SLiCE enables users to estimate the minimum sample size required to obtain robust metrics of performance where robustness is determined by pre-defining confidence intervals (CI) widths and levels. The method has been designed assuming that the metrics to perform the evaluation are the standard metrics for IE in evaluations in NLP, namely: Precision (P), Recall (R) and F1-score.
- Open your favorite python IDE (e.g. PyCharm)
- Clone the SLiCE library by executing the below command in the terminal
# https
git clone https://github.com/Savanamed/slice.git - Create virtual environment as described here: https://python-poetry.org/docs/managing-environments/
- Activate venv
- Install the library
# change directory to project folder (containing pyproject.toml)
poetry install--precision: type=float, default=0.80, required=False
--recall: type=float, default=0.85, required=False
--frequency: type=float, default=0.3, required=False
--alpha: type=float, default=0.05, required=False
--interval-width: type=float, default=0.05, required=False
--int_freq: type=str, default="True", required=False# default parameters
# from the project directory do...
python scr/slice/slice.py
# with custom parameters
python scr/slice/slice.py --precision 0.95 --recall 0.7 --frequency-rate 0.6 --alpha 0.05 --interval-width 0.05 --int_freq "True"Selected parameter values:
|-----------|--------|-----------|-------|----------------|----------|
|--precision|--recall|--frequency|--alpha|--interval-width|--int_freq|
|====================================================================|
|0.8 |0.85 |0.3 |0.05 |0.05 |True |
|-----------|--------|-----------|-------|----------------|----------|
The results of SLiCE based on the selected parameter values:
|-----|--------------|--------------|-----|-----|-----|-----|
|Total|Total positive|Total negative|TP |FP |TN |FN |
|===========================================================|
|883 |265 |618 |212 |53 |581 |37 |
|-----|--------------|--------------|-----|-----|-----|-----|total: Sum of total_positive and total_negative
total_positive: Classified as belonging to a class
total_negative: Classified as not belonging to a class
true_positive: Correctly classified as belonging to your class
true_negative: Correctly classified as not belonging to your class
false_positive: Incorrectly classified as belonging to your class
false_negative: Incorrectly classified as not belonging to your class
This project is licensed under the terms of the MIT license.