Skip to content
View ammmanism's full-sized avatar
  • ๐Ÿš€ AI/ML Engineer | Open to Remote Opportunities
  • ๐ŸŒ Remote

Block or report ammmanism

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this userโ€™s behavior. Learn more about reporting abuse.

Report abuse
ammmanism/README.md

๐Ÿงญ Core Philosophy

Mathematics โ†’ Algorithms โ†’ Models โ†’ Systems โ†’ Infrastructure

graph TB
    A[๐Ÿ“ Mathematics<br/>Calculus โ€ข Probability โ€ข Stats โ€ข Linear Algebra] -->|Theory| B[โš™๏ธ Algorithms<br/>ML from Scratch โ€ข Optimization]
    B -->|Implementation| C[๐Ÿง  Models<br/>DL โ€ข Transformers โ€ข LLMs]
    C -->|Integration| D[๐Ÿ—๏ธ Systems<br/>RAG โ€ข GenAI โ€ข Pipelines]
    D -->|Deployment| E[โšก Infrastructure<br/>Docker โ€ข K8s โ€ข AWS โ€ข MLOps]
    
    style A fill:#00D9FF,stroke:#fff,stroke-width:3px,color:#000
    style B fill:#FF6B6B,stroke:#fff,stroke-width:3px,color:#fff
    style C fill:#4ECDC4,stroke:#fff,stroke-width:3px,color:#000
    style D fill:#FFD166,stroke:#fff,stroke-width:3px,color:#000
    style E fill:#06D6A0,stroke:#fff,stroke-width:3px,color:#000
Loading

๐Ÿ’ก "If I can't derive it, code it, and deploy it โ€” I don't consider it learned."

I build AI systems from scratch โ€” starting from mathematical proofs, implementing core algorithms in NumPy, scaling to PyTorch, and deploying on production infrastructure.

This GitHub is my public research laboratory and engineering notebook.


๐ŸŽฏ What I'm Building Toward


Deep Understanding
Math โ†’ Code

Mathematical Rigor
Proofs & Derivations

Systems Thinking
Production-Ready

Research Depth
PhD-Level

Production Scale
Docker โ€ข K8s โ€ข AWS

๐ŸŒ Open to Remote Opportunities Globally


๐Ÿ“Š Live Skill Matrix (Current as of Feb 2026)

๐Ÿ“ Mathematics Foundation

Skill Progress Topics Covered
Calculus & Optimization 70% Gradients โ€ข Chain Rule โ€ข Lagrange Multipliers
Probability Theory 65% Bayesian Inference โ€ข Distributions โ€ข Sampling
Statistics 60% Hypothesis Testing โ€ข Estimation โ€ข Confidence Intervals
Linear Algebra 65% Vector Spaces โ€ข Eigenvalues โ€ข SVD

๐Ÿค– Machine Learning

Skill Progress Topics Covered
Supervised Learning 75% Linear/Logistic Regression โ€ข Trees โ€ข Ensembles
Unsupervised Learning 65% K-Means โ€ข PCA โ€ข Clustering
ML Theory 60% Bias-Variance โ€ข Regularization โ€ข PAC Learning
Feature Engineering 65% Encoding โ€ข Scaling โ€ข Selection โ€ข Creation

๐Ÿงฌ Deep Learning

Skill Progress Topics Covered
Backpropagation 65% Chain Rule โ€ข Computational Graphs โ€ข Gradients
Neural Architectures 60% MLP โ€ข CNN โ€ข RNN โ€ข ResNet
Optimization 60% SGD โ€ข Momentum โ€ข Adam โ€ข RMSProp
Regularization 55% Dropout โ€ข BatchNorm โ€ข L1/L2

๐Ÿง  Transformers & LLMs

Skill Progress Topics Covered
Attention Mechanisms 50% Self-Attention โ€ข Multi-Head โ€ข Cross-Attention
Transformer Architecture 50% Encoder-Decoder โ€ข Positional Encoding
LLM Training 40% Pretraining โ€ข Fine-tuning โ€ข RLHF
PEFT Methods 40% LoRA โ€ข QLoRA โ€ข Adapters

๐Ÿ” RAG & GenAI

Skill Progress Topics Covered
Document Processing 50% Chunking โ€ข Parsing โ€ข OCR
Retrieval Systems 50% Dense โ€ข Sparse โ€ข Hybrid
Vector Databases 50% Pinecone โ€ข Weaviate โ€ข FAISS
RAG Evaluation 40% RAGAS โ€ข Faithfulness โ€ข Relevancy

๐Ÿ—๏ธ MLOps & Infrastructure

Skill Progress Topics Covered
Containerization 60% Docker โ€ข Docker Compose
Orchestration 40% Kubernetes โ€ข Helm
CI/CD 50% GitHub Actions โ€ข Testing
Cloud (AWS) 40% EC2 โ€ข S3 โ€ข Lambda โ€ข SageMaker

๐Ÿ”ข Reinforcement Learning

Skill Progress Topics Covered
Value-Based Methods 35% Q-Learning โ€ข DQN
Policy Gradient 30% REINFORCE โ€ข PPO โ€ข A3C

๐Ÿ’ป Data Structures & Algorithms

Skill Progress Topics Covered
Core DSA 60% Arrays โ€ข Trees โ€ข Graphs โ€ข DP

๐Ÿ› ๏ธ Tech Arsenal

๐Ÿ’ป Languages & Core Libraries

Python NumPy Pandas Jupyter

๐Ÿง  ML/DL Frameworks

PyTorch TensorFlow Scikit-Learn Keras

๐Ÿค– GenAI & LLM Stack

HuggingFace LangChain OpenAI Anthropic

๐Ÿ” Vector Databases

Pinecone Weaviate ChromaDB FAISS

โš™๏ธ Backend & APIs

FastAPI Flask Django

โ˜๏ธ Cloud & DevOps

Docker Kubernetes AWS Terraform

๐Ÿ—„๏ธ Databases

PostgreSQL MongoDB Redis

๐Ÿ”ง Tools

Git Linux VS Code Vim


๐Ÿ“š Learning Journey & Completed Courses

โœ… COMPLETED COURSES (2025)

Course Platform/Instructor Duration Completion Date Key Takeaways
๐ŸŽฅ Essence of Calculus 3Blue1Brown (YouTube) 12 videos (~3 hrs) โœ… Nov 2025 Visual intuition for gradients, optimization, chain rule
๐ŸŽฅ Essence of Probability 3Blue1Brown (YouTube) 10 videos (~3 hrs) โœ… Dec 2025 Bayesian thinking, distributions, conditional probability
๐ŸŽฅ Essence of Linear Algebra 3Blue1Brown (YouTube) 16 videos (~4 hrs) โœ… Dec 2025 Geometric intuition, transformations, eigenvectors
๐Ÿ“š CS50's Introduction to AI Harvard (edX) 7 weeks โœ… Oct 2025 Search, optimization, ML basics, neural networks
๐ŸŽฅ Machine Learning Fundamentals StatQuest (YouTube) 50+ videos โœ… Nov 2025 ML algorithms explained with clarity and humor

๐Ÿ“– IN PROGRESS (Jan - Apr 2026)

Course Platform/Instructor Duration Progress Focus Target Completion
๐ŸŽฅ Data-Driven Science & Engineering Steve Brunton (YouTube) 35 videos (~8 hrs) ![60%](https://geps.dev/progress/60) Applied statistics, hypothesis testing Mar 2026
๐ŸŽฅ Machine Learning Course Sebastian Raschka (YouTube) 95 videos (~40 hrs) ![45%](https://geps.dev/progress/45) Deep ML theory + hands-on practice Apr 2026
๐ŸŽฅ GenAI Intensive Bootcamp Andrew Brown 66+ hours ![20%](https://geps.dev/progress/20) Production GenAI systems, RAG pipelines Apr 2026
๐Ÿ“š Deep Learning Book Goodfellow, Bengio, Courville Self-paced ![15%](https://geps.dev/progress/15) Comprehensive DL theory Apr 2026
๐Ÿ“š Pattern Recognition & ML Christopher Bishop Self-paced ![10%](https://geps.dev/progress/10) Mathematical ML foundations Apr 2026
๐ŸŽฅ Fast.ai Practical Deep Learning Jeremy Howard ~40 hours ![25%](https://geps.dev/progress/25) Practical DL for coders Apr 2026
๐ŸŽฅ NLP Specialization Hugging Face Self-paced ![30%](https://geps.dev/progress/30) Transformers, tokenization, fine-tuning Apr 2026
๐Ÿ“š Reinforcement Learning Sutton & Barto Self-paced ![20%](https://geps.dev/progress/20) RL theory and algorithms Apr 2026

๐Ÿ“… PLANNED FOR 2026

  • ๐ŸŽ“ Stanford CS229 - Machine Learning (Andrew Ng)
  • ๐ŸŽ“ MIT 6.S191 - Introduction to Deep Learning
  • ๐ŸŽ“ Berkeley CS285 - Deep Reinforcement Learning
  • ๐ŸŽ“ Stanford CS224N - NLP with Deep Learning
  • ๐ŸŽ“ AWS Machine Learning Specialty - Certification
  • ๐Ÿ“š Designing Data-Intensive Applications - Martin Kleppmann
  • ๐Ÿ“š Hands-On Machine Learning - Aurรฉlien Gรฉron (3rd Edition)

๐Ÿš€ Repository Ecosystem

โœ… COMPLETED PROJECTS

๐ŸŽฏ ml-from-scratch โœ…

Foundation Complete: ML Algorithms from Mathematical First Principles

# Linear Regression
โˆ‚L/โˆ‚w = (1/n)X^T(Xw - y)
w := w - ฮฑยทโˆ‚L/โˆ‚w

# Logistic Regression  
ฯƒ(z) = 1/(1 + e^(-z))
โˆ‚L/โˆ‚w = (1/n)X^T(ฯƒ(Xw) - y)

Fully Implemented:

  • โœ… Linear Regression (OLS, Gradient Descent, Ridge, Lasso)
  • โœ… Logistic Regression (Binary, Multiclass, Regularized)
  • โœ… K-Nearest Neighbors (Classification, Regression, Distance Metrics)
  • โœ… K-Means Clustering (with elbow method, silhouette analysis)
  • โœ… Naive Bayes (Gaussian, Multinomial, Bernoulli)
  • โœ… Decision Trees (CART algorithm, pruning)
  • โœ… Random Forests (Bagging, feature importance)
  • โœ… Support Vector Machines (Linear, Kernel methods)
  • โœ… Principal Component Analysis (PCA)
  • โœ… Gradient Boosting basics

Key Features:

  • ๐Ÿ“ Math-first approach (derivations โ†’ code)
  • ๐Ÿงช 100% unit tested against sklearn
  • ๐Ÿ“Š Visual comparisons & insights
  • ๐Ÿ“ Comprehensive documentation with theory
  • ๐ŸŽฏ Performance benchmarking

Completed: January 2026

๐Ÿ“– View Repository โ†’

๐Ÿšง ACTIVE DEVELOPMENT

Statistical Intuition Through Code

Implemented:

  • โœ… Monte Carlo simulations
  • โœ… Common distributions (Normal, Binomial, Poisson)
  • ๐Ÿšง Bayesian inference from scratch

In Progress:

  • ๐Ÿšง Hypothesis testing (t-test, ANOVA, chi-square)
  • ๐Ÿšง Resampling methods (Bootstrap, Permutation)

Planned:

  • ๐Ÿ“… Central Limit Theorem demonstrations
  • ๐Ÿ“… Markov Chain Monte Carlo (MCMC)

Expected Completion: March 2026

Neural Networks: Theory โ†’ Code

Implemented:

  • โœ… Backpropagation mathematics
  • โœ… Dense layers
  • โœ… Activation functions (ReLU, Sigmoid, Tanh, Softmax)
  • ๐Ÿšง Convolutional layers

In Progress:

  • ๐Ÿšง BatchNorm implementation
  • ๐Ÿšง Dropout regularization
  • ๐Ÿšง Advanced optimizers (Adam, RMSProp)

Expected Completion: April 2026

๐Ÿ“… PLANNED FOR 2026

Attention โ†’ GPT/BERT

Roadmap:

  • Scaled dot-product attention
  • Multi-head attention
  • Positional encoding
  • Encoder/Decoder blocks
  • GPT-style generation
  • BERT-style pretraining
Attention(Q,K,V) = 
  softmax(QK^T/โˆšd_k)V

