Skip to content

donishadsmith/nifti2bids

Repository files navigation

Nifti2Bids

Latest Version Python Versions Source Code License Test Status codecov Code style: black Documentation Status

A toolkit for post-hoc BIDS conversion starting from NIfTI files. Includes utilities for metadata extraction, file renaming, neurobehavioral log parsing (for E-Prime and Presentation), and JSON sidecar generation. Designed primarily for datasets where the original DICOMs are unavailable.

Installation

Standard Installation

pip install nifti2bids[all]

Development Version

git clone --depth 1 https://github.com/donishadsmith/nifti2bids/
cd nifti2bids
pip install -e .[all]

Features

  • File renaming: Convert arbitrary filenames to BIDS-compliant naming

  • File creation: Generate dataset_description.json and participants.tsv

  • Metadata utilities: Extract header metadata (e.g., TR, orientation, scanner info) and generate slice timing for singleband and multiband acquisitions

  • Log parsing: Load Presentation (e.g., .log) and E-Prime 3 (e.g, .edat3, .txt) files as DataFrames, or use extractor classes to generate BIDS events for block and event designs:

    Class Software Design Description
    PresentationBlockExtractor Presentation Block Extracts block-level timing with mean RT and accuracy
    PresentationEventExtractor Presentation Event Extracts trial-level timing with individual responses
    EPrimeBlockExtractor E-Prime 3 Block Extracts block-level timing with mean RT and accuracy
    EPrimeEventExtractor E-Prime 3 Event Extracts trial-level timing with individual responses
  • Auditing: Generate a table of showing the presence or abscence of certain files for each subject and session

Quick Start

Creating BIDS-Compliant Filenames

from nifti2bids.bids import create_bids_file

create_bids_file(
    src_file="101_mprage.nii.gz",
    subj_id="101",
    ses_id="01",
    desc="T1w",
    dst_dir="/data/bids/sub-101/ses-01/anat",
)

Extracting Metadata from NIfTI Headers

from nifti2bids.metadata import get_tr, create_slice_timing, get_image_orientation

tr = get_tr("sub-01_bold.nii.gz")
slice_timing = create_slice_timing(
    "sub-01_bold.nii.gz",
    slice_acquisition_method="interleaved",
    multiband_factor=4,
)
orientation_map, orientation = get_image_orientation("sub-01_bold.nii.gz")

Loading Raw Log Files

from nifti2bids.parsers import (
    load_presentation_log,
    load_eprime_log,
    convert_edat3_to_txt,
)

presentation_df = load_presentation_log("sub-01_task.log", convert_to_seconds=["Time"])

# E-Prime 3: convert .edat3 to text first, or load .txt directly
eprime_txt_path = convert_edat3_to_txt("sub-01_task.edat3")
eprime_df = load_eprime_log(eprime_txt_path, convert_to_seconds=["Stimulus.OnsetTime"])

Creating BIDS Events from Presentation Logs

from nifti2bids.bids import PresentationBlockExtractor
import pandas as pd

extractor = PresentationBlockExtractor(
    "sub-01_task-faces.log",
    block_cue_names=("Face", "Place"),
    scanner_event_type="Pulse",
    scanner_trigger_code="99",
    convert_to_seconds=["Time"],
    rest_block_code="crosshair",
    rest_code_frequency="fixed",
    split_cue_as_instruction=True,
)

events_df = pd.DataFrame(
    {
        "onset": extractor.extract_onsets(),
        "duration": extractor.extract_durations(),
        "trial_type": extractor.extract_trial_types(),
        "mean_rt": extractor.extract_mean_reaction_times(),
    }
)

Creating BIDS Events from E-Prime Logs

from nifti2bids.bids import EPrimeEventExtractor
import pandas as pd

extractor = EPrimeEventExtractor(
    "sub-01_task-gonogo.txt",
    trial_types=("Go", "NoGo"),
    onset_column_name="Stimulus.OnsetTime",
    procedure_column_name="Procedure",
    trigger_column_name="ScannerTrigger.RTTime",
    convert_to_seconds=[
        "Stimulus.OnsetTime",
        "Stimulus.OffsetTime",
        "ScannerTrigger.RTTime",
    ],
)

events_df = pd.DataFrame(
    {
        "onset": extractor.extract_onsets(),
        "duration": extractor.extract_durations(
            offset_column_name="Stimulus.OffsetTime"
        ),
        "trial_type": extractor.extract_trial_types(),
        "reaction_time": extractor.extract_reaction_times(
            reaction_time_column_name="Stimulus.RT"
        ),
    }
)

Audit BIDS Dataset

from nifti2bids.audit import BIDSAuditor
from nifti2bids.simulate import simulate_bids_dataset

bids_root = simulate_bids_dataset()

auditor = BIDSAuditor(bids_root)
auditor.check_raw_nifti_availability()
auditor.check_preprocessed_nifti_availability()

See the API documentation for full parameter details and additional utilities.

About

A toolkit for post hoc BIDS-ification of unstructured NIfTI datasets.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages