],\n",
" [745.9504, 80.1207, 804.5262, 118.4626]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9993, 0.0510], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[197.0990, 279.5046, 263.0833, 323.3288]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9988], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 95.7938, 264.8810, 207.7357, 291.9149]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[135.2425, 282.9208, 284.4386, 321.2608]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[376.2578, 325.2133, 515.7263, 378.5440]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[309.1490, 338.6474, 511.7295, 389.0315]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[293.6412, 343.2857, 444.0746, 376.5416]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[309.8787, 333.8432, 459.6395, 368.4333]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[113.5187, 185.1018, 201.1239, 205.0291]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[320.6843, 343.2165, 495.8659, 382.3355]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[111.6009, 447.0100, 193.6153, 504.6276]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[141.1905, 381.6569, 306.7580, 415.0766]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[268.1495, 369.4071, 386.0388, 419.5901]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[243.9600, 262.9995, 312.8494, 289.5217]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[147.7410, 342.8418, 294.8231, 375.2947]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[111.9922, 422.4085, 302.7780, 462.7028]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[339.6372, 396.3311, 513.6376, 442.9451]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[341.9214, 307.6320, 495.7789, 349.7893]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[354.2871, 255.0672, 471.9842, 280.3711]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[492.8352, 380.5617, 595.0515, 434.4071]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[270.5366, 503.7727, 465.5766, 539.6246]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[295.7423, 301.9295, 487.0013, 349.9824]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[105.1989, 285.6729, 197.7348, 308.1223]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[189.0605, 302.7513, 332.8658, 332.4389]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[252.0168, 407.3338, 472.8099, 454.7104]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[188.0471, 169.2561, 293.2258, 194.4758]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 95.8490, 264.7240, 211.0879, 300.5894]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 42.3108, 449.9061, 164.9760, 526.8995]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[295.0673, 293.6055, 456.5366, 335.2574]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[321.7795, 413.2344, 538.4097, 461.0113]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[401.0612, 291.9478, 478.8013, 315.5034]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9978], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[159.8263, 368.2636, 303.2091, 405.0213]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[159.4447, 232.9464, 264.3885, 259.6007]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[290.9676, 267.5029, 495.4675, 314.5239]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[193.1137, 346.2190, 307.6823, 392.6883]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 88.5611, 337.1652, 166.6456, 368.0662]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[118.6610, 216.9853, 206.2740, 241.5432]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[196.4429, 252.9093, 260.3913, 273.6110]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 81.6903, 307.7419, 185.7004, 331.3547]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[135.2987, 303.5994, 237.1936, 336.7049]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[155.8267, 351.9207, 279.6604, 387.9794]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[308.8657, 362.8929, 564.4319, 417.1178]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[288.1532, 369.9036, 452.1514, 420.2380]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[141.2592, 272.9970, 273.1531, 305.0177]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[300.4487, 394.6906, 454.6527, 433.3606]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 35.6118, 283.1826, 106.8221, 310.2120]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[366.2347, 287.3340, 592.4833, 346.3397]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[118.9118, 334.7596, 211.2281, 359.7437]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[411.4106, 377.6859, 557.1307, 469.6679]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[255.1630, 430.7213, 507.6228, 493.2683]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[145.6341, 336.9825, 265.3368, 366.2494]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[153.1748, 192.5140, 251.6834, 217.5514]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9988], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[271.5332, 327.8362, 406.9487, 358.8062]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[177.8562, 238.7072, 212.5384, 274.6154]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9981], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[557.4775, 267.7870, 667.6705, 336.4319]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[189.0663, 352.8188, 331.5777, 390.6780]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[698.8828, 171.3784, 759.7835, 261.3506]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9982], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[611.0301, 297.5207, 661.7156, 366.5863]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[182.0769, 327.3717, 308.9278, 366.4641]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[218.7296, 391.3335, 522.1859, 444.3578]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[317.9629, 342.2000, 454.4995, 374.6938]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[590.7303, 357.3435, 692.4396, 419.6544]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[354.0589, 376.9839, 542.0767, 421.9645]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[552.1658, 269.2351, 647.1135, 318.9848]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 55.7518, 219.7457, 175.5063, 255.8558]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[379.8031, 310.6844, 491.5143, 341.9187]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[313.8803, 221.4357, 439.7307, 255.6915]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[171.0956, 307.1965, 280.1691, 333.5531]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[395.0127, 330.4109, 577.8596, 389.3070]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[149.9973, 329.4546, 273.8571, 357.2554]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 99.1569, 236.5130, 201.1727, 266.0526]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[114.7097, 411.4958, 290.4845, 468.1480]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[544.9885, 274.8191, 641.9752, 319.9858]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[346.4378, 369.1603, 544.6779, 428.1410]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[325.2181, 356.1014, 381.6530, 404.0049]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[138.0683, 371.3027, 253.0516, 393.7720]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 35.1704, 176.2608, 92.2753, 217.1049]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[133.2178, 300.8830, 274.3271, 336.0813]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[511.8145, 119.1447, 561.7350, 252.8450]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[161.4478, 342.9137, 265.7619, 370.2410]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[184.0779, 237.8478, 361.3657, 276.5513]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[127.8784, 252.4434, 221.6965, 