This repository records common image processing tasks with their synthetic data construction procedures.
- Super-Resolution
- Synthetic data construction
- For non-generative methods: Bicubic downsampling (x2, x4)
- For generative methods: RealESRGAN degradation [RealESRGAN Paper]

- SOTA methods
- SwinIR, HAT, DiffBIR, SeeSR, OSEDiff, HyperIR
- Synthetic data construction
- Denoising
- Synthetic data construction
- Camera perception: [Unprocessing pipeline]
- CBDNet degradation: [CBDNet] (the most common)

- SOTA methods
- CBDNet, SwinIR, Restormer, X-Restormer,
- Synthetic data construction
- Deblurring
- Synthetic data construction
- [Levin Dataset Kernels]
- Gaussian kernel + motion kernel + noise
- SOTA methods
- MAXIM, LaKDNet, EVSSM,
- Synthetic data construction
- Deraining
- Synthetic data construction
- Rain streak, Raindrop, Rain and mist [MPID Dataset]
- SOTA methods
- DiffPlugin, Restormer, MPRNet,
- Synthetic data construction
- Desnowing
- Synthetic data construction
- Manual mask + random overlay + brightness change [Snow100K]
- SOTA methods
- DesnowNet,
- Synthetic data construction
- Dehazing
- Synthetic data construction
- Atmospheric Scattering Model [RESIDE]

- Atmospheric Scattering Model [RESIDE]
- SOTA methods
- DehazeFormer (2023), RIDCP (2023),
- Synthetic data construction
- Natural Image Inpainting
- Synthetic data construction
- Free-form irregular masks and rectangular masks [SN-PatchGAN]
- SOTA methods
- SN-PatchGAN (2019),
- Synthetic data construction
- Reflection Removal
- Synthetic data construction
- SOTA methods
- CEILNet (2017), Zhang et al. (2018),
- Old Photo Restoration
- Synthetic data construction
- Unstructured Degradation (noise) + Structured Degradation (Scratches, holes/tears) [Pipeline]
- SOTA methods
- Wan et al. (2020),
- Synthetic data construction
- Face Inpainting
- Synthetic data construction
- Free-form irregular masks and rectangular masks
- SOTA methods
- RePaint (2022), CodeFormer (2022),
- Synthetic data construction
- Face Super-Resolution
- Synthetic data construction
- GFPGAN degradation [Pipeline]
- SOTA methods
- GFPGAN (2021), CodeFormer (2022),
- Synthetic data construction
- Low-Light Enhancement
- Synthetic data construction
- Reversed ISP + Exposure Degradation + Noise Degradation + White Balance & CCM + Tone Mapping + Forward ISP [SynLLIE]
- SOTA methods
- SNR-LLIE (2022), Retinexformer (2023),
- Synthetic data construction
- Color Enhancement
- Synthetic data construction
- RAW to ISP, Changing EV [Afifi et al.]
- SOTA methods
- Afifi et al. (2021),
- Synthetic data construction
- Underwater Image Enhancement
- Synthetic data construction
- [Jaffe-McGlamery / Sea-thru]
- WaterGAN (complicated)
- SOTA methods
- FUnIE-GAN (2020),
- Synthetic data construction
- Multi-Exposure Fusion
- Synthetic data construction
- Inverse Gamma + Changing EV + CRF and noise
- SOTA methods
- U2Fusion (2020)
- Synthetic data construction
- HDR Tone Mapping
- Synthetic data construction
- HDR datasets
- SOTA methods
- TMO algorithms
- Synthetic data construction
- Style Transfer (I2I)
- Content Image and Style Image
- CycleGAN (2017)
- Text-to-Image Synthesis
- GPT generation with attribution combinations
- SD3.5 (2024),
- Image Editing
- Send images into a VLM to generate instructions
- SD3.5 (2024),
- Image Outpainting
- Natural Image
- QueryOTR (2022)
- Image Compression
- JPEG, WebP, HEIC, Learned algorithms
