Skip to content

The offical implement of StreamDNLT: Streaming Open-Vocabulary Detector Empowers Parameter-efficient Natural Language Tracking

Notifications You must be signed in to change notification settings

adasfag/StreamDNLT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 

Repository files navigation

StreamDNLT

We have carried out a preliminary code release, and optimization will be conducted soon.

StreamDLNT is a generalizable and efficient framework that adapts open-vocabulary detectors via lightweight modular design—encompassing a spatial adapter, a temporal adapter, and a redesigned matching algorithm—to address temporal inconsistency in detection results for natural language tracking. It achieves superior performance on three major benchmarks while significantly reducing training costs.

Install the environment

Use the Anaconda

conda create -n streamdnlt python=3.6
conda activate streamdnlt
bash StreamDNLT/YoloWorld/install.sh

Data Preparation

Put the tracking datasets in ./data. It should look like:

${UVLTrack_ROOT}
 -- data
     -- lasot
         |-- airplane
         |-- basketball
         |-- bear
         ...
     -- otb99
         |-- OTB_query_test
         |-- OTB_query_train
         |-- OTB_videos
     -- refcocog
         |-- refcocog
         |-- split # download this folder from VLTVG (https://github.com/yangli18/VLTVG/blob/master/docs/get_started.md)
         |-- train2014 # coco 2014
         |-- val2014 # coco 2014
     -- tnl2k
         |-- test
         |-- train

Train StreamDNLT

Download the pretrained YoloWorld and install its environment

Training with Signle GPU.

# StreamDNLT
python  StreamDNLT/YoloWorld/lib/train/run_training.py

Evaluation

Download the model weight from Baidu Netdisk

Testing

python StreamDNLT/YoloWorld/tracking/test.py

Evaluation

python tracking/analysis_results.py --tracker_name uvltrack --tracker_param streamdnlt_yoloworld_tracking --dataset_name <dataset_name><reference_modality>

Acknowledgments

About

The offical implement of StreamDNLT: Streaming Open-Vocabulary Detector Empowers Parameter-efficient Natural Language Tracking

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published