Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 6 additions & 7 deletions pynumdiff/__init__.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,11 @@
"""
Import useful functions from all modules
"""Import useful functions from all modules
"""
from pynumdiff._version import __version__
from pynumdiff.finite_difference import first_order, second_order
from pynumdiff.smooth_finite_difference import mediandiff, meandiff, gaussiandiff, \
from pynumdiff.smooth_finite_difference import mediandiff, meandiff, gaussiandiff,\
friedrichsdiff, butterdiff, splinediff
from pynumdiff.total_variation_regularization import *
from pynumdiff.linear_model import *
from pynumdiff.kalman_smooth import constant_velocity, constant_acceleration, constant_jerk, \
from pynumdiff.total_variation_regularization import iterative_velocity, velocity,\
acceleration, jerk, smooth_acceleration, jerk_sliding
from pynumdiff.linear_model import lineardiff, polydiff, spectraldiff, savgoldiff
from pynumdiff.kalman_smooth import constant_velocity, constant_acceleration, constant_jerk,\
known_dynamics

2 changes: 1 addition & 1 deletion pynumdiff/finite_difference/_finite_difference.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ def _iterate_first_order(x, dt, num_iterations):
- **x_hat** -- estimated (smoothed) x
- **dxdt_hat** -- estimated derivative of x
"""
w = np.arange(len(x)) / (len(x) - 1) # set up weights, [0., ... 1.0]
w = np.linspace(0, 1, len(x)) # set up weights, [0., ... 1.0]

# forward backward passes
for _ in range(num_iterations):
Expand Down
4 changes: 4 additions & 0 deletions pynumdiff/tests/conftest.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
"""Pytest configuration for pynumdiff tests"""
import pytest

def pytest_addoption(parser): parser.addoption("--plot", action="store_true", default=False)
160 changes: 111 additions & 49 deletions pynumdiff/tests/test_diff_methods.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import numpy as np
from matplotlib import pyplot
from pytest import mark
from warnings import warn

Expand All @@ -7,77 +8,138 @@
from ..kalman_smooth import * # constant_velocity, constant_acceleration, constant_jerk, known_dynamics
from ..smooth_finite_difference import * # mediandiff, meandiff, gaussiandiff, friedrichsdiff, butterdiff, splinediff
from ..finite_difference import first_order, second_order
# Function aliases for testing cases where parameters change the behavior in a big way
iterated_first_order = lambda *args, **kwargs: first_order(*args, **kwargs)


dt = 0.01
t = np.arange(0, 3, dt) # domain to test over
dt = 0.1
t = np.arange(0, 3, dt) # sample locations
tt = np.linspace(0, 3) # full domain, for visualizing denser plots
np.random.seed(7) # for repeatability of the test, so we don't get random failures
noise = 0.05*np.random.randn(*t.shape)

# Analytic (function, derivative) pairs on which to test differentiation methods.
test_funcs_and_derivs = [
(r"$x(t)=1$", lambda t: np.ones(t.shape), lambda t: np.zeros(t.shape)), # constant
(r"$x(t)=2t+1$", lambda t: 2*t + 1, lambda t: 2*np.ones(t.shape)), # affine
(r"$x(t)=t^2-t+1$", lambda t: t**2 - t + 1, lambda t: 2*t - 1), # quadratic
(r"$x(t)=\sin(3t)+1/2$", lambda t: np.sin(3*t) + 1/2, lambda t: 3*np.cos(3*t)), # sinuoidal
(r"$x(t)=e^t\sin(5t)$", lambda t: np.exp(t)*np.sin(5*t), # growing sinusoidal
lambda t: np.exp(t)*(5*np.cos(5*t) + np.sin(5*t))),
(r"$x(t)=\frac{\sin(8t)}{(t+0.1)^{3/2}}$", lambda t: np.sin(8*t)/((t + 0.1)**(3/2)), # steep challenger
lambda t: ((0.8 + 8*t)*np.cos(8*t) - 1.5*np.sin(8*t))/(0.1 + t)**(5/2))]

# Call both ways, with kwargs (new) and with params list with default options dict (legacy), to ensure both work
diff_methods_and_params = [
(first_order, None), (iterated_first_order, {'num_iterations':5}),
(second_order, None),
#(lineardiff, {'order':3, 'gamma':5, 'window_size':10, 'solver':'CVXOPT'}),
(polydiff, {'polynomial_order':2, 'window_size':3}),
(savgoldiff, {'polynomial_order':2, 'window_size':4, 'smoothing_win':4}),
(spectraldiff, {'high_freq_cutoff':0.1})
(polydiff, {'polynomial_order':2, 'window_size':3}), (polydiff, [2, 3]),
(savgoldiff, {'polynomial_order':2, 'window_size':4, 'smoothing_win':4}), (savgoldiff, [2, 4, 4]),
(spectraldiff, {'high_freq_cutoff':0.1}), (spectraldiff, [0.1])
]

