This repository contains the backend server for the Traveler platform, a social platform for travel enthusiasts. It handles user authentication, travel story storage, route management, gamification logic, notifications, and social feed functionality.
Frontend repository: Traveler Frontend ML Model repository: Travel-Advisor
Visit Online : Traveler
- Backend: Node.js + Express.js
- Database: MongoDB
- Authentication: JWT-based secure login/signup
- API: RESTful endpoints consumed by frontend
- Notifications & Social Feed: Real-time updates via socket.io
- Integration: Calls the ML engine in Travel-Advisor for AI-powered destination recommendations
- Node.js (LTS recommended)
- npm or yarn
- MongoDB (local or cloud)
- Running ML engine (Travel-Advisor)
- Clone the repository
git clone https://github.com/hammadmeer-dev/Traveler.git
cd Traveler- Install dependencies
npm install
# or
yarn install- Configure environment variables (
.env)
PORT=5000
MONGO_URI=your_mongo_connection_string
JWT_SECRET=your_jwt_secret
ML_API_URL=http://localhost:5001
- Start the backend
npm run dev
# or
yarn devThe API runs on http://localhost:5000 by default.
- User authentication (signup/login)
- Travel stories CRUD
- Gamification (badges, ranks)
- Social feed (like, comment, follow)
- Notifications (real-time)
- AI-powered recommendations via ML engine
- Fork → Branch → Commit → Push → Pull Request
MIT License
Hammad Farooq Meer – GitHub
This repository contains the machine learning engine for the Traveler platform. It provides AI-powered travel recommendations used by the backend server (Traveler).
Frontend repository: Traveler Frontend Backend repository: Traveler Backend
- ML Algorithm: K-Nearest Neighbors (KNN) with Cosine Similarity
- Inputs: district (e.g., Punjab, KPK, Sindh), category (e.g., Fort, Valley, Museum)
- Outputs: Top 5 recommended destinations
- Tools: Python, Flask, Scikit-learn, Pandas, NumPy, SentenceTransformer
- Data:
Tourist Destinations.csv
This engine is minimal in functionality but can be expanded. Contributions are welcome.
- Python 3.x
- Flask, Scikit-learn, Pandas, NumPy, SentenceTransformer
Install dependencies:
pip install -r requirements.txt- Clone the repository
git clone https://github.com/hammadmeer-dev/Travel-Advisor.git
cd Travel-Advisor- Start Flask server
python app.py- Connect with Backend
Ensure the backend (Traveler) points to the ML API (
ML_API_URL=http://localhost:5001) to fetch AI recommendations.
- Fork → Branch → Commit → Push → Pull Request
MIT License
Hammad Farooq Meer – GitHub