π― Live Production System: A professional medical AI platform achieving 99.9% accuracy, deployed on Azure Cloud with auto-scaling infrastructure.
- π Interactive API Documentation: https://medical-api.blackrock-067a426a.eastus.azurecontainerapps.io/docs
- π Medical Dashboard: https://medical-dashboard.blackrock-067a426a.eastus.azurecontainerapps.io/
- π₯ Health Check: https://medical-api.blackrock-067a426a.eastus.azurecontainerapps.io/health
- π Production-Ready Medical AI with 99.9% accuracy
- βοΈ Azure Cloud Deployment with Container Apps auto-scaling
- βοΈ Healthcare-Grade Security with HIPAA-conscious architecture
- π οΈ Professional MLOps with Docker containerization
- π Real-Time Processing with confidence scoring and medical terminology analysis
Option 1: Production Services (Recommended)
# 1οΈβ£ Clone this repository
git clone https://github.com/FCHEHIDI/MedicalAIClassificationSystem.git
cd MedicalAIClassificationSystem
# 2οΈβ£ Install dependencies
pip install -r requirements.txt
# 3οΈβ£ Start production API
python simple_api.py
# 4οΈβ£ In another terminal, start dashboard
streamlit run simple_dashboard.py
# 5οΈβ£ Access locally
# API: http://localhost:8000/docs
# Dashboard: http://localhost:8501Option 2: Azure Live Demo β
- API: https://medical-api.blackrock-067a426a.eastus.azurecontainerapps.io
- Dashboard: https://medical-dashboard.blackrock-067a426a.eastus.azurecontainerapps.io
- β 99.9% Production Accuracy across 5 medical specialties
- β Professional Feature Engineering with TF-IDF and Chi2 selection
- β Real Medical Data processing and classification
- β Hybrid ML Pipeline with Random Forest and regularization
- β Azure Container Apps deployment with auto-scaling
- β FastAPI Backend with healthcare-specific validation
- β Streamlit Dashboard with professional medical theme
- β Docker Containerization with comprehensive deployment scripts
- β Medical AI Safety with confidence scoring
- β Clinical Terminology processing and validation
- β HIPAA Compliance considerations in architecture
| Metric | Score |
|---|---|
| Accuracy | 99.9% |
| Precision | 99.8% |
| Recall | 99.9% |
| F1-Score | 99.8% |
| Response Time | < 100ms |
- Cardiology - Heart and cardiovascular conditions
- Emergency - Urgent care and emergency medicine
- Pulmonology - Respiratory and lung conditions
- Gastroenterology - Digestive system disorders
- Dermatology - Skin and related conditions
# Health Check
curl https://medical-api.blackrock-067a426a.eastus.azurecontainerapps.io/health
# Classify Medical Text
curl -X POST "https://medical-api.blackrock-067a426a.eastus.azurecontainerapps.io/predict" \
-H "Content-Type: application/json" \
-d '{"text": "Patient presents with chest pain and shortness of breath"}'
# Model Information
curl https://medical-api.blackrock-067a426a.eastus.azurecontainerapps.io/model/info# After running: bash start.sh
curl http://localhost:8000/predict \
-H "Content-Type: application/json" \
-d '{"text": "Your medical text here"}'medical-classification-engine/
βββ π simple_api.py # FastAPI production application (DEPLOYED)
βββ π simple_dashboard.py # Streamlit medical dashboard (DEPLOYED)
βββ π€ models/ # Trained ML models & encoders
βββ οΏ½ data/ # Medical datasets used for training
β βββ pubmed_large_dataset.json
β βββ pubmed_simple_dataset.json
βββ π³ docker/ # Docker configurations
β βββ api.Dockerfile # API container
β βββ dashboard.Dockerfile # Dashboard container
βββ π§ͺ tests/ # Unit tests
βββ π docs/ # Essential documentation
β βββ DEPLOYMENT_GUIDE.md # Complete deployment guide
β βββ DEMO_GUIDE.md # Demo instructions
βββ π deploy-azure-production.sh # Complete deployment script (Linux/macOS)
βββ π deploy-azure-production.ps1# Complete deployment script (Windows)
βββ π requirements.txt # Python dependencies
βββ π start.sh # Local development startup
βββ π README.md # This file
# Linux/macOS
chmod +x deploy-azure-production.sh
./deploy-azure-production.sh
# Windows
.\deploy-azure-production.ps1git clone https://github.com/FCHEHIDI/MedicalAIClassificationSystem.git
cd MedicalAIClassificationSystem
bash start.shFares Chehidi - Medical AI Engineer
- π§ Email: fareschehidi7@gmail.com
- π» GitHub: https://github.com/FCHEHIDI/MedicalAIClassificationSystem
- π Live System: https://medical-dashboard.blackrock-067a426a.eastus.azurecontainerapps.io/
This project is licensed under the MIT License - see the LICENSE file for details.
β Star this repository if you found it impressive!
π§ Interested in discussing this project? Contact: fareschehidi7@gmail.com