- Types of Machine Learning
- Supervised Machine Learning
- Unsupervised Machine Learning
- Reinforcement Learning
- Regression
- Classification
- Resources
- Recurrent Neural Network (RNN) 1.1 Long Short Term Network (LSTM)
-
Basics
1.1 The Perceptron
- Layers (Input / Hidden / Output)
- Standardization
- Normalization
- Min-Max Normalization
- Feature Scaling
-
Activation Function
- Sigmoid
- Hard Sigmoid
- ReLU (Rectified Linear Unit)
- Leaky ReLU
- PReLU (Parametric ReLU)
- Softmax
- Tanh (Hyperbolic Tangent)
- Linear (Identity)
- ELU (Exponential Linear Unit)
- SELU (Scaled Exponential Linear Unit)
- Swish
- Hard Swish
- GELU (Gaussian Error Linear Unit)
- Maxout
- Softplus
- Sigmoid
-
Loss Function
-
Optimizers
-
Forward Propogation
-
Backward Propogation
-
Pooling
-
Non Linearity
-
Hyperparameter Tuning
-
Resources