Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 86 additions & 0 deletions test/quantization/wrapq/wrappers/qwen_vl/test_quant_vision_mlp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# Copyright (c) 2026 Samsung Electronics Co., Ltd. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pathlib
import tempfile
import unittest
import warnings

import tico

import torch
from tico.quantization.wrapq.mode import Mode
from tico.quantization.wrapq.wrappers.qwen_vl.quant_vision_mlp import (
QuantQwen3VLVisionMLP,
)


class DummyMLP(torch.nn.Module):
"""Tiny stand-in for HF LlamaMLP (hidden=4, inter=8)."""

def __init__(self):
super().__init__()
self.linear_fc1 = torch.nn.Linear(4, 8)
self.linear_fc2 = torch.nn.Linear(8, 4)
self.act_fn = torch.nn.SiLU()

def forward(self, x):
return self.linear_fc2(self.act_fn(self.linear_fc1(x)))


class TestQuantQwenVisionMLP(unittest.TestCase):
def setUp(self):
torch.manual_seed(0)
self.fp32 = DummyMLP()
self.quant = QuantQwen3VLVisionMLP(self.fp32)
self.x = torch.randn(32, 4)

def test_mode_and_forward(self):
# calibration
self.quant.enable_calibration()
_ = self.quant(self.x)
self.quant.freeze_qparams()
self.assertIs(self.quant._mode, Mode.QUANT)

# forward diff
with torch.no_grad():
q = self.quant(self.x)
f = self.fp32(self.x)
diff = (q - f).abs().mean().item()
self.assertLess(diff, 0.7) # loose bound
self.assertGreater(diff, 0.0)


class TestSubgraphExport(unittest.TestCase):
def setUp(self):
torch.manual_seed(0)
self.mlp_int8 = QuantQwen3VLVisionMLP(DummyMLP()).eval()
self.x = torch.randn(16, 4)

def test_calib_quant_export(self):
# calib
self.mlp_int8.enable_calibration()
_ = self.mlp_int8(self.x)
self.mlp_int8.freeze_qparams()

self.assertIs(self.mlp_int8._mode, Mode.QUANT)

# export
with tempfile.TemporaryDirectory() as td:
path = pathlib.Path(td) / "mlp.circle"
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
exported = tico.convert(self.mlp_int8, (self.x[:1],))
exported.save(path)
self.assertTrue(path.exists())
95 changes: 95 additions & 0 deletions tico/quantization/wrapq/examples/qwen/quantize_qwen_vision_mlp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
# Copyright (c) 2026 Samsung Electronics Co., Ltd. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pathlib

import torch
from transformers import AutoModelForImageTextToText # since 4.5

from tico.quantization import convert, prepare
from tico.quantization.config.ptq import PTQConfig
from tico.quantization.evaluation.metric import compute_peir
from tico.quantization.evaluation.utils import plot_two_outputs
from tico.quantization.wrapq.mode import Mode
from tico.quantization.wrapq.wrappers.qwen_vl.quant_vision_mlp import (
QuantQwen3VLVisionMLP,
)
from tico.utils.utils import SuppressWarning

# -------------------------------------------------------------------------
# 0. Load a Qwen3-VL model (text tower) + tokenizer
# -------------------------------------------------------------------------
name = "Qwen/Qwen3-VL-2B-Instruct"
model = AutoModelForImageTextToText.from_pretrained(
name,
device_map="cpu",
trust_remote_code=True,
dtype=torch.float32,
)
model.eval()

# -------------------------------------------------------------------------
# 1. Replace layer-0’s mlp with QuantQwen3VLVisionMLP
# -------------------------------------------------------------------------
orig_mlp = model.model.visual.blocks[0].mlp
mlp_q = prepare(orig_mlp, PTQConfig())
mlp_q.eval()
assert isinstance(mlp_q.wrapped, QuantQwen3VLVisionMLP)

inp_shape = (orig_mlp.intermediate_size, orig_mlp.hidden_size)
# -------------------------------------------------------------------------
# 2. calibration
# -------------------------------------------------------------------------
examples = [
torch.randn(inp_shape),
torch.randn(inp_shape),
torch.randn(inp_shape),
]

with torch.no_grad():
for example in examples:
_ = mlp_q(example)

convert(mlp_q)
assert mlp_q._mode is Mode.QUANT, "Quantization mode should be active now."

