Skip to content

VarunKumar-05/United-India---UIDAI---Hackathon

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 

Repository files navigation

UIDAI Velocity: Ecosystem Intelligence Platform

React TypeScript Gemini Status

A comprehensive data analytics and visualization platform for analyzing Aadhaar (UIDAI) metrics including biometric authentication, demographic data, and enrolment statistics across India.

📋 Table of Contents

🎯 Overview

This project was developed for the UIDAI Hackathon to provide insightful visualizations and analytics on Aadhaar data. It enables users to explore trends in:

  • Biometric Authentication: Track successful biometric authentications across age groups (5-17, 17+)
  • Demographic Authentication: Monitor demographic authentication patterns
  • Enrolment Statistics: Analyze new Aadhaar enrolments by age groups (0-5, 5-17, 18+)
  • Geographic Analysis: Filter and visualize data by state, district, and pincode

✨ Features

  • 📊 Interactive TradingView-style Charts - Professional-grade candlestick and line charts for data visualization
  • 🗺️ Geographic Filtering - Filter data by state and district
  • 📈 Custom Indicators - Add and configure custom analytical indicators
  • 🔄 Data Fusion Mode - Combine multiple datasets for comprehensive analysis
  • 📰 Event Markers - Track policy changes, technology updates, and news events
  • 🤖 AI Analyst Notes - Save and manage analytical insights
  • 🌙 Dark Theme - Eye-friendly dark mode interface
  • 📱 Responsive Design - Works across desktop and mobile devices

📁 Project Structure

United-India---UIDAI---Hackathon/
├── UIDAI/
│   └── UI/                     # Frontend React Application
│       ├── src/
│       │   ├── components/     # React components
│       │   │   ├── Chart/      # Chart visualization components
│       │   │   ├── Docs/       # Help and documentation
│       │   │   ├── Indicators/ # Indicator management
│       │   │   └── Layout/     # Layout components
│       │   ├── store/          # Zustand state management
│       │   ├── types/          # TypeScript type definitions
│       │   ├── utils/          # Utility functions
│       │   └── data/           # Static data files
│       ├── package.json
│       ├── vite.config.ts
│       └── tailwind.config.js
├── Datascience/                # Data processing pipeline
│   ├── aadhaar_metrics_pipeline.ipynb  # Main data pipeline
│   └── processed/              # Processed output data
└── README.md

🛠️ Tech Stack

Frontend

  • React 19 - UI library
  • TypeScript - Type-safe JavaScript
  • Vite 7 - Build tool and dev server
  • Tailwind CSS 4 - Utility-first CSS framework
  • Zustand - State management
  • Lightweight Charts - TradingView charting library
  • Lucide React - Icon library
  • PapaParse - CSV parsing

Data Science

  • Python - Data processing
  • Pandas - Data manipulation
  • NumPy - Numerical computing
  • Jupyter Notebook - Interactive development
Mermaid-diagram

🚀 Getting Started

Prerequisites

  • Node.js (v18 or higher)
  • npm or yarn
  • Python 3.8+ (for data pipeline)

Installation

  1. Clone the repository

    git clone https://github.com/VarunKumar-05/United-India---UIDAI---Hackathon.git
    cd United-India---UIDAI---Hackathon
  2. Install Frontend Dependencies

    cd UIDAI/UI
    npm install
  3. Start Development Server

    npm run dev
  4. Build for Production

    npm run build

Data Pipeline Setup (Optional)

  1. Install Python dependencies

    pip install pandas numpy jupyter
  2. Run the data pipeline

    cd Datascience
    jupyter notebook aadhaar_metrics_pipeline.ipynb

📊 Usage

  1. Launch the Application: Start the dev server and open http://localhost:5173

  2. Select Data View:

    • Choose a state and district from the filters
    • Select the primary dataset (Biometric, Demographic, or Enrolment)
  3. Customize Charts:

    • Toggle between different chart types (candles, line)
    • Add custom indicators
    • Enable fusion mode to overlay multiple datasets
  4. Explore Events: Click on event markers to view policy changes, technology updates, and news affecting Aadhaar metrics

  5. Access Help: Navigate to #help for detailed documentation

🔄 Data Pipeline

The data pipeline processes raw Aadhaar data from multiple sources:

Data Type Description Age Groups
Biometric Successful biometric authentications 5-17, 17+
Demographic Successful demographic authentications 5-17, 17+
Enrolment New Aadhaar enrolments 0-5, 5-17, 18+

Output Metrics:

  • Daily enrolment trends
  • Biometric vs Demographic usage comparison
  • Share ratios and child-share analysis
  • State and district-level aggregations

🤝 Contributing

Contributions are welcome! Please follow these steps:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

👥 Team

📄 License

This project is open source and available under the MIT License.


Made with ❤️ for the UIDAI Hackathon

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •