Skip to content

driksey/kaggle-house

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

15 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🏠 Ames Housing Price Prediction

🎯 Objective

This project aims to predict house prices in Ames, Iowa, based on a dataset with 79 explanatory variables.
It demonstrates end-to-end data science workflow: from data exploration to feature engineering, model training, evaluation, and stacking.
On Kaggle, this solution ranked in the Top 25% Leaderboard.


πŸ“Š Dataset


βš™οΈ Pipeline

  1. Exploratory Data Analysis (EDA) β€” distributions, correlations, missing values.
  2. Feature Engineering β€” handling NAs, log transforms, encoding categorical variables, scaling.
  3. Modeling β€” regression models (Linear Regression, Ridge, Lasso, Random Forest, XGBoost, LightGBM).
  4. Stacking β€” ensemble with Ridge as meta-model.
  5. Evaluation β€” RMSE, RΒ², cross-validation.

πŸš€ Results

  • Baseline (Linear Regression): RMSE ~0.21 (log error).
  • Tree-based models (XGBoost, LightGBM): improved performance significantly.
  • Final stacking (Ridge meta-model): Top 25% Kaggle Leaderboard.

πŸ“‚ Repository structure

kaggle-house/ β”œβ”€β”€ README.md β”œβ”€β”€ requirements.txt β”œβ”€β”€ LICENSE β”œβ”€β”€ .gitignore β”‚ β”œβ”€β”€ data/ β”‚ β”œβ”€β”€ raw/ # Original Kaggle dataset β”‚ β”œβ”€β”€ processed/ # Cleaned & feature-engineered dataset β”‚ β”œβ”€β”€ notebooks/ β”‚ β”œβ”€β”€ 01_EDA.ipynb β”‚ β”œβ”€β”€ 02_FeatureEng.ipynb β”‚ β”œβ”€β”€ 03_Modeling.ipynb β”‚ β”œβ”€β”€ 04_Evaluation.ipynb β”‚ └── 05_Stacking.ipynb β”‚ β”œβ”€β”€ src/ β”‚ β”œβ”€β”€ data_prep.py β”‚ β”œβ”€β”€ train.py β”‚ └── evaluate.py β”‚ β”œβ”€β”€ models/ β”‚ β”œβ”€β”€ baseline_model.pkl β”‚ β”œβ”€β”€ final_model.pkl β”‚ └── model_card.md β”‚ └── reports/ └── figures/


πŸ› οΈ How to run

Install dependencies

git clone https://github.com/driksey/ames-housing-price-prediction.git
cd ames-housing-price-prediction
pip install -r requirements.txt

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published