In silico prediction of molecule metabolites based on their SMILES using 5 software programs:
- BioTransformer3
- SyGMa
- GLORYx
- MetaTrans
- Meta-Predictor
BioTransformer3, Sygma, MetaTrans and GloryX (API) are used via singularity.
Meta-Predictor needs to clone its github and to create a conda environment.
Singularity image downloads and conda environment creations are automated (First use may take a long time).
As this project was designed for non-bioinformaticians, a graphical interface via zenity was included (optional).
This project has been tested and run on linux and windows-WSL2.
Due to hardware limitations, Meta-Predictor (which requires cuda drivers) may not function correctly. Its use is therefore disabled by default. You can try running it and seeing the error logs to solve potential problems.
-
Singularity (https://sylabs.io/docs/)
-
Conda (Optional: need for MetaPredictor only) (https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html):
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh; chmod +x Miniconda3-latest-Linux-x86_64.sh; ./Miniconda3-latest-Linux-x86_64.sh -
APT packages (zenity is optional, gawk and dos2unix are often already installed by default):
sudo apt install zenity gawk dos2unix
git clone https://github.com/alexisbourdais/MetaTox; chmod +x MetaTox/Metatox.sh
singularity remote add --no-login SylabsCloud cloud.sycloud.io
cd MetaTox; git clone https://github.com/zhukeyun/Meta-Predictor; mkdir Meta-Predictor/prediction; mv Meta-Predictor/model/SoM\ identifier/ Meta-Predictor/model/SoM_identifier; mv Meta-Predictor/model/metabolite\ predictor/ Meta-Predictor/model/metabolite_predictor; chmod +x Meta-Predictor/predict-top15.sh
- Input : Text file with the molecule ID/name in the 1st column and the smile code in the 2nd column, separated by a comma.
./Metatox.shto activate zenity./MetaTox.sh --input ExempleInput.txt (--option)to skip zenity
-
./Metatox.sh -hto see available parameters when zenity was skippedREQUIRED parameter
-i|--inputOPTIONAL parameter
-o|--outdir Name of the output directory [Results_prediction] -p|--predictor To activate meta-Predictor [No] -b|--biotrans Type of biotransformation to use with BioTransformer3: [allHuman] : Predicts all possible metabolites from any applicable reaction(Oxidation, reduction, (de-)conjugation) at each step ecbased : Prediction of promiscuous metabolism (e.g. glycerolipid metabolism). EC-based metabolism is also called Enzyme Commission based metabolism cyp450 : CYP450 metabolism prediction phaseII : Prediction of major conjugative reactions, including glucuronidation, sulfation, glycine transfer, N-acetyl transfer, and glutathione transfer, among others hgut : Human gut microbial superbio : Runs a set number of transformation steps in a pre-defined order (e.g. deconjugation first, then Oxidation/reduction, etc.) envimicro : Environmental microbial -n|--nstep The number of steps for the prediction by BioTransformer3 [default=1] -c|--cmode CYP450 prediction Mode uses by BioTransformer3: 1 = CypReact+BioTransformer rules 2 = CyProduct only [3] = CypReact+BioTransformer rules+CyProducts -1|--phase1 Number of reaction cycles Phase 1 by SygMa [defaut=1] -2|--phase2 Number of reaction cycles Phase 2 by SygMa [defaut=1] -m|--metabo Metabolism phase for GloryX : [phase_1_and_2] phase_1 phase_2
BioTransformer3 : https://bitbucket.org/wishartlab/biotransformer3.0jar/src/master/
SyGMa : https://github.com/3D-e-Chem/sygma
GLORYx : https://nerdd.univie.ac.at/gloryx/
MetaTrans : https://github.com/KavrakiLab/MetaTrans
Meta-Predictor : https://github.com/zhukeyun/Meta-Predictor/tree/main
BioTransformer : Djoumbou-Feunang, Y. et al. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform 11, 2 (2019)
SyGMa : Ridder, L. & Wagener, M. SyGMa: Combining Expert Knowledge and Empirical Scoring in the Prediction of Metabolites. ChemMedChem 3, 821–832 (2008).
GLORYx : Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics. (Chem. Res. Toxicol. 2020). Christina de Bruyn Kops, Martin Šícho, Angelica Mazzolari, Johannes Kirchmair
MetaTrans : Litsa, E. E., Das, P. & Kavraki, L. E. Prediction of drug metabolites using neural machine translation. Chem. Sci. 11, 12777–12788 (2020).
MetaPredictor: in silico prediction of drug metabolites based on deep language models with prompt engineering
Romain Pelletier; Dina Nahle; Mareme Sarr; Alexis Bourdais; Isabelle Morel; Brendan Le Daré; Thomas Gicquel. Identifying metabolites of new psychoactive substances using in silico prediction tools. Arch Toxicol (2025). https://doi.org/10.1007/s00204-025-04049-5
Pelletier R, Bourdais A, Fabresse N, Ferron PJ, Morel I, Gicquel T, Le Daré B. In silico and in vitro metabolism studies of the new synthetic opiate AP-237 (bucinnazine) using bioinformatics tools. Arch Toxicol. 2024 Jan;98(1):165-179. doi: 10.1007/s00204-023-03617-x. Epub 2023 Oct 15. PMID: 37839054.
Pelletier R, Le Daré B, Le Bouëdec D, Bourdais A, Ferron PJ, Morel I, Porée FH, Gicquel T. Identification, synthesis and quantification of eutylone consumption markers in a chemsex context. Arch Toxicol. 2024 Jan;98(1):151-158. doi: 10.1007/s00204-023-03615-z. Epub 2023 Oct 13. PMID: 37833490.