280.3998]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[302.4546, 242.0993, 421.2681, 273.8829]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9986], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[667.2999, 336.9779, 761.7259, 399.7008]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[356.0586, 256.6591, 486.6335, 323.7422]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[251.7325, 310.6964, 334.3072, 354.3314]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[141.2031, 400.1554, 220.4830, 434.2016]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 94.0761, 262.8680, 221.9982, 292.2828]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 98.3609, 386.2120, 228.8159, 419.5674]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[190.5793, 378.3019, 292.2780, 420.3709]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[105.2991, 319.4187, 228.6017, 350.5276]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 96.2392, 364.5154, 209.7227, 382.2029]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[107.6186, 294.9465, 216.9245, 322.3196]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9990], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[255.3624, 338.9321, 337.7686, 365.5070]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[398.5699, 179.4796, 447.8492, 394.5058]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[134.6779, 337.1464, 268.8229, 367.1836]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[323.2641, 299.3323, 461.9290, 333.4109]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[359.6423, 293.7472, 491.1489, 344.6555]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[131.8062, 480.0355, 270.2200, 510.3258]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 53.8739, 264.5731, 138.7810, 315.1033]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[211.8381, 261.6626, 320.3800, 295.3565]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[425.2605, 251.3405, 554.3430, 362.3254]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[ 80.5564, 303.8625, 205.1271, 332.6743]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[346.9106, 243.8279, 525.0801, 292.0906]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[211.2765, 181.8540, 258.9302, 373.9269]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9989], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[278.5512, 479.2657, 472.1805, 524.4557]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[127.3535, 246.5702, 269.5321, 279.8047],\n",
" [256.5730, 249.9241, 276.2473, 280.7481]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9984, 0.0898], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[211.9421, 358.8432, 421.9939, 416.3579]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[126.9242, 302.6372, 287.0204, 344.3156]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[226.1200, 270.1083, 475.6404, 322.5099]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[248.5405, 319.3725, 387.5322, 354.5694]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[322.6216, 323.1330, 502.9195, 370.1546]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[141.2031, 400.1554, 220.4830, 434.2016]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[556.4685, 399.6471, 649.3299, 470.5075]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[159.5697, 248.0078, 244.6826, 272.5476]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[323.7828, 363.8187, 452.3481, 396.7323]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[ 32.9237, 304.2835, 146.9538, 396.0921]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[476.8528, 118.4413, 517.3896, 297.9525]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[143.1503, 176.8329, 214.3340, 200.3856]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[127.1105, 337.0509, 212.7231, 362.4123]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[343.9817, 298.3624, 502.6670, 331.9510]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[163.1861, 241.8438, 290.3861, 273.1578]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[154.8613, 334.6411, 275.0921, 361.1164]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[258.5717, 331.0304, 469.3324, 379.7390],\n",
" [236.1719, 120.8879, 337.5718, 182.2933]], device='cuda:0'), 'labels': tensor([1, 1], device='cuda:0'), 'scores': tensor([0.9993, 0.1167], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[286.1062, 243.6811, 348.0319, 278.5321]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[167.2983, 441.7523, 283.8983, 483.6617]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[113.2790, 182.2887, 257.2363, 210.7867]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[353.6429, 387.4539, 499.0961, 423.5714]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[129.4094, 305.5443, 231.3011, 330.9952]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[559.0333, 341.9485, 650.2513, 421.6429]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[106.5456, 223.1968, 154.3836, 258.8956]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[ 89.1618, 240.6005, 205.1522, 269.1018]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[317.2821, 435.0628, 451.8961, 474.7603]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[188.1163, 346.8637, 303.2394, 391.8550]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[423.5452, 339.0605, 506.7809, 361.8349]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[125.4582, 321.0934, 260.4346, 358.9984]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[248.4344, 317.5550, 443.9622, 368.3224]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[284.9016, 251.3692, 394.7245, 277.2523]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[287.6612, 371.1974, 462.3266, 413.5766]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[450.9193, 247.3124, 484.3282, 382.2408]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9988], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[626.7272, 306.5626, 819.6044, 394.4438]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9997], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 0.0000, 334.7914, 114.6468, 419.2789]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9994], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[178.1416, 178.5005, 290.1227, 225.8113]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9998], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[343.7658, 201.0296, 525.5802, 244.7669]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[303.9632, 155.3435, 392.1427, 175.4842]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9986], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[370.0567, 303.8282, 477.7837, 329.4861]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[156.8968, 284.5983, 260.7119, 310.0812]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[141.7865, 176.7108, 214.7078, 200.3089]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9993], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[130.2008, 310.1168, 231.7529, 337.2268]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[ 95.0754, 295.7932, 206.5509, 324.6567]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[430.3180, 229.5476, 588.5364, 283.4671]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9996], device='cuda:0')}\n",
"Image 2: {'boxes': tensor([[142.1625, 294.6960, 217.5900, 314.3432]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9992], device='cuda:0')}\n",
"Image 3: {'boxes': tensor([[139.3806, 308.7580, 243.9129, 390.1422]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9991], device='cuda:0')}\n",
"Image 4: {'boxes': tensor([[151.6142, 210.8174, 293.8777, 246.5139]], device='cuda:0'), 'labels': tensor([1], device='cuda:0'), 'scores': tensor([0.9995], device='cuda:0')}\n",
"Image 1: {'boxes': tensor([[290.9641, 322.9550About
Miscellaneous Computer Vision Projects
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published