Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 82 additions & 0 deletions test/quantization/wrapq/wrappers/nn/test_quant_embedding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Copyright (c) 2026 Samsung Electronics Co., Ltd. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import torch
import torch.nn.functional as F
from tico.quantization.config.ptq import PTQConfig

from tico.quantization.wrapq.dtypes import DType
from tico.quantization.wrapq.mode import Mode
from tico.quantization.wrapq.wrappers.nn.quant_embedding import QuantEmbedding


class TestQuantEmbedding(unittest.TestCase):
def setUp(self):
torch.manual_seed(0)
num_embeddings = 4 # vocab_size
embedding_dim = 2 # inner_dim
seq_len = 128
self.fp32 = torch.nn.Embedding(num_embeddings, embedding_dim)
self.x = torch.randint(0, num_embeddings, (seq_len, num_embeddings))

self.q_emb = QuantEmbedding(self.fp32)

def test_mode_transitions(self):
self.assertIs(self.q_emb._mode, Mode.NO_QUANT)

# Calibration (re-collect static weight range right here)
self.q_emb.enable_calibration()
_ = self.q_emb(self.x)
self.assertIs(self.q_emb._mode, Mode.CALIB)

self.q_emb.freeze_qparams()
self.assertIs(self.q_emb._mode, Mode.QUANT)

def test_quantised_output_close(self):
self.q_emb.enable_calibration()
_ = self.q_emb(self.x)
self.q_emb.freeze_qparams()

with torch.no_grad():
q_out = self.q_emb(self.x)
fp_out = F.embedding(self.x, self.fp32.weight)

diff = (fp_out - q_out).abs().mean().item()
self.assertGreater(diff, 0.0)
self.assertLess(diff, 0.4)

def test_weight_stats_survive(self):
self.q_emb.enable_calibration()
self.q_emb.weight_obs.compute_qparams()
assert hasattr(self.q_emb.weight_obs, "_cached_scale")
pre_scale = self.q_emb.weight_obs._cached_scale.clone()

# calibration cycle
self.q_emb.enable_calibration()
self.q_emb.freeze_qparams()

post_scale = self.q_emb.weight_obs._cached_scale
self.assertTrue(torch.allclose(pre_scale, post_scale))

def test_dtype_override(self):
cfg = PTQConfig(
default_dtype=DType.uint(8),
overrides={
"act_out": {"dtype": DType.uint(4)},
},
)
qcustom = QuantEmbedding(self.fp32, qcfg=cfg)
self.assertEqual(qcustom.act_out_obs.dtype, DType.uint(4))
73 changes: 73 additions & 0 deletions tico/quantization/wrapq/wrappers/nn/quant_embedding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Copyright (c) 2026 Samsung Electronics Co., Ltd. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import torch
import torch.nn as nn

from tico.quantization.config.ptq import PTQConfig

from tico.quantization.wrapq.mode import Mode
from tico.quantization.wrapq.qscheme import QScheme
from tico.quantization.wrapq.wrappers.quant_module_base import QuantModuleBase
from tico.quantization.wrapq.wrappers.registry import try_register


@try_register("torch.nn.Embedding")
class QuantEmbedding(QuantModuleBase):
"""Per-channel weight fake-quant, eager-output activation fake-quant."""

def __init__(
self,
fp: nn.Embedding,
*,
qcfg: Optional[PTQConfig] = None,
fp_name: Optional[str] = None
):
super().__init__(qcfg, fp_name=fp_name)
self.weight_obs = self._make_obs(
"weight",
qscheme=QScheme.PER_CHANNEL_ASYMM, # tensorwise quantization breaks the model
channel_axis=0, # weight ~ (vocab_size, inner_dim) so that weight_scales ~ (1, vocab_size)
)
self.act_out_obs = self._make_obs("act_out")
self.module = fp

def enable_calibration(self) -> None:
super().enable_calibration()
# immediately capture the fixed weight range
self.weight_obs.collect(self.module.weight)

def forward(self, x: torch.Tensor):

# x is supposed to be in int64 form so no quantization of activations is needed
w = self.module.weight
if self._mode is Mode.QUANT:
w = self.weight_obs.fake_quant(w)

y = torch.nn.functional.embedding(
x,
w,
self.module.padding_idx,
self.module.max_norm,
self.module.norm_type,
self.module.scale_grad_by_freq,
self.module.sparse,
)

return self._fq(y, self.act_out_obs)

def _all_observers(self):
return (self.act_out_obs, self.weight_obs)