Gyeongcheol Cho and Heungsun Hwang
- The PLSPM.Basic_Prime package enables users to estimate and evaluate basic PLSPM models.
- Estimate PLSPM model parameters and calculate their standard errors (SE) along with 95% confidence intervals (CI).
- Enable parallel computing for bootstrap sampling.
- Allow users to specify a sign-fixing indicator for each component.
- Provide an option for Dijkstra's correction.
- Handle missing values in the data.
To use this package in MATLAB:
- Clone or download the repository:
git clone https://github.com/PsycheMatrica/PLSPM.Basic_Prime.git
- Add the package to your MATLAB path:
addpath(genpath('PLSPM.Basic_Prime'))
- For examples on how to use the package, refer to the
Run_Example_BasicPLSPM.mfile. This file demonstrates the implementation ofBasicPLSPM()using the ACSI dataset.
- Tested on MATLAB R2023b.
- Likely compatible with earlier MATLAB versions.
- If you use PLSPM.Basic_Prime in your research or publications, please cite it in APA format as follows:
Cho, G & Hwang, H (2024). PLSPM.Basic_Prime: A package for basic partial least squares path modeling [Computer software]. GitHub. https://github.com/PsycheMatrica/PLSPM.Basic_Prime