Mathematics โ Algorithms โ Models โ Systems โ Infrastructure
graph TB
A[๐ Mathematics<br/>Calculus โข Probability โข Stats โข Linear Algebra] -->|Theory| B[โ๏ธ Algorithms<br/>ML from Scratch โข Optimization]
B -->|Implementation| C[๐ง Models<br/>DL โข Transformers โข LLMs]
C -->|Integration| D[๐๏ธ Systems<br/>RAG โข GenAI โข Pipelines]
D -->|Deployment| E[โก Infrastructure<br/>Docker โข K8s โข AWS โข MLOps]
style A fill:#00D9FF,stroke:#fff,stroke-width:3px,color:#000
style B fill:#FF6B6B,stroke:#fff,stroke-width:3px,color:#fff
style C fill:#4ECDC4,stroke:#fff,stroke-width:3px,color:#000
style D fill:#FFD166,stroke:#fff,stroke-width:3px,color:#000
style E fill:#06D6A0,stroke:#fff,stroke-width:3px,color:#000
I build AI systems from scratch โ starting from mathematical proofs, implementing core algorithms in NumPy, scaling to PyTorch, and deploying on production infrastructure.
This GitHub is my public research laboratory and engineering notebook.
|
Deep Understanding Math โ Code |
Mathematical Rigor Proofs & Derivations |
Systems Thinking Production-Ready |
Research Depth PhD-Level |
Production Scale Docker โข K8s โข AWS |
| Skill | Progress | Topics Covered |
|---|---|---|
| Containerization | Docker โข Docker Compose | |
| Orchestration | Kubernetes โข Helm | |
| CI/CD | GitHub Actions โข Testing | |
| Cloud (AWS) | EC2 โข S3 โข Lambda โข SageMaker |
| Skill | Progress | Topics Covered |
|---|---|---|
| Value-Based Methods | Q-Learning โข DQN | |
| Policy Gradient | REINFORCE โข PPO โข A3C |
| Skill | Progress | Topics Covered |
|---|---|---|
| Core DSA | Arrays โข Trees โข Graphs โข DP |
| Course | Platform/Instructor | Duration | Completion Date | Key Takeaways |
|---|---|---|---|---|
| ๐ฅ Essence of Calculus | 3Blue1Brown (YouTube) | 12 videos (~3 hrs) | โ Nov 2025 | Visual intuition for gradients, optimization, chain rule |
| ๐ฅ Essence of Probability | 3Blue1Brown (YouTube) | 10 videos (~3 hrs) | โ Dec 2025 | Bayesian thinking, distributions, conditional probability |
| ๐ฅ Essence of Linear Algebra | 3Blue1Brown (YouTube) | 16 videos (~4 hrs) | โ Dec 2025 | Geometric intuition, transformations, eigenvectors |
| ๐ CS50's Introduction to AI | Harvard (edX) | 7 weeks | โ Oct 2025 | Search, optimization, ML basics, neural networks |
| ๐ฅ Machine Learning Fundamentals | StatQuest (YouTube) | 50+ videos | โ Nov 2025 | ML algorithms explained with clarity and humor |
| Course | Platform/Instructor | Duration | Progress | Focus | Target Completion |
|---|---|---|---|---|---|
| ๐ฅ Data-Driven Science & Engineering | Steve Brunton (YouTube) | 35 videos (~8 hrs) |  | Applied statistics, hypothesis testing | Mar 2026 |
| ๐ฅ Machine Learning Course | Sebastian Raschka (YouTube) | 95 videos (~40 hrs) |  | Deep ML theory + hands-on practice | Apr 2026 |
| ๐ฅ GenAI Intensive Bootcamp | Andrew Brown | 66+ hours |  | Production GenAI systems, RAG pipelines | Apr 2026 |
| ๐ Deep Learning Book | Goodfellow, Bengio, Courville | Self-paced |  | Comprehensive DL theory | Apr 2026 |
| ๐ Pattern Recognition & ML | Christopher Bishop | Self-paced |  | Mathematical ML foundations | Apr 2026 |
| ๐ฅ Fast.ai Practical Deep Learning | Jeremy Howard | ~40 hours |  | Practical DL for coders | Apr 2026 |
| ๐ฅ NLP Specialization | Hugging Face | Self-paced |  | Transformers, tokenization, fine-tuning | Apr 2026 |
| ๐ Reinforcement Learning | Sutton & Barto | Self-paced |  | RL theory and algorithms | Apr 2026 |
- ๐ Stanford CS229 - Machine Learning (Andrew Ng)
- ๐ MIT 6.S191 - Introduction to Deep Learning
- ๐ Berkeley CS285 - Deep Reinforcement Learning
- ๐ Stanford CS224N - NLP with Deep Learning
- ๐ AWS Machine Learning Specialty - Certification
- ๐ Designing Data-Intensive Applications - Martin Kleppmann
- ๐ Hands-On Machine Learning - Aurรฉlien Gรฉron (3rd Edition)
๐ฏ ml-from-scratch โFoundation Complete: ML Algorithms from Mathematical First Principles # Linear Regression
โL/โw = (1/n)X^T(Xw - y)
w := w - ฮฑยทโL/โw
# Logistic Regression
ฯ(z) = 1/(1 + e^(-z))
โL/โw = (1/n)X^T(ฯ(Xw) - y)Fully Implemented:
Key Features:
Completed: January 2026 |
|
Attention โ GPT/BERT Roadmap:
Attention(Q,K,V) =
softmax(QK^T/โd_k)VTimeline: May - July 2026 |
๐ rag-from-scratchProduction RAG Pipeline Components:
Timeline: July - September 2026 |
โ๏ธ mlops-pipelineEnd-to-End ML System Pipeline:
Timeline: September - November 2026 |
|
RL Algorithms from Scratch Algorithms:
Timeline: October - December 2026 |
๐ป leetcode-solutionsDSA for AI Engineers Progress:
Goal: 300+ problems by Dec 2026 |
๐ portfolio-websiteProfessional Portfolio Features:
Stack: Next.js, Tailwind, MDX |
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ REPO STRUCTURE TEMPLATE โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ repo-name/ โ
โ โโโ ๐ README.md โ Problem โข Math โข Solution โ
โ โโโ ๐ฆ pyproject.toml โ Dependencies โ
โ โโโ ๐ง Makefile โ Commands โ
โ โโโ ๐ณ Dockerfile โ Containerization โ
โ โ โ
โ โโโ ๐ src/ โ Production code โ
โ โ โโโ __init__.py โ
โ โ โโโ models/ โ Algorithms โ
โ โ โโโ utils/ โ Helpers โ
โ โ โโโ viz/ โ Visualizations โ
โ โ โ
โ โโโ ๐ notebooks/ โ Experiments & intuition โ
โ โ โโโ 01_theory.ipynb โ
โ โ โโโ 02_implementation.ipynb โ
โ โ โโโ 03_comparison.ipynb โ
โ โ โ
โ โโโ ๐งช tests/ โ Unit tests โ
โ โ โโโ test_models.py โ
โ โ โโโ test_utils.py โ
โ โ โ
โ โโโ ๐ docs/ โ Theory & math โ
โ โ โโโ theory.md โ Mathematical foundations โ
โ โ โโโ derivations.md โ Step-by-step proofs โ
โ โ โโโ api.md โ Code documentation โ
โ โ โ
โ โโโ ๐ examples/ โ Real-world usage โ
โ โ โโโ basic_example.py โ
โ โ โโโ advanced_demo.py โ
โ โ โ
โ โโโ ๐ data/ โ Sample datasets โ
โ โโโ raw/ โ
โ โโโ processed/ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Every README Answers:
- โ What problem? โ Real-world motivation
- ๐ What math? โ Mathematical foundation
- โ๏ธ What algorithm? โ Step-by-step explanation
- ๐ก Why it works? โ Intuition & proofs
- ๐ How it scales? โ Complexity & optimization
gantt
title Amman's AI Engineering Journey (2026)
dateFormat YYYY-MM-DD
section โ
Completed (2025)
ML from Scratch :done, comp1, 2025-11-01, 2026-01-31
Math Foundation (3B1B) :done, comp2, 2025-10-01, 2025-12-31
CS50 AI :done, comp3, 2025-10-01, 2025-11-30
section ๐ฅ Active (Jan-Apr 2026)
Prob/Stats Simulations :active, act1, 2026-02-01, 60d
DL from Scratch :active, act2, 2026-02-15, 75d
Steve Brunton Stats :active, act3, 2026-02-01, 45d
Sebastian Raschka ML :active, act4, 2026-01-15, 120d
section ๐
Planned (May-Dec 2026)
Transformers from Scratch :plan1, 2026-05-01, 90d
RAG from Scratch :plan2, 2026-07-01, 90d
MLOps Pipeline :plan3, 2026-09-01, 90d
RL Lab :plan4, 2026-10-01, 90d
Portfolio Website :plan5, 2026-06-01, 60d
section ๐ฏ Continuous
LeetCode Daily :daily1, 2026-02-01, 365d
Andrew Brown GenAI :daily2, 2026-02-01, 180d
Blog Posts :daily3, 2026-03-01, 300d
| Project | Status | Current Sprint | Next Milestone | Completion Target |
|---|---|---|---|---|
| ml-from-scratch | โ COMPLETED | โ | Archive & document | Completed Jan 2026 |
| prob-stats-simulations | ๐ฅ ACTIVE | Bayesian inference | Complete hypothesis testing | March 2026 |
| deep-learning-scratch | ๐ฅ ACTIVE | Conv2D layers | Complete CNN implementation | April 2026 |
| Steve Brunton Stats | ๐ LEARNING | Video 21/35 | Finish all videos | March 2026 |
| Sebastian Raschka ML | ๐ LEARNING | Video 42/95 | Complete course | April 2026 |
| LeetCode Practice | โก DAILY | 120/300 problems | Reach 200 problems | June 2026 |
| transformers-scratch | ๐ PLANNED | Planning phase | Start implementation | May 2026 |
- โ ML from Scratch โ Complete implementation (Jan 2026)
- โ 3Blue1Brown Math Series โ All courses completed (Dec 2025)
- โ CS50 AI โ Certificate earned (Oct 2025)
- โ 100+ LeetCode Problems โ Milestone reached (Jan 2026)
"The best way to learn is to teach. Writing forces clarity."
| Title | Focus | Target Date | Status |
|---|---|---|---|
| Why Build ML from Scratch? | Philosophy & Learning | March 2026 | โ๏ธ Drafting |
| Mathematical Intuition: Backpropagation | Deep Learning | April 2026 | ๐ Researching |
| Implementing Attention from NumPy | Transformers | June 2026 | ๐ฏ Planned |
| Building Production RAG Systems | GenAI | August 2026 | ๐ฎ Future |
| MLOps for Solo Developers | Infrastructure | October 2026 | ๐ฎ Future |
| RL Fundamentals with Code | Reinforcement Learning | November 2026 | ๐ฎ Future |
I am actively seeking remote AI/ML engineering roles with:
- ๐ Location: Remote-first (Global)
- ๐ผ Role Type: Full-time, Contract, Freelance
- ๐ฏ Focus Areas: ML/DL, NLP, LLMs, RAG Systems, MLOps
- ๐ Current Location: Gorakhpur, India
- ๐ Availability: Immediate (February 2026)
|
Research Projects ML/DL collaborations |
Open Source Contributing to AI libraries |
Technical Writing Educational content |
Real Projects Production AI systems |
- ๐ Mentorship from experienced ML researchers/engineers
- ๐ฅ Study groups for advanced ML topics
- ๐ฌ Research collaborations on interesting problems
- ๐ผ Remote AI/ML engineering roles (Full-time or Contract)
- ๐ Paper reading groups & discussion forums
- ๐ค Open source contributions to major AI/ML projects
|
Professional Network |
Learning in Public |
GitHub Code & Projects |
Direct Contact |
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ
โ "I don't just train models โ I understand why they work. โ
โ I don't just use tools โ I build them from scratch. โ
โ I don't just follow tutorials โ I derive the theory. โ
โ I don't just deploy code โ I understand the infrastructure. โ
โ โ
โ Building slowly, deeply, and correctly. โ
โ Because foundations matter." โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โญ Starring my repositories
๐ Following my journey
๐ค Collaborating on projects
๐ฌ Sharing feedback & suggestions
๐ผ Reaching out for opportunities
Last Updated: February 3, 2026 | Built with passion for AI research & engineering | Open to Remote Work ๐

