[ICCV'25] ADCD-Net: Robust Document Image Forgery Localization via Adaptive DCT Feature and Hierarchical Content Disentanglement
Official code for "ADCD-Net: Robust Document Image Forgery Localization via Adaptive DCT Feature and Hierarchical Content Disentanglement".
The evaluation follows the Doc Protocol. See ForensicHub.
Dependencies: python 3.10.13, pytorch 2.3.0+cu121, albumentations 2.0.8.
DocTamper dataset (Training, Testing, FCD, SCD): DocTamper. qt_table.pk and pks are in the DocTamper repo.
OCR masks and checkpoints: ADCD-Net.
ADCDNet.pth # ADCD-Net checkpoint
docres.pkl # DocRes checkpoint
DocTamperOCR/ # OCR mask directory
├── TrainingSet # Training set directory
├── TestingSet # Testing set directory
├── FCD # FCD dataset directory
└── SCD # SCD dataset directory
4 cross-domain test sets (T-SROIE, OSTF, TPIC-13, RTM): https://drive.google.com/drive/folders/1xn8mELN8etQwRo_PgS5XV6XTKCZasz_A?usp=drive_link (cutted_datasets_fakes.zip)
Use seg_char.py. PaddleOCR setup: PaddleOCR.
ADCD-Net is trained on 4 NVIDIA GeForce RTX 4090 24G GPUs which takes about 27 hours with 100k training steps and 40 batch size.
- Set dataset, OCR mask, and checkpoint paths in
cfg.py. - Run
main.py.
mode = 'train'
root = 'path/to/root'
docres_ckpt_path = 'path/to/docres.pkl'Doc Protocol: train on DocTamper training set, evaluate on seven test sets. DocTamper FCD/SCD/Test set are compressed once using the official DocTamper pickle QFs. Authentic images are skipped.
- Generate OCR masks for T-SROIE/OSTF/TPIC-13/RTM with
seg_char.py. - Generate path pkl files for T-SROIE/OSTF/TPIC-13/RTM with
build_path_pkl.py. - Update the following in
cfg.pyand runmain.py.
mode = 'val'
all_ds_name = ['TestingSet', 'FCD', 'SCD', 'T-SROIE_test', 'Tampered-IC13_test', 'RealTextManipulation_test', 'OSTF_test']
pkl_dir = 'path/to/path_pkl'If you find our project useful in your research, please cite it in your publications.
@inproceedings{wong2025adcd,
title={ADCD-Net: Robust Document Image Forgery Localization via Adaptive DCT Feature and Hierarchical Content Disentanglement},
author={Wong, Kahim and Zhou, Jicheng and Wu, Haiwei and Si, Yain-Whar and Zhou, Jiantao},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
year={2025}
}
