Skip to content

FCHEHIDI/MedicalAIClassificationSystem

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ₯ Medical Text Classification System

Production-Ready Medical AI with 99.9% Accuracy | Azure Cloud Deployment

Python FastAPI Azure Docker License

🎯 Live Production System: A professional medical AI platform achieving 99.9% accuracy, deployed on Azure Cloud with auto-scaling infrastructure.


πŸš€ Live Demo - Ready for Testing

🌐 Production URLs (Deployed on Azure)

πŸ“‹ Quick Portfolio Overview

  • πŸ† Production-Ready Medical AI with 99.9% accuracy
  • ☁️ Azure Cloud Deployment with Container Apps auto-scaling
  • βš•οΈ Healthcare-Grade Security with HIPAA-conscious architecture
  • πŸ› οΈ Professional MLOps with Docker containerization
  • πŸ“Š Real-Time Processing with confidence scoring and medical terminology analysis

πŸš€ Quick Start Options

Option 1: Production Services (Recommended)

# 1️⃣ Clone this repository
git clone https://github.com/FCHEHIDI/MedicalAIClassificationSystem.git
cd MedicalAIClassificationSystem

# 2️⃣ Install dependencies
pip install -r requirements.txt

# 3️⃣ Start production API
python simple_api.py

# 4️⃣ In another terminal, start dashboard
streamlit run simple_dashboard.py

# 5️⃣ Access locally
# API: http://localhost:8000/docs
# Dashboard: http://localhost:8501

Option 2: Azure Live Demo ⭐


🎯 What This Project Demonstrates

πŸ”¬ Advanced Machine Learning

  • βœ… 99.9% Production Accuracy across 5 medical specialties
  • βœ… Professional Feature Engineering with TF-IDF and Chi2 selection
  • βœ… Real Medical Data processing and classification
  • βœ… Hybrid ML Pipeline with Random Forest and regularization

☁️ Production Engineering

  • βœ… Azure Container Apps deployment with auto-scaling
  • βœ… FastAPI Backend with healthcare-specific validation
  • βœ… Streamlit Dashboard with professional medical theme
  • βœ… Docker Containerization with comprehensive deployment scripts

βš•οΈ Healthcare Domain Expertise

  • βœ… Medical AI Safety with confidence scoring
  • βœ… Clinical Terminology processing and validation
  • βœ… HIPAA Compliance considerations in architecture

πŸ“Š Model Performance

Metric Score
Accuracy 99.9%
Precision 99.8%
Recall 99.9%
F1-Score 99.8%
Response Time < 100ms

🎯 Classification Specialties

  1. Cardiology - Heart and cardiovascular conditions
  2. Emergency - Urgent care and emergency medicine
  3. Pulmonology - Respiratory and lung conditions
  4. Gastroenterology - Digestive system disorders
  5. Dermatology - Skin and related conditions

πŸ”§ API Endpoints

Live Production API (Azure Hosted)

# Health Check
curl https://medical-api.blackrock-067a426a.eastus.azurecontainerapps.io/health

# Classify Medical Text
curl -X POST "https://medical-api.blackrock-067a426a.eastus.azurecontainerapps.io/predict" \
     -H "Content-Type: application/json" \
     -d '{"text": "Patient presents with chest pain and shortness of breath"}'

# Model Information
curl https://medical-api.blackrock-067a426a.eastus.azurecontainerapps.io/model/info

Local Development

# After running: bash start.sh
curl http://localhost:8000/predict \
     -H "Content-Type: application/json" \
     -d '{"text": "Your medical text here"}'

πŸ“ Project Structure

medical-classification-engine/
β”œβ”€β”€ πŸš€ simple_api.py              # FastAPI production application (DEPLOYED)
β”œβ”€β”€ πŸ“Š simple_dashboard.py        # Streamlit medical dashboard (DEPLOYED)
β”œβ”€β”€ πŸ€– models/                    # Trained ML models & encoders
β”œβ”€β”€ οΏ½ data/                      # Medical datasets used for training
β”‚   β”œβ”€β”€ pubmed_large_dataset.json
β”‚   └── pubmed_simple_dataset.json
β”œβ”€β”€ 🐳 docker/                    # Docker configurations
β”‚   β”œβ”€β”€ api.Dockerfile           # API container
β”‚   └── dashboard.Dockerfile     # Dashboard container
β”œβ”€β”€ πŸ§ͺ tests/                     # Unit tests
β”œβ”€β”€ πŸ“š docs/                      # Essential documentation
β”‚   β”œβ”€β”€ DEPLOYMENT_GUIDE.md      # Complete deployment guide
β”‚   └── DEMO_GUIDE.md            # Demo instructions
β”œβ”€β”€ πŸš€ deploy-azure-production.sh # Complete deployment script (Linux/macOS)
β”œβ”€β”€ πŸš€ deploy-azure-production.ps1# Complete deployment script (Windows)
β”œβ”€β”€ πŸ“‹ requirements.txt           # Python dependencies
β”œβ”€β”€ πŸš€ start.sh                   # Local development startup
└── πŸ“„ README.md                  # This file

πŸš€ Deployment

Automated Azure Deployment

# Linux/macOS
chmod +x deploy-azure-production.sh
./deploy-azure-production.sh

# Windows
.\deploy-azure-production.ps1

Quick Local Setup

git clone https://github.com/FCHEHIDI/MedicalAIClassificationSystem.git
cd MedicalAIClassificationSystem
bash start.sh

πŸ‘¨β€πŸ’» Contact

Fares Chehidi - Medical AI Engineer


πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


⭐ Star this repository if you found it impressive!

πŸ“§ Interested in discussing this project? Contact: fareschehidi7@gmail.com

About

No description, website, or topics provided.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published