Structure-aware integration of machine learning and simulation to predict ribosome location profiles from RNA sequences.
- Linux (required for mamba-ssm)
- NVIDIA GPU with CUDA support
- CUDA Toolkit 11.8+ (check with
nvcc --version) - Conda package manager
# Clone the repository
git clone https://github.com/Kingsford-Group/seq2ribo.git
cd seq2ribo
# Create conda environment
conda env create -f environment.yml
# Activate
conda activate seq2ribo
# Install mamba-ssm (compiles from source, ~5-10 min)
python -m pip install --no-build-isolation mamba-ssm causal-conv1d
# Install seq2ribo package
pip install -e .python -c "import RNA; import mamba_ssm; import torch; print('All imports OK!')"Note: If your CUDA version differs from 11.8, edit
pytorch-cuda=11.8inenvironment.ymlto match your system.
See INSTALL.md for detailed troubleshooting.
from seq2ribo import Seq2Ribo
# Initialize predictor
predictor = Seq2Ribo(cell_line="hek293", weights_dir="weights")
# Predict ribosome density
sequence = "AUGGCCAAGCUGAAG..."
results = predictor.predict(sequence, task="riboseq")# Predict from sequence
python scripts/run_inference.py --seq "AUGGCC..." --cell-line hek293 --task riboseq
# Predict from FASTA
python scripts/run_inference.py --fasta input.fa --cell-line ipsc --output results.json| Task | Description | Output |
|---|---|---|
riboseq |
Ribosome profiling | Per-codon counts |
te |
Translation efficiency | Scalar |
protein |
Protein expression | Scalar |
hek293- HEK293lcl- Lymphoblastoid Cell Linerpe- RPE-1ipsc- iPSC
seq2ribo/
├── seq2ribo/ # Core package
│ ├── inference.py # Main API
│ ├── models.py # Neural network models
│ ├── simulation.py # sTASEP simulation
│ └── geometry.py # RNA structure features
├── scripts/ # CLI scripts
├── weights/ # Model checkpoints
├── tests/ # Test suite
└── environment.yml # Conda environment
This software is licensed for Academic or Non-Profit Organization Noncommercial Research Use Only.
See the LICENSE file for the full terms.
For commercial use or any use not permitted by the academic license, please contact the options below to discuss licensing:
- Carl Kingsford (carlk@cs.cmu.edu)
If you use seq2ribo in your research, please cite:
@article{kaynar2026seq2ribo,
title = {seq2ribo: Structure-aware integration of machine learning and
simulation to predict ribosome locations profiles from {RNA}
sequences},
author = {G{\"u}n Kaynar and Carl Kingsford},
year = {2026},
journal = {bioRxiv},
url = {https://www.biorxiv.org/content/10.64898/2026.02.08.700508v1},
}