# -------------------------------------------------------------------------
# 3. Quick diff check (INT-sim vs FP32)
# -------------------------------------------------------------------------
hidden = examples[0]

with torch.no_grad():
int8_out = mlp_q(hidden)
fp_out = orig_mlp(hidden)

print("┌───────────── Quantization Error Summary ─────────────")
print(f"│ Mean |diff|: {(int8_out - fp_out).abs().mean().item():.6f}")
print(f"│ PEIR : {compute_peir(fp_out, int8_out) * 100:.6f} %")
print("└──────────────────────────────────────────────────────")
print(plot_two_outputs(fp_out, int8_out))

# -------------------------------------------------------------------------
# 4. Export the quantized block
# -------------------------------------------------------------------------
import tico

save_path = pathlib.Path("qwen3vl_vision_mlp.q.circle")

example = torch.randn(inp_shape)

with SuppressWarning(UserWarning, ".*"):
cm = tico.convert(mlp_q, (example,))
cm.save(save_path)

print(f"Quantized Circle model saved to {save_path.resolve()}")
90 changes: 90 additions & 0 deletions tico/quantization/wrapq/wrappers/qwen_vl/quant_vision_mlp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# Copyright (c) 2026 Samsung Electronics Co., Ltd. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Iterable, Optional

import torch
import torch.nn as nn

from tico.quantization.config.ptq import PTQConfig
from tico.quantization.wrapq.wrappers.ptq_wrapper import PTQWrapper
from tico.quantization.wrapq.wrappers.quant_module_base import QuantModuleBase
from tico.quantization.wrapq.wrappers.registry import try_register


@try_register(
"transformers.models.qwen3_vl.modeling_qwen3_vl.Qwen3VLVisionMLP",
)
class QuantQwen3VLVisionMLP(QuantModuleBase):
def __init__(
self,
mlp_fp: nn.Module,
*,
qcfg: Optional[PTQConfig] = None,
fp_name: Optional[str] = None,
):
super().__init__(qcfg, fp_name=fp_name)
linear_fc1_cfg = qcfg.child("linear_fc1") if qcfg else None
linear_fc2_cfg = qcfg.child("linear_fc2") if qcfg else None
act_cfg = qcfg.child("act_fn") if qcfg else None

# ----- wrap three Linear layers -------------------------------
assert hasattr(mlp_fp, "linear_fc1") and isinstance(
mlp_fp.linear_fc1, torch.nn.Module
)
assert hasattr(mlp_fp, "linear_fc2") and isinstance(
mlp_fp.linear_fc2, torch.nn.Module
)

self.linear_fc1 = PTQWrapper(
mlp_fp.linear_fc1, qcfg=linear_fc1_cfg, fp_name=f"{fp_name}.linear_fc1"
)
self.linear_fc2 = PTQWrapper(
mlp_fp.linear_fc2, qcfg=linear_fc2_cfg, fp_name=f"{fp_name}.linear_fc2"
)

# ----- activation ---------------------------------------------
assert hasattr(mlp_fp, "act_fn") and isinstance(mlp_fp.act_fn, torch.nn.Module)
self.act_fn = PTQWrapper(
mlp_fp.act_fn, qcfg=act_cfg, fp_name=f"{fp_name}.act_fn"
)

# ----- local observers ----------------------------------------
self.obs_act_in = self._make_obs("act_in")
self.obs_act_out = self._make_obs("act_out")

def forward(self, hidden_state):

# self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state)))

# 1) quantize input once
x_q = self._fq(hidden_state, self.obs_act_in)

# 2) linear_fc1
fc1 = self.linear_fc1(x_q)

# 3) activation on linear_fc1
a = self.act_fn(fc1)

# 4) linear_fc2
h = self._fq(self.linear_fc2(a), self.obs_act_out)

return h

def _all_observers(self) -> Iterable:
yield self.obs_act_in
yield self.obs_act_out
# recurse into children that are QuantModuleBase
for m in (self.linear_fc1, self.linear_fc2, self.act_fn):
yield from m._all_observers()
1 change: 1 addition & 0 deletions tico/quantization/wrapq/wrappers/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@
"tico.quantization.wrapq.wrappers.fairseq.quant_mha",
## qwen_vl ##
"tico.quantization.wrapq.wrappers.qwen_vl.quant_text_attn",
"tico.quantization.wrapq.wrappers.qwen_vl.quant_vision_mlp",
# add future core wrappers here
)

Expand Down