Bindfit is a binding constant fitting tool designed to work with classical supramolecular titration data obtained from NMR, UV, Fluorescence and other methods.
Initialise virtualenv and install DataStudio CLI:
python -m venv .venv
pip install datastudio-cli
# Test it works
dsEnsure you build the Docker container first:
# Build Bindfit container
cd bindfit/container
./build.sh
# Build python-run-base if not built
# Navigate to python-run-base repository
./build.shYou can now run the datakit:
cd bindfit-datakit
ds reset # Clear any previous outputs
ds init # Initialise the default run
ds load data ./data/nmr11.csv # Load input data
ds set model "nmr1to1" # Set fit model
ds set method "nelder-mead" # Set fit method
ds set inputParams.k.init 314 # Set initial parameter guess
ds run # Run algorithm
ds show outputParams # View optimised parameters
ds show summary # View fit summary
ds view fitGraphMatplotlib # View fit graph- Docker
- Python (to run CLI)
- opendatastudio/cli
- opendatastudio/containers
Set up included Flake (flake.nix) with direnv (.envrc) to automatically load development environment.
Install/run pre-commit hooks:
pre-commit install
pre-commit run --all-files
Build base execution container:
# Navigate to python-run-base repository
./build.sh
Build bindfit-datakit container:
# Navigate back to bindfit-datakit repository
cd containers
./build.sh
python -m venv .venv
source .venv/bin/activate
pip install -e /PATH/TO/CLI
ds # Check CLI is installed
See Usage for command reference.