Skip to content

Machine Learning projects featuring classification, regression, and data preprocessing with scikit-learn and Python

License

Notifications You must be signed in to change notification settings

Uzi-gpu/machine-learning-projects

Repository files navigation

πŸ€– Machine Learning Projects

Python scikit-learn Pandas License

A comprehensive collection of Machine Learning projects demonstrating expertise in Classification, Regression, Data Preprocessing, and Model Evaluation using scikit-learn and Python's data science ecosystem.


πŸ“‹ Table of Contents


πŸš€ Projects Overview

# Project Algorithm Notebook Application
1 Breast Cancer Classification Logistic Regression, SVM 01_breast_cancer_classification.ipynb Medical Diagnosis
2 K-Nearest Neighbors KNN Classifier 02_knn_classifier.ipynb Pattern Recognition
3 Kernel Ridge Regression KRR 03_kernel_ridge_regression.ipynb Nonlinear Regression
4 Data Preprocessing Pipeline Feature Engineering 04_data_preprocessing.ipynb Data Cleaning & Transformation
5 ML Algorithms Lab Multiple Algorithms 05_ml_algorithms_lab.ipynb Comparative Analysis
6 Comprehensive ML Project End-to-End Pipeline 06_comprehensive_ml_project.ipynb Production-Ready Workflow

πŸ› οΈ Technologies Used

Core Libraries

  • scikit-learn - Machine learning algorithms
  • Pandas - Data manipulation and analysis
  • NumPy - Numerical computing
  • Matplotlib & Seaborn - Data visualization

ML Techniques

  • Supervised Learning - Classification & Regression
  • Feature Engineering - Scaling, encoding, selection
  • Model Evaluation - Cross-validation, metrics
  • Hyperparameter Tuning - Grid search, optimization

πŸ“¦ Installation

Prerequisites

  • Python 3.8 or higher

Setup Instructions

  1. Clone the repository

    git clone https://github.com/uzi-gpu/machine-learning-projects.git
    cd machine-learning-projects
  2. Create a virtual environment

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\\Scripts\\activate
  3. Install dependencies

    pip install -r requirements.txt
  4. Launch Jupyter Notebook

    jupyter notebook

πŸ“Š Project Details

1. πŸ₯ Breast Cancer Classification

File: 01_breast_cancer_classification.ipynb

Objective: Build a binary classifier to diagnose breast cancer (benign vs malignant)

Dataset: Wisconsin Breast Cancer Dataset

  • 569 samples
  • 30 features (cell nucleus characteristics)
  • Binary classification

Algorithms Implemented:

  • Logistic Regression
  • Support Vector Machines (SVM)
  • Decision Trees
  • Random Forest

Key Features:

  • βœ… Exploratory Data Analysis (EDA)
  • βœ… Feature correlation analysis
  • βœ… Model comparison and evaluation
  • βœ… Confusion matrix visualization
  • βœ… ROC curve and AUC scores
  • βœ… Feature importance analysis

Medical Application: Early cancer detection support system


2. 🎯 K-Nearest Neighbors Classifier

File: 02_knn_classifier.ipynb

Objective: Implement and optimize KNN for pattern recognition tasks

KNN Concepts Covered:

  • Distance metrics (Euclidean, Manhattan, Minkowski)
  • K-value optimization
  • Decision boundary visualization
  • Curse of dimensionality

Implementation:

  • βœ… Custom KNN from scratch
  • βœ… scikit-learn KNN comparison
  • βœ… Parameter tuning (n_neighbors, weights, metric)
  • βœ… Performance evaluation
  • βœ… Visualization of decision regions

Use Cases:

  • Classification tasks
  • Recommendation systems
  • Anomaly detection

3. πŸ“ˆ Kernel Ridge Regression

File: 03_kernel_ridge_regression.ipynb

Objective: Perform nonlinear regression using kernel methods

Kernels Implemented:

  • Linear kernel
  • Polynomial kernel
  • RBF (Radial Basis Function) kernel

Key Concepts:

  • βœ… Ridge regression basics
  • βœ… Kernel trick for nonlinearity
  • βœ… Regularization parameter tuning
  • βœ… Overfitting prevention
  • βœ… Model complexity vs performance trade-off

Applications:

  • Nonlinear relationship modeling
  • Time series prediction
  • Function approximation