# Analytic (function, derivative) pairs on which to test differentiation methods.
test_funcs_and_derivs = [
(0, lambda t: np.ones(t.shape), lambda t: np.zeros(t.shape)), # x(t) = 1
(1, lambda t: t, lambda t: np.ones(t.shape)), # x(t) = t
(2, lambda t: 2*t + 1, lambda t: 2*np.ones(t.shape)), # x(t) = 2t+1
(3, lambda t: t**2 - t + 1, lambda t: 2*t - 1), # x(t) = t^2 - t + 1
(4, lambda t: np.sin(t) + 1/2, lambda t: np.cos(t))] # x(t) = sin(t) + 1/2

# All the testing methodology follows the exact same pattern; the only thing that changes is the
# closeness to the right answer various methods achieve with the given parameterizations. So index a
# big ol' table by the method, then the test function, then the pair of quantities we're comparing.
error_bounds = {
lineardiff: [[(1e-25, 1e-25)]*4]*len(test_funcs_and_derivs),
polydiff: [[(1e-14, 1e-15), (1e-12, 1e-13), (1, 0.1), (100, 100)],
[(1e-13, 1e-14), (1e-12, 1e-13), (1, 0.1), (100, 100)],
[(1e-13, 1e-14), (1e-11, 1e-12), (1, 0.1), (100, 100)],
[(1e-13, 1e-14), (1e-12, 1e-12), (1, 0.1), (100, 100)],
[(1e-6, 1e-7), (0.001, 0.0001), (1, 0.1), (100, 100)]],
savgoldiff: [[(1e-7, 1e-8), (1e-12, 1e-13), (1, 0.1), (100, 10)],
[(1e-5, 1e-7), (1e-12, 1e-13), (1, 0.1), (100, 10)],
[(1e-7, 1e-8), (1e-11, 1e-12), (1, 0.1), (100, 10)],
[(0.1, 0.01), (0.1, 0.01), (1, 0.1), (100, 10)],
[(0.01, 1e-3), (0.01, 1e-3), (1, 0.1), (100, 10)]],
spectraldiff: [[(1e-7, 1e-8), ( 1e-25 , 1e-25), (1, 0.1), (100, 10)],
[(0.1, 0.1), (10, 10), (1, 0.1), (100, 10)],
[(0.1, 0.1), (10, 10), (1, 0.1), (100, 10)],
[(1, 1), (100, 10), (1, 1), (100, 10)],
[(0.1, 0.1), (10, 10), (1, 0.1), (100, 10)]]
first_order: [[(-25, -25), (-25, -25), (0, 0), (1, 1)],
[(-25, -25), (-14, -14), (0, 0), (1, 1)],
[(-25, -25), (0, 0), (0, 0), (1, 0)],
[(-25, -25), (0, 0), (0, 0), (1, 1)],
[(-25, -25), (2, 2), (0, 0), (2, 2)],
[(-25, -25), (3, 3), (0, 0), (3, 3)]],
iterated_first_order: [[(-7, -7), (-10, -11), (0, -1), (0, 0)],
[(-5, -5), (-5, -6), (0, -1), (0, 0)],
[(-1, -1), (0, 0), (0, -1), (0, 0)],
[(0, 0), (1, 1), (0, 0), (1, 1)],
[(1, 1), (2, 2), (1, 1), (2, 2)],
[(1, 1), (3, 3), (1, 1), (3, 3)]],
second_order: [[(-25, -25), (-25, -25), (0, 0), (1, 1)],
[(-25, -25), (-14, -14), (0, 0), (1, 1)],
[(-25, -25), (-13, -14), (0, 0), (1, 1)],
[(-25, -25), (0, -1), (0, 0), (1, 1)],
[(-25, -25), (1, 1), (0, 0), (1, 1)],
[(-25, -25), (3, 3), (0, 0), (3, 3)]],
#lineardiff: [TBD when #91 is solved],
polydiff: [[(-15, -15), (-14, -14), (0, -1), (1, 1)],
[(-14, -14), (-13, -13), (0, -1), (1, 1)],
[(-14, -15), (-13, -14), (0, -1), (1, 1)],
[(-2, -2), (0, 0), (0, -1), (1, 1)],
[(0, 0), (2, 1), (0, 0), (2, 1)],
[(0, 0), (3, 3), (0, 0), (3, 3)]],
savgoldiff: [[(-7, -8), (-13, -14), (0, -1), (0, 0)],
[(-7, -8), (-13, -13), (0, -1), (0, 0)],
[(-1, -1), (0, -1), (0, -1), (0, 0)],
[(0, -1), (0, 0), (0, -1), (1, 0)],
[(1, 1), (2, 2), (1, 1), (2, 2)],
[(1, 1), (3, 3), (1, 1), (3, 3)]],
spectraldiff: [[(-7, -8), (-14, -15), (-1, -1), (0, 0)],
[(0, 0), (1, 1), (0, 0), (1, 1)],
[(1, 0), (1, 1), (1, 0), (1, 1)],
[(0, 0), (1, 1), (0, 0), (1, 1)],
[(1, 1), (2, 2), (1, 1), (2, 2)],
[(1, 1), (3, 3), (1, 1), (3, 3)]]
}


@mark.filterwarnings("ignore::DeprecationWarning") # I want to test the old and new functionality intentionally
@mark.parametrize("diff_method_and_params", diff_methods_and_params)
@mark.parametrize("test_func_and_deriv", test_funcs_and_derivs)
def test_diff_method(diff_method_and_params, test_func_and_deriv):
def test_diff_method(diff_method_and_params, request):
diff_method, params = diff_method_and_params # unpack
i, f, df = test_func_and_deriv

# some methods rely on cvxpy, and we'd like to allow use of pynumdiff without convex optimization
if diff_method in [lineardiff, velocity]:
try: import cvxpy
except: warn(f"Cannot import cvxpy, skipping {diff_method} test."); return

x = f(t) # sample the function
x_noisy = x + noise # add a little noise
dxdt = df(t) # true values of the derivative
plot = request.config.getoption("--plot") # Get the plot flag from pytest configuration
if plot: fig, axes = pyplot.subplots(len(test_funcs_and_derivs), 2, figsize=(12,7))

# loop over the test functions
for i,(latex,f,df) in enumerate(test_funcs_and_derivs):
x = f(t) # sample the function
x_noisy = x + noise # add a little noise
dxdt = df(t) # true values of the derivative at samples

# differentiate without and with noise
x_hat, dxdt_hat = diff_method(x, dt, **params) if isinstance(params, dict) else diff_method(x, dt, params)
x_hat_noisy, dxdt_hat_noisy = diff_method(x_noisy, dt, **params) if isinstance(params, dict) else diff_method(x_noisy, dt, params)

# check x_hat and x_hat_noisy are close to x and dxdt_hat and dxdt_hat_noisy are close to dxdt
#print("]\n[", end="")
for j,(a,b) in enumerate([(x,x_hat), (dxdt,dxdt_hat), (x,x_hat_noisy), (dxdt,dxdt_hat_noisy)]):
l2_error = np.linalg.norm(a - b)
linf_error = np.max(np.abs(a - b))
# differentiate without and with noise
x_hat, dxdt_hat = diff_method(x, dt, **params) if isinstance(params, dict) else diff_method(x, dt, params) \
if isinstance(params, list) else diff_method(x, dt)
x_hat_noisy, dxdt_hat_noisy = diff_method(x_noisy, dt, **params) if isinstance(params, dict) \
else diff_method(x_noisy, dt, params) if isinstance(params, list) else diff_method(x_noisy, dt)

#print(f"({10 ** np.ceil(np.log10(l2_error)) if l2_error> 0 else 1e-25}, {10 ** np.ceil(np.log10(linf_error)) if linf_error > 0 else 1e-25})", end=", ")
l2_bound, linf_bound = error_bounds[diff_method][i][j]
assert np.linalg.norm(a - b) < l2_bound
assert np.max(np.abs(a - b)) < linf_bound
# check x_hat and x_hat_noisy are close to x and that dxdt_hat and dxdt_hat_noisy are close to dxdt
print("]\n[", end="")
for j,(a,b) in enumerate([(x,x_hat), (dxdt,dxdt_hat), (x,x_hat_noisy), (dxdt,dxdt_hat_noisy)]):
l2_error = np.linalg.norm(a - b)
linf_error = np.max(np.abs(a - b))

print(f"({int(np.ceil(np.log10(l2_error))) if l2_error> 0 else -25}, {int(np.ceil(np.log10(linf_error))) if linf_error > 0 else -25})", end=", ")
#print(error_bounds[diff_method])
#log_l2_bound, log_linf_bound = error_bounds[diff_method][i][j]
# assert np.linalg.norm(a - b) < 10**log_l2_bound
# assert np.max(np.abs(a - b)) < 10**log_linf_bound
# if np.linalg.norm(a - b) < 10**(log_l2_bound - 1) or np.max(np.abs(a - b)) < 10**(log_linf_bound - 1):
# print(f"Improvement detected for method {diff_method}")

if plot:
axes[i, 0].plot(t, f(t), label=r"$x(t)$")
axes[i, 0].plot(t, x, 'C0+')
axes[i, 0].plot(tt, df(tt), label=r"$\frac{dx(t)}{dt}$")
axes[i, 0].plot(t, dxdt_hat, 'C1+')
axes[i, 0].set_ylabel(latex, rotation=0, labelpad=50)
if i < len(test_funcs_and_derivs)-1: axes[i, 0].set_xticklabels([])
else: axes[i, 0].set_xlabel('t')
if i == 0: axes[i, 0].set_title('noiseless')
axes[i, 1].plot(t, f(t), label=r"$x(t)$")
axes[i, 1].plot(t, x_noisy, 'C0+')
axes[i, 1].plot(tt, df(tt), label=r"$\frac{dx(t)}{dt}$")
axes[i, 1].plot(t, dxdt_hat_noisy, 'C1+')
if i < len(test_funcs_and_derivs)-1: axes[i, 1].set_xticklabels([])
else: axes[i, 1].set_xlabel('t')
axes[i, 1].set_yticklabels([])
if i == 0: axes[i, 1].set_title('with noise')

if plot:
axes[-1,-1].legend()
pyplot.tight_layout()
pyplot.show()
42 changes: 0 additions & 42 deletions pynumdiff/tests/test_finite_difference.py

This file was deleted.