AI-powered Wikipedia summarization tool that transforms articles into concise, digestible summaries using Retrieval-Augmented Generation (RAG).
- Smart Summarization: Generate multi-section summaries (Overview, History, Controversies, Impact, etc.)
- Interactive Q&A: Get precise, context-aware answers about any topic
- Responsive Design: Optimized for both mobile and desktop
- Advanced Backend: Built with FastAPI, LangChain, and ChromaDB
- Backend: FastAPI, LangChain, ChromaDB, Anthropic Claude
- Frontend: React 18, TypeScript, Tailwind CSS, Vite
- AI/ML: RAG Architecture, Vector Search, Semantic Similarity
- Python 3.8+, Node.js 16+, Git
# Clone the repository
git clone https://github.com/jaibhasin/WikiSummarizer.git
cd WikiSummarizer
# Set up backend
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
# Set up frontend
cd frontend
npm install- Create
.envfile in the root directory:ANTHROPIC_API_KEY=your_anthropic_api_key_here OPENAI_API_KEY=your_openai_api_key_here # Optional for better performance CHROMA_PERSIST_DIRECTORY=chroma_db
# Start backend (from project root)
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000
# In a new terminal, start frontend (from frontend directory)
npm run devVisit http://localhost:5173 to start using WikiSummarizer!
- Search for a Topic: Enter any Wikipedia topic or URL
- View Summaries: Get concise summaries in different sections
- Ask Questions: Use the Q&A feature for specific information
For faster performance, use ChatGPT embeddings by:
- Adding your OpenAI API key to
.env - Updating
app/services/rag.pyto use OpenAI embeddings
Contributions are welcome! Please see our Contributing Guide for details.
MIT License - see LICENSE for details.
- Issues: GitHub Issues
- Email: bhasinjai@gmail.com
- ChatGPT Embeddings Integration
- Multi-language Support
- Export Summaries (PDF/Markdown)
- User Accounts & History
Star this repository if you find it helpful!