Skip to content

πŸ€–An AI-powered inventory monitoring and forecasting system that uses computer vision πŸ§ πŸ“· to detect stock levels from shelf images, predict future demand πŸ“Š, and flag anomalies ⚠️ helping businesses automate restocking and prevent shortages or overstock efficiently.

Notifications You must be signed in to change notification settings

harishy0406/SmartStockAI

Repository files navigation

image

SmartStock AI: Predictive Inventory Management System

Python Streamlit YOLOv8 Pandas


πŸš€ Project Overview

SmartStock AI is an intelligent inventory management system that uses machine learning and computer vision to help warehouses predict, monitor, and optimize their stock levels.
It brings together real-time stock insights, AI-based forecasting, and object detection for a smarter and more automated inventory workflow.

πŸ” Key Features

  • πŸ“¦ Predictive Inventory Forecasting – Anticipates stock needs based on past trends.
  • 🧠 AI-Powered Object Detection – Uses YOLOv8 to identify items in uploaded shelf images.
  • πŸ“Š Interactive Dashboard – Built with Streamlit for seamless visualization and control.
  • πŸ“· Image-Based Shelf Scanning – Upload shelf images to automatically detect missing items.
  • πŸ”„ Modular Design – Combines dynamic stock prediction and visual analysis in one app.
  • ⚑ Real-Time Insights – Detect anomalies, track stock levels, and visualize performance instantly.

πŸ“‚ Folder Structure

SMARTSTOCKAI/
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ anomalies.csv
β”‚   β”œβ”€β”€ forecast_pre.csv
β”‚   β”œβ”€β”€ inventory_data.csv
β”‚   └── product_details.csv
β”œβ”€β”€ forecasts/
β”œβ”€β”€ images/
β”œβ”€β”€ models/
β”‚   β”œβ”€β”€ anomaly_detector.pkl
β”‚   └── forecast_model.pkl
β”œβ”€β”€ scripts/
β”‚   β”œβ”€β”€ __pycache__/
β”‚   β”œβ”€β”€ generate_sample_data.py
β”‚   β”œβ”€β”€ predict_api.py
β”‚   β”œβ”€β”€ preprocess.py
β”‚   β”œβ”€β”€ train_anomaly.py
β”‚   └── train_prophet.py
β”œβ”€β”€ app.py
β”œβ”€β”€ README.md
β”œβ”€β”€ shelf_image.py
β”œβ”€β”€ shelf_monitor.py
β”œβ”€β”€ smartstock_vision_app.py
β”œβ”€β”€ SmartStockAI.ipynb
β”œβ”€β”€ yolov8n.pt
β”œβ”€ requirements.txt
└─ README.md

🧠 Tech Stack

  • Language: Python 3.10+
  • Frontend: Streamlit (interactive web app)
  • ML & Forecasting: Scikit-learn, NumPy, Pandas
  • Computer Vision: OpenCV, Ultralytics YOLOv8
  • Visualization: Matplotlib, Seaborn, Plotly
  • Environment: Virtualenv / Conda

βš™οΈ Installation & Setup

1️⃣ Clone the Repository

git clone https://github.com/harishy0406/SmartStockAI.git
cd SmartStockAI

2️⃣ Create Virtual Environment

python -m venv venv
# Activate it
venv\Scripts\activate       # (Windows)
source venv/bin/activate    # (Linux/Mac)

3️⃣ Install Required Libraries

pip install -r requirements.txt

4️⃣ Run the Streamlit App

  • For SmartStockAI Dashboard
streamlit run app.py
  • For Shelf Image Detection
streamlit run app_upload.py

πŸ“Έ Example Outputs

πŸ–ΌοΈ 1. SmartStock AI Dynamic Dashboard

image

πŸ€– 2. Shelf Detection Results

image

πŸ“ˆ 3. Forecast Visualization

image image image

🌟 Future Enhancements

  • πŸ”” Automated Low-Stock Alerts via Email or SMS
  • ☁️ Cloud Dashboard for multi-warehouse integration
  • πŸ“Ή Live Shelf Monitoring using IP cameras
  • πŸ€– Vision Transformer Integration (ViT) for improved recognition
  • 🧾 ERP API Integration for seamless business workflows

🀝 Contribution

Want to make SmartStock AI even smarter? Fork the repo, improve features, and create a pull request! Let’s redefine warehouse intelligence β€” together πŸš€


About

πŸ€–An AI-powered inventory monitoring and forecasting system that uses computer vision πŸ§ πŸ“· to detect stock levels from shelf images, predict future demand πŸ“Š, and flag anomalies ⚠️ helping businesses automate restocking and prevent shortages or overstock efficiently.

Topics

Resources

Stars

Watchers

Forks

Contributors 2

  •  
  •