A smart flight search and recommendation system that combines real-time flight data with AI-powered analysis to help users find their ideal flights based on personal preferences.
- Real-time flight search using Google Flights data
- AI-powered flight analysis and recommendations
- Customizable search parameters
- Interactive user interface
- Multi-currency support
- Layover analysis
- Detailed flight segment information
- Personalized recommendations based on preferences
Before running the application, make sure you have:
- Python 3.8+
- SerpAPI API key
- Groq API key
- Docker (optional, for containerized deployment)
- Clone the repository:
git clone https://github.com/We4TechAI/AI-Flight-Recommender.git
cd AI-Flight-Recommender- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`- Install required packages:
pip install -r requirements.txt- Create a
.envfile in the project root:
SERP_API_KEY=your_serpapi_key_here
GROQ=your_groq_api_key_here- Build the Docker image:
docker build --tag ai_flight_recommender:latest .- Run the container:
docker run -d --name ai_flight_recommender -p 8501:8501 ai_flight_recommender:latest-
Start the application:
- Local:
streamlit run main.py - Docker: Access through
http://localhost:8501
- Local:
-
Enter flight search parameters:
- Departure airport code
- Arrival airport code
- Travel dates
- Number of passengers
- Currency preference
-
Specify your travel preferences in the text area (e.g., "I prefer morning flights with minimal layovers")
-
Click "Search Flights" to get results and AI analysis
AI-Flight-Recommender/
├── main.py # Main application file
├── Dockerfile # Docker configuration
├── requirements.txt # Python dependencies
├── .env # Environment variables
├── banner.png # Project banner
└── README.md # Project documentation
Create a .env file with the following variables:
GROQ=your_groq_api_key_here
SERPAPI_KEY=your_serpapi_key_hereThe application can be containerized using Docker. The included Dockerfile sets up the environment and runs the Streamlit application.
docker build --tag ai_flight_recommender:latest .docker run -d --name ai_flight_recommender -p 8501:8501 ai_flight_recommender:latest- Used for fetching real-time flight data
- Documentation: SerpAPI Google Flights
- Used for AI-powered flight analysis
- Documentation: Groq API
- Fork the repository
- Create a feature branch:
git checkout -b feature/new-feature - Commit changes:
git commit -am 'Add new feature' - Push to branch:
git push origin feature/new-feature - Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
- SerpAPI for flight data
- Groq for AI capabilities
- Streamlit for the UI framework
For support, please open an issue in the GitHub repository or contact the maintainers.
