Skip to content

HappyPointer/MultiCBR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MultiCBR

Pytorch implementation for "MultiCBR: Multi-view Contrastive Learning for Bundle Recommendation"

Environment

  • OS: Ubuntu 18.04 or higher version
  • python == 3.7.11 or above
  • supported(tested) CUDA versions: 10.2
  • Pytorch == 1.9.0 or above

Run the code

To train MultiCBR on dataset NetEase with GPU 0, simply run:

python train.py -g 0 -m MultiCBR -d NetEase

You can indicate GPU id or dataset with cmd line arguments, and the hyper-parameters are recorded in config.yaml.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages