Skip to content

cbratkovics/sat_act_analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

10 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“Š Master Exploratory Data Analysis with Python

Python Pandas Matplotlib Seaborn Jupyter

🎯 Complete EDA Tutorial β€’ πŸ“š Beginner-Friendly β€’ πŸš€ Real-World Dataset

Learn data science fundamentals through hands-on SAT/ACT analysis

Read on Medium View on GitHub

🎯 What You'll Learn

πŸš€ From Zero to EDA Hero in One Tutorial

Transform raw data into actionable insights using real SAT & ACT datasets from 2017-2018. Perfect for aspiring data scientists, students, and professionals looking to master Python-based data analysis.

πŸŽ“ **Skill Level** ⏱️ **Duration** πŸ› οΈ **Tools** πŸ“Š **Dataset**
Beginner to Intermediate 2-3 Hours Python, Pandas, Matplotlib Real SAT/ACT Data

πŸ” Why This Tutorial Matters

EDA is the foundation of every successful data science project

πŸ“ˆ Real-World Impact

Standardized testing affects millions of students across the U.S. By analyzing SAT/ACT data, you'll uncover:

  • πŸ›οΈ Policy Implications: How state mandates affect participation
  • πŸ“Š Performance Disparities: Regional differences in test scores
  • 🎯 Hidden Patterns: Trends not visible in summary statistics
  • πŸ’‘ Data-Driven Insights: Evidence-based conclusions about education

🌟 Key Learning Outcomes

🧠 Core Skills πŸ“Š Techniques 🎯 Applications
Data Cleaning Statistical Analysis Educational Research
Visualization Correlation Analysis Policy Impact Assessment
Pattern Recognition Distribution Analysis Comparative Studies

πŸ› οΈ 4-Step EDA Mastery Framework

graph TD
    A[πŸ“„ 1. Data Description] --> B[🧹 2. Data Cleaning]
    B --> C[πŸ“Š 3. Visualization]
    C --> D[πŸ”— 4. Correlation Analysis]
    
    style A fill:#e3f2fd
    style B fill:#fff3e0
    style C fill:#e8f5e8
    style D fill:#fce4ec
Loading

πŸ“„ Step 1: Data Description & Exploration

πŸ” What We Check 🎯 Why It Matters
Dataset Dimensions Understanding scope and scale
Missing Values Data quality assessment
Data Types Proper analysis preparation
Sample Preview Initial pattern recognition

πŸ”§ Key Techniques:

  • df.info() and df.describe() for quick insights
  • Missing data visualization with heatmaps
  • Data type validation and conversion

🧹 Step 2: Data Cleaning & Preprocessing

⚠️ Common Issues πŸ› οΈ Solutions
Missing Values Imputation strategies
Wrong Data Types Type conversion
Structural Errors Standardization
Outliers Detection and handling

🎯 Pro Tips:

  • Use pd.to_numeric() for score conversions
  • Handle percentage data consistently
  • Validate state-level data integrity

πŸ“Š Step 3: Visual Data Exploration

πŸ“ˆ Chart Type 🎯 Best For πŸ” Insights
Bar Charts Comparing states Participation patterns
Histograms Score distributions Performance spread
Box Plots Outlier detection Statistical summaries
Scatter Plots Relationships Correlation exploration

🎨 Visualization Highlights:

  • State-by-state participation comparisons
  • Score distribution analysis
  • Regional performance patterns

πŸ”— Step 4: Correlation & Insights

πŸ”₯ Analysis Type πŸ“Š Method πŸ’‘ Key Finding
Participation vs Performance Correlation Matrix Inverse relationship
SAT vs ACT Preferences Heatmaps Regional patterns
State Policy Impact Comparative Analysis Mandate effects

πŸ“š Tutorial Structure

πŸ“– What's Inside

πŸ“‚ **Section** 🎯 **Focus** ⏱️ **Time** πŸ† **Outcome**
πŸš€ Setup & Imports Environment preparation 10 min Ready-to-use workspace
πŸ“Š Data Loading Dataset exploration 20 min Understanding data structure
🧹 Data Cleaning Quality assurance 30 min Clean, analysis-ready data
πŸ“ˆ Visualization Pattern discovery 45 min Compelling visualizations
πŸ” Analysis Insight generation 30 min Data-driven conclusions
πŸ’‘ Conclusions Key takeaways 15 min Actionable insights

πŸš€ Quick Start Guide

πŸ“‹ Prerequisites

# Required libraries - install with pip
pip install pandas numpy matplotlib seaborn jupyter

πŸ”§ Setup Instructions

# 1️⃣ Clone the repository
git clone https://github.com/cbratkovics/sat_act_analysis.git
cd sat_act_analysis

# 2️⃣ Launch Jupyter Notebook
jupyter notebook

# 3️⃣ Open the main tutorial file
# Click on "EDA_Tutorial.ipynb"

πŸ“¦ Essential Imports

# Data manipulation powerhouse
import pandas as pd
import numpy as np

# Visualization magic
import matplotlib.pyplot as plt
import seaborn as sns

# Make plots look professional
plt.style.use('seaborn-v0_8')
sns.set_palette("husl")

πŸ“Š Sample Insights You'll Discover

πŸ” Key Findings Preview

πŸ’‘ Surprising Discovery: States with higher SAT participation often show lower average scores - revealing the importance of considering mandatory vs. voluntary testing!

πŸ† Top Insights πŸ“ˆ Impact
Participation-Performance Paradox 🎯 Challenges conventional wisdom
Regional Testing Preferences πŸ—ΊοΈ Geographic policy patterns
Score Distribution Patterns πŸ“Š Statistical learning
State Mandate Effects πŸ›οΈ Policy impact analysis

🎯 Perfect For

πŸ‘©β€πŸŽ“ Students πŸ‘¨β€πŸ’Ό Professionals πŸ”¬ Researchers
Learning Python basics Transitioning to data roles Education policy analysis
Building portfolio projects Upskilling in analytics Academic research
Understanding EDA workflow Data-driven decision making Statistical methodology

🌟 Why This Tutorial Stands Out

✨ Unique Features

🎯 **Feature** πŸ’‘ **Benefit** πŸš€ **Result**
πŸ” Real Dataset Authentic learning experience Job-ready skills
πŸ“š Step-by-Step No prerequisites assumed Confident progression
🎨 Beautiful Visuals Professional-quality outputs Portfolio-worthy results
πŸ’­ Critical Thinking Not just how, but why Deeper understanding

πŸ“ˆ Learning Path

🎯 From Beginner to EDA Expert

πŸ“š Complete This Tutorial
    ↓
πŸ” Practice with Other Datasets
    ↓
πŸ“Š Build Your Own EDA Projects
    ↓
πŸš€ Apply to Real-World Problems
    ↓
πŸ† Become a Data Science Professional

🀝 Community & Support

Join the Data Science Learning Community!

  • πŸ’¬ Questions? Open an issue on GitHub
  • πŸ”„ Improvements? Submit a pull request
  • πŸ“’ Share your results on social media with #EDAMastery
  • ⭐ Found it helpful? Star the repository!

πŸ“š Additional Resources

πŸŽ“ Continue Your Learning Journey

πŸ“– Resource 🎯 Focus πŸ”— Link
Medium Article In-depth explanation Read Tutorial
GitHub Repository Complete code & data View Code
Jupyter Notebook Interactive experience Available in repo

🎯 Ready to Master EDA? Let's Start Your Data Science Journey! πŸš€

Star this repo Fork this repo

Share your success story | Tag us in your projects | Help others learn!

About

Analysis of SAT/ACT data per state in 2017 and 2018

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published