Skip to content

Implementation for paper CauScale: Neural Causal Discovery at Scale.

Notifications You must be signed in to change notification settings

OpenCausaLab/CauScale

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

CauScale

Implementation for paper CauScale: Neural Causal Discovery at Scale.

Causal discovery is essential for advancing data-driven fields such as scientific AI and data analysis, yet existing approaches face significant time- and space-efficiency bottlenecks when scaling to large graphs. To address this challenge, we present CauScale, a neural architecture designed for efficient causal discovery that scales inference to graphs with up to 1000 nodes. CauScale improves time efficiency via a reduction unit that compresses data embeddings and improves space efficiency by adopting tied attention weights to avoid maintaining axis-specific attention maps. To keep high causal discovery accuracy, CauScale adopts a two-stream design: a data stream extracts relational evidence from high-dimensional observations, while a graph stream integrates statistical graph priors and preserves key structural signals. CauScale successfully scales to 500-node graphs during training, where prior work fails due to space limitations. Across testing data with varying graph scales and causal mechanisms, CauScale achieves 99.6% mAP on in-distribution data and 84.4% on out-of-distribution data, while delivering 4×–13,000× inference speedups over prior methods.

Code will be released soon.

About

Implementation for paper CauScale: Neural Causal Discovery at Scale.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published