Skip to content

Visual multi-agent orchestration platform with Python backend - built for pharmaceutical R&D workflows

License

Notifications You must be signed in to change notification settings

KatherLab/agentdashboardpy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Agent Dashboard (Python Backend)

A visual multi-agent orchestration platform for constructing, configuring, and executing networks of AI agents. Built for pharmaceutical R&D workflows but adaptable to any domain requiring complex multi-agent reasoning.

This version features a Python/FastAPI backend for improved performance, better async handling, and easier integration with Python-based ML/AI tooling.

Features

  • Visual Graph Editor: Node-based interface for designing agent networks using Vue Flow
  • Configurable Agent Behaviors: Analytical, creative, adversarial, or balanced presets
  • Relationship Types: Define how agents interact (informs, critiques, validates, collaborates, reports-to)
  • Rogue Mode Testing: Inject controlled failures for stress-testing agent networks
  • Parallel Execution: Agents with no dependencies execute simultaneously using async Python
  • Pre-built Templates: Ready-to-use pharmaceutical R&D scenarios
  • Streaming Results: Real-time NDJSON streaming of simulation progress

Tech Stack

Frontend

Technology Purpose
Vue 3 Reactive UI framework
TypeScript Type safety
Vite Build tool & dev server
Vue Flow Graph visualization & editing
Tailwind CSS Utility-first styling

Backend

Technology Purpose
Python 3.11+ Runtime environment
FastAPI Modern async web framework
OpenAI SDK LLM API integration
Pydantic Data validation & serialization
Uvicorn ASGI server

Project Structure

agentdashboardpy/
├── client/                      # Vue 3 frontend
│   ├── src/
│   │   ├── components/          # Vue components
│   │   ├── composables/         # Vue composition functions
│   │   ├── scenarios/           # Pre-built scenarios
│   │   ├── types/               # TypeScript definitions
│   │   └── App.vue              # Main application
│   ├── package.json
│   └── vite.config.ts
├── server/                      # Python FastAPI backend
│   ├── routes/
│   │   └── simulation.py        # API endpoints
│   ├── services/
│   │   ├── orchestrator.py      # Topology execution engine
│   │   └── prompt_builder.py    # Agent prompt construction
│   ├── models.py                # Pydantic data models
│   ├── main.py                  # FastAPI application
│   └── requirements.txt
├── README.md
└── LICENSE

Getting Started

Prerequisites

  • Python 3.11 or higher
  • Node.js 18.0.0 or higher
  • npm 9.0.0 or higher
  • OpenAI API key (or compatible endpoint)

Installation

# Clone the repository
git clone https://github.com/KatherLab/agentdashboardpy.git
cd agentdashboardpy

# Set up Python virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install Python dependencies
pip install -r server/requirements.txt

# Install frontend dependencies
cd client
npm install
cd ..

Development

Run both the frontend dev server and backend in separate terminals:

# Terminal 1: Start the Python backend
source venv/bin/activate
uvicorn server.main:app --reload --port 3006

# Terminal 2: Start the frontend dev server
cd client
npm run dev
# Client runs on http://localhost:5173 (proxies /api to :3006)

Production Build

# Build the frontend
cd client
npm run build
cd ..

# Start the production server (serves built client)
uvicorn server.main:app --host 0.0.0.0 --port 3006

API Reference

POST /api/simulate

Execute a simulation with an agent topology. Returns streaming NDJSON events.

Request Body:

{
  "topology": {
    "name": "My Simulation",
    "nodes": [...],
    "edges": [...],
    "inputNodes": [...],
    "outputNodes": [...]
  },
  "apiKey": "sk-...",
  "apiEndpoint": "https://api.openai.com"
}

Streaming Events:

  • phase-start: When a new execution phase begins
  • node-complete: When a node finishes successfully
  • node-error: When a node encounters an error
  • complete: Final completion with all results

GET /api/health

Health check endpoint.

{"status": "ok", "timestamp": "2026-01-08T12:00:00.000Z"}

Agent Configuration

Property Description Options
Name Agent identifier Custom string
Role Professional role/expertise Custom string
Behavior Preset Reasoning style analytical, creative, adversarial, balanced
Model LLM model to use gpt-4o, gpt-4o-mini, gpt-5-nano, etc.
Temperature Response creativity 0.0 - 1.0+
Oversight Mode Senior reviewer capability Boolean
Suspicion Level Cross-checking behavior trusting, suspicious

Relationship Types

  • informs: Provides context to downstream agent
  • critiques: Evaluates and challenges the source agent's output
  • validates: Verifies and approves conclusions
  • collaborates: Works jointly, combining perspectives
  • reports-to: Hierarchical reporting structure

Rogue Mode Profiles

For adversarial testing:

  • hallucination: Inject plausible but false information
  • omission: Deliberately skip critical details
  • contradiction: Undermine other agents' conclusions
  • ignore-constraints: Violate safety or scope requirements

Docker Deployment

FROM python:3.11-slim

WORKDIR /app

# Install Node.js for frontend build
RUN apt-get update && apt-get install -y nodejs npm

# Copy and build frontend
COPY client/package*.json ./client/
RUN cd client && npm ci
COPY client/ ./client/
RUN cd client && npm run build

# Install Python dependencies
COPY server/requirements.txt ./server/
RUN pip install --no-cache-dir -r server/requirements.txt
COPY server/ ./server/

EXPOSE 3006

CMD ["uvicorn", "server.main:app", "--host", "0.0.0.0", "--port", "3006"]

Build and run:

docker build -t agentdashboardpy .
docker run -p 3006:3006 agentdashboardpy

License

MIT License - see LICENSE for details.

Copyright (c) 2026 Jakob Nikolas Kather

About

Visual multi-agent orchestration platform with Python backend - built for pharmaceutical R&D workflows

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •