-
Notifications
You must be signed in to change notification settings - Fork 65
Multithreading
By default, AMICO uses all the available cores on your machine to speed up the fitting process. However, you can specify the number of threads to use with the nthreads configuration parameter:
import amico
ae = amico.Evaluation()
ae.set_config('nthreads', 4)Important
The nthreads parameter can be set to any positive integer value. If you set it to -1, AMICO will use all the available CPUs on your machine.
AMICO limits to 1 the number of threads used in the threadpool-backend of common BLAS implementations (e.g. OpenBLAS). This is done optimize light computations and avoid oversubscription of resources when using multithreaded methods of other packages (e.g. numpy.linalg). You can change this behaviour by setting the BLAS_nthreads configuration parameter:
import amico
ae = amico.Evaluation()
ae.set_config('BLAS_nthreads', 4)Important
The BLAS_nthreads parameter can be set to any positive integer value. If you set it to -1, AMICO will use all the available CPUs on your machine.
Diffusion Imaging and Connectivity Estimation (DICE) lab