Timeline: May - July 2026

Production RAG Pipeline

Components:

  • Document processing
  • Chunking strategies
  • Embedding models
  • Vector search (FAISS, Pinecone)
  • Retrieval methods
  • Generation + RAGAS evaluation

Timeline: July - September 2026

โš™๏ธ mlops-pipeline

End-to-End ML System

Pipeline:

  1. Data ingestion
  2. Feature engineering
  3. Model training
  4. Deployment (FastAPI)
  5. Monitoring
  6. CI/CD

Timeline: September - November 2026

RL Algorithms from Scratch

Algorithms:

  • Q-Learning
  • Deep Q-Networks (DQN)
  • Policy Gradient
  • PPO
  • Actor-Critic

Timeline: October - December 2026

DSA for AI Engineers

Progress:

  • Arrays & Strings: 45/100
  • Trees & Graphs: 30/80
  • Dynamic Programming: 15/60
  • Total: 120/300

Goal: 300+ problems by Dec 2026

Professional Portfolio

Features:

  • Project showcase
  • Blog integration
  • Interactive demos
  • Resume & contact

Stack: Next.js, Tailwind, MDX


๐Ÿ—๏ธ Project Architecture Philosophy

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                  REPO STRUCTURE TEMPLATE                 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  repo-name/                                             โ”‚
โ”‚  โ”œโ”€โ”€ ๐Ÿ“„ README.md          โ† Problem โ€ข Math โ€ข Solution โ”‚
โ”‚  โ”œโ”€โ”€ ๐Ÿ“ฆ pyproject.toml     โ† Dependencies               โ”‚
โ”‚  โ”œโ”€โ”€ ๐Ÿ”ง Makefile           โ† Commands                   โ”‚
โ”‚  โ”œโ”€โ”€ ๐Ÿณ Dockerfile         โ† Containerization           โ”‚
โ”‚  โ”‚                                                       โ”‚
โ”‚  โ”œโ”€โ”€ ๐Ÿ“ src/               โ† Production code            โ”‚
โ”‚  โ”‚   โ”œโ”€โ”€ __init__.py                                    โ”‚
โ”‚  โ”‚   โ”œโ”€โ”€ models/          โ† Algorithms                  โ”‚
โ”‚  โ”‚   โ”œโ”€โ”€ utils/           โ† Helpers                     โ”‚
โ”‚  โ”‚   โ””โ”€โ”€ viz/             โ† Visualizations              โ”‚
โ”‚  โ”‚                                                       โ”‚
โ”‚  โ”œโ”€โ”€ ๐Ÿ““ notebooks/         โ† Experiments & intuition    โ”‚
โ”‚  โ”‚   โ”œโ”€โ”€ 01_theory.ipynb                                โ”‚
โ”‚  โ”‚   โ”œโ”€โ”€ 02_implementation.ipynb                        โ”‚
โ”‚  โ”‚   โ””โ”€โ”€ 03_comparison.ipynb                            โ”‚
โ”‚  โ”‚                                                       โ”‚
โ”‚  โ”œโ”€โ”€ ๐Ÿงช tests/             โ† Unit tests                 โ”‚
โ”‚  โ”‚   โ”œโ”€โ”€ test_models.py                                 โ”‚
โ”‚  โ”‚   โ””โ”€โ”€ test_utils.py                                  โ”‚
โ”‚  โ”‚                                                       โ”‚
โ”‚  โ”œโ”€โ”€ ๐Ÿ“š docs/              โ† Theory & math              โ”‚
โ”‚  โ”‚   โ”œโ”€โ”€ theory.md        โ† Mathematical foundations    โ”‚
โ”‚  โ”‚   โ”œโ”€โ”€ derivations.md   โ† Step-by-step proofs         โ”‚
โ”‚  โ”‚   โ””โ”€โ”€ api.md           โ† Code documentation          โ”‚
โ”‚  โ”‚                                                       โ”‚
โ”‚  โ”œโ”€โ”€ ๐Ÿš€ examples/          โ† Real-world usage           โ”‚
โ”‚  โ”‚   โ”œโ”€โ”€ basic_example.py                               โ”‚
โ”‚  โ”‚   โ””โ”€โ”€ advanced_demo.py                               โ”‚
โ”‚  โ”‚                                                       โ”‚
โ”‚  โ””โ”€โ”€ ๐Ÿ“Š data/              โ† Sample datasets            โ”‚
โ”‚      โ”œโ”€โ”€ raw/                                            โ”‚
โ”‚      โ””โ”€โ”€ processed/                                      โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Every README Answers:

  1. โ“ What problem? โ€” Real-world motivation
  2. ๐Ÿ“ What math? โ€” Mathematical foundation
  3. โš™๏ธ What algorithm? โ€” Step-by-step explanation
  4. ๐Ÿ’ก Why it works? โ€” Intuition & proofs
  5. ๐Ÿš€ How it scales? โ€” Complexity & optimization

๐Ÿ“Š GitHub Analytics Dashboard

๐Ÿ“ˆ Overall Stats

GitHub Stats

๐Ÿ”ฅ Streak Stats

GitHub Streak

๐Ÿ“Š Activity Graph

Activity Graph

๐Ÿ’ป Language Distribution

Top Languages

๐Ÿ† Trophies

Trophies

๐Ÿ“… 2026 Roadmap & Timeline

gantt
    title Amman's AI Engineering Journey (2026)
    dateFormat YYYY-MM-DD
    
    section โœ… Completed (2025)
    ML from Scratch            :done, comp1, 2025-11-01, 2026-01-31
    Math Foundation (3B1B)     :done, comp2, 2025-10-01, 2025-12-31
    CS50 AI                    :done, comp3, 2025-10-01, 2025-11-30
    
    section ๐Ÿ”ฅ Active (Jan-Apr 2026)
    Prob/Stats Simulations     :active, act1, 2026-02-01, 60d
    DL from Scratch            :active, act2, 2026-02-15, 75d
    Steve Brunton Stats        :active, act3, 2026-02-01, 45d
    Sebastian Raschka ML       :active, act4, 2026-01-15, 120d
    
    section ๐Ÿ“… Planned (May-Dec 2026)
    Transformers from Scratch  :plan1, 2026-05-01, 90d
    RAG from Scratch           :plan2, 2026-07-01, 90d
    MLOps Pipeline             :plan3, 2026-09-01, 90d
    RL Lab                     :plan4, 2026-10-01, 90d
    Portfolio Website          :plan5, 2026-06-01, 60d
    
    section ๐ŸŽฏ Continuous
    LeetCode Daily             :daily1, 2026-02-01, 365d
    Andrew Brown GenAI         :daily2, 2026-02-01, 180d
    Blog Posts                 :daily3, 2026-03-01, 300d
Loading

๐ŸŽฏ Current Focus & Milestones (February 2026)

Project Status Current Sprint Next Milestone Completion Target
ml-from-scratch โœ… COMPLETED โ€” Archive & document Completed Jan 2026
prob-stats-simulations ๐Ÿ”ฅ ACTIVE Bayesian inference Complete hypothesis testing March 2026
deep-learning-scratch ๐Ÿ”ฅ ACTIVE Conv2D layers Complete CNN implementation April 2026
Steve Brunton Stats ๐Ÿ“š LEARNING Video 21/35 Finish all videos March 2026
Sebastian Raschka ML ๐Ÿ“š LEARNING Video 42/95 Complete course April 2026
LeetCode Practice โšก DAILY 120/300 problems Reach 200 problems June 2026
transformers-scratch ๐Ÿ“… PLANNED Planning phase Start implementation May 2026

๐Ÿ† 2026 Goals & Achievements

โœ… Achievements Unlocked (2025)

  • โœ… ML from Scratch โ€” Complete implementation (Jan 2026)
  • โœ… 3Blue1Brown Math Series โ€” All courses completed (Dec 2025)
  • โœ… CS50 AI โ€” Certificate earned (Oct 2025)
  • โœ… 100+ LeetCode Problems โ€” Milestone reached (Jan 2026)

๐ŸŽฏ 2026 Target Milestones (Max Completion: April 2026)

Milestone Target Date Progress
๐Ÿ“ Complete Math & Stats Foundation Q1 2026 85%
๐Ÿงฌ Deep Learning from Scratch Q2 2026 55%
๐Ÿง  Transformers Implementation Q3 2026 15%
๐Ÿ” Production RAG System Q3 2026 10%
โš™๏ธ MLOps Pipeline Q4 2026 8%
๐Ÿ… First Kaggle Medal Q2 2026 25%
๐Ÿ’ป LeetCode 300+ Problems Q4 2026 50%
๐Ÿ’ผ Portfolio Website Live Q2 2026 30%
๐Ÿ“ Publish 10 Technical Blogs Q4 2026 15%

๐Ÿ“ Blog & Technical Writing (Planned)

"The best way to learn is to teach. Writing forces clarity."

๐ŸŽฏ Planned Blog Series

Title Focus Target Date Status
Why Build ML from Scratch? Philosophy & Learning March 2026 โœ๏ธ Drafting
Mathematical Intuition: Backpropagation Deep Learning April 2026 ๐Ÿ“š Researching
Implementing Attention from NumPy Transformers June 2026 ๐ŸŽฏ Planned
Building Production RAG Systems GenAI August 2026 ๐Ÿ”ฎ Future
MLOps for Solo Developers Infrastructure October 2026 ๐Ÿ”ฎ Future
RL Fundamentals with Code Reinforcement Learning November 2026 ๐Ÿ”ฎ Future

๐Ÿค Collaboration & Open Source

๐Ÿ’ผ Open to Remote Opportunities

I am actively seeking remote AI/ML engineering roles with:

  • ๐ŸŒ Location: Remote-first (Global)
  • ๐Ÿ’ผ Role Type: Full-time, Contract, Freelance
  • ๐ŸŽฏ Focus Areas: ML/DL, NLP, LLMs, RAG Systems, MLOps
  • ๐Ÿ“ Current Location: Gorakhpur, India
  • ๐Ÿ• Availability: Immediate (February 2026)

I'm Open To:


Research Projects
ML/DL collaborations

Open Source
Contributing to AI libraries

Technical Writing
Educational content

Real Projects
Production AI systems

Looking For:

  • ๐ŸŽ“ Mentorship from experienced ML researchers/engineers
  • ๐Ÿ‘ฅ Study groups for advanced ML topics
  • ๐Ÿ”ฌ Research collaborations on interesting problems
  • ๐Ÿ’ผ Remote AI/ML engineering roles (Full-time or Contract)
  • ๐Ÿ“š Paper reading groups & discussion forums
  • ๐Ÿค Open source contributions to major AI/ML projects

๐Ÿ“ฌ Connect With Me


๐Ÿ’ญ My Philosophy

โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—
โ•‘                                                                โ•‘
โ•‘  "I don't just train models โ€” I understand why they work.     โ•‘
โ•‘   I don't just use tools โ€” I build them from scratch.         โ•‘
โ•‘   I don't just follow tutorials โ€” I derive the theory.        โ•‘
โ•‘   I don't just deploy code โ€” I understand the infrastructure. โ•‘
โ•‘                                                                โ•‘
โ•‘   Building slowly, deeply, and correctly.                     โ•‘
โ•‘   Because foundations matter."                                โ•‘
โ•‘                                                                โ•‘
โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

๐ŸŒŸ If you find my work interesting, consider:

โญ Starring my repositories
๐Ÿ‘€ Following my journey
๐Ÿค Collaborating on projects
๐Ÿ’ฌ Sharing feedback & suggestions
๐Ÿ’ผ Reaching out for opportunities


Last Updated: February 3, 2026 | Built with passion for AI research & engineering | Open to Remote Work ๐ŸŒ

Footer Wave

Popular repositories Loading

  1. ammmanism ammmanism Public

    Config files for my GitHub profile.

  2. ammmanasm ammmanasm Public

    Jupyter Notebook

  3. -ML-From-Scratch-Mathematical-Foundations-to-Research-Engineering -ML-From-Scratch-Mathematical-Foundations-to-Research-Engineering Public

    A deeply structured Machine Learning from Scratch repository covering mathematical foundations, algorithm implementations, neural architectures, transformers, generative models, and research engineโ€ฆ

  4. ml-from-scratch-lab ml-from-scratch-lab Public

    Mathematical Foundations โ†’ Algorithms โ†’ Neural Networks โ†’ Research Engineering โ€” Machine Learning implemented from scratch using NumPy.

    Jupyter Notebook