4. πŸ”§ Data Preprocessing Pipeline

File: 04_data_preprocessing.ipynb

Objective: Master essential data preprocessing techniques

Techniques Covered:

1. Data Cleaning:

  • Handling missing values (imputation strategies)
  • Outlier detection and treatment
  • Duplicate removal

2. Feature Scaling:

  • StandardScaler (z-score normalization)
  • MinMaxScaler (0-1 normalization)
  • RobustScaler (outlier-resistant)

3. Feature Encoding:

  • One-Hot Encoding (categorical variables)
  • Label Encoding
  • Ordinal Encoding

4. Feature Engineering:

  • Polynomial features
  • Feature interaction
  • Dimensionality reduction (PCA)

5. Data Splitting:

  • Train/validation/test splits
  • Stratified sampling
  • Cross-validation setup

Best Practices:

  • βœ… Pipeline creation with scikit-learn
  • βœ… Preventing data leakage
  • βœ… Reproducibility with random seeds
  • βœ… Scalable preprocessing workflows

5. πŸ§ͺ ML Algorithms Lab

File: 05_ml_algorithms_lab.ipynb

Objective: Hands-on exploration of various ML algorithms

Algorithms Compared:

  • Linear Regression
  • Logistic Regression
  • Decision Trees
  • Random Forest
  • Gradient Boosting
  • Naive Bayes
  • SVM

Analysis:

  • βœ… Algorithm strengths and weaknesses
  • βœ… Performance benchmarking
  • βœ… Computational complexity
  • βœ… Interpretability vs accuracy trade-offs
  • βœ… When to use which algorithm

6. πŸŽ“ Comprehensive ML Project

File: 06_comprehensive_ml_project.ipynb

Objective: End-to-end machine learning workflow from data to deployment-ready model

Complete Pipeline:

  1. Problem Definition

    • Business understanding
    • Success metrics
  2. Data Collection & EDA

    • Data loading and inspection
    • Statistical analysis
    • Visualization
  3. Data Preprocessing

    • Cleaning and transformation
    • Feature engineering
    • Train/test split
  4. Model Selection

    • Algorithm comparison
    • Baseline model establishment
  5. Model Training

    • Hyperparameter tuning
    • Cross-validation
    • Model optimization
  6. Model Evaluation

    • Performance metrics
    • Error analysis
    • Model interpretation
  7. Model Deployment Preparation

    • Model serialization (pickle/joblib)
    • Performance documentation
    • Inference pipeline

Real-World Skills:

  • βœ… Production-ready code structure
  • βœ… Logging and monitoring
  • βœ… Model versioning
  • βœ… Documentation best practices

πŸ“š Key Concepts Demonstrated

Machine Learning Fundamentals

  • Supervised vs Unsupervised Learning
  • Bias-Variance Tradeoff
  • Overfitting and Underfitting
  • Training, Validation, and Test Sets

Model Evaluation

  • Classification Metrics: Accuracy, Precision, Recall, F1-Score, AUC-ROC
  • Regression Metrics: MSE, RMSE, MAE, RΒ²
  • Cross-Validation: K-Fold, Stratified K-Fold
  • Confusion Matrix analysis

Best Practices

  • Data preprocessing pipelines
  • Feature scaling and normalization
  • Handling imbalanced datasets
  • Model selection and comparison
  • Hyperparameter optimization
  • Code reproducibility

πŸ† Results

Breast Cancer Classification

  • Accuracy: >95% on test set
  • Precision/Recall: Balanced for medical diagnosis
  • Best Model: Random Forest with optimized hyperparameters

KNN Classifier

  • Optimal K: Determined through cross-validation
  • Performance: High accuracy on structured data
  • Insights: Distance metric selection impact

Comprehensive Project

  • End-to-End Pipeline: Successfully implemented
  • Model Ready: Serialized for deployment
  • Documentation: Production-ready code quality

πŸ“§ Contact

Uzair Mubasher - BSAI Graduate

LinkedIn Email GitHub


πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸ™ Acknowledgments

  • scikit-learn documentation and community
  • UCI Machine Learning Repository
  • Course instructors and mentors

⭐ If you found this repository helpful, please consider giving it a star!

About

Machine Learning projects featuring classification, regression, and data preprocessing with scikit-learn and Python

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published