Developed an object recognition application for Android using TensorFlow Lite and MobileNet V3 model to identify objects through images used Retrofit for fetch data.
A real-time object recognition feature, enhancing user interaction and engagement.
References:
Model: MobileNet V3 ( https://shorturl.at/VEnYT )
API: Knowledge Graph Search ( https://shorturl.at/Jlbb1 )
implementation("com.github.bumptech.glide:glide:4.12.0")
implementation("com.squareup.retrofit2:retrofit:2.9.0")
implementation("com.squareup.retrofit2:converter-gson:2.9.0")
implementation("org.tensorflow:tensorflow-lite:2.7.0")
implementation("org.tensorflow:tensorflow-lite-support:0.2.0")
implementation("org.tensorflow:tensorflow-lite-gpu:2.7.0")
import retrofit2.Call
import retrofit2.http.GET
import retrofit2.http.Query
interface KnowledgeGraphApiService {
@GET("v1/entities:search")
fun getEntityDetails(
@Query("query") query: String,
@Query("key") apiKey: String
): Call<KnowledgeGraphResponse>
}
val retrofit = Retrofit.Builder()
.baseUrl("https://kgsearch.googleapis.com/")
.addConverterFactory(GsonConverterFactory.create())
.build()
📸 Capture images via camera
🖼️ Select images from the gallery
🌐 Use images from URLs
📤 Share images and details seamlessly
Development Environment: Android Studio
Programming Language: Kotlin
Framework: TensorFlow Lite
API Integration: Knowledge Graph Search
Model: MobileNet V3
User Interface Design: Material Design Principles
Testing: Unit Testing, Integration Testing, User Testing
