-
Notifications
You must be signed in to change notification settings - Fork 11
Home
This repository contains code to reproduce the results and figures in the paper: FilterNet: A many-to-many deep learning architecture for time series classification.
The easiest way to run this software is via the Anaconda Python distribution.
In the root dir of this repo:
pytest tests
-
Run the scripts in the
scripts/directory. These are very long-running scripts that reproduce each experimental condition many times. You might want to set, e.g.,NUM_REPEATS=1if you don't need this level of reproducibility. -
Run the notebooks to re-produce the figures. You might need to edit a few paths to specific models to match the filenames on your system, especially if you changed the
NAMEorNUM_REPEATSparameters.
Copyright (C) 2020 Pet Insight Project - All Rights Reserved