Automated validation of Datadog telemetry configuration across your services.
A pure-code validation tool that checks whether your services are properly instrumented with Datadog telemetry—validating both local configuration files and runtime telemetry visibility.
# Install
git clone https://github.com/your-org/datadog-validator
cd datadog-validator
make install
# Check local configuration (no API required)
datadog-validator check-config --service my-service --service-dir ./my-service
# Validate runtime telemetry (requires Datadog API)
export DD_API_KEY="your-api-key"
export DD_APP_KEY="your-app-key"
datadog-validator validate --service my-service --envs production- Dockerfile - Git metadata, hardcoded variables
- Helm Charts - Datadog labels, environment variables
- Dependencies - APM library versions
- Service Inference - Deprecated pattern detection
- Metrics - Service metrics flowing to Datadog
- Logs - Log correlation configured
- Error Tracking - Error capture enabled
- APM Traces - Trace data flowing
- Terminal - Human-readable with colors and status indicators
- JSON - Machine-readable for CI/CD automation
- Validation Only - Reports issues, never modifies files
- Pure Code - No AI, deterministic validation logic
- CI/CD First - Exit codes and JSON output for automation
- Fast - Local checks complete in <1 second
- docs/README.md - Overview and quick start
- docs/USER_GUIDE.md - Complete usage guide
- docs/INTEGRATION.md - CI/CD integration patterns
- docs/TROUBLESHOOTING.md - Common issues and solutions
- docs/ARCHITECTURE.md - System design and module boundaries
- docs/CONTRIBUTING.md - How to add validators and extend the tool
- docs/CHANGELOG.md - Version history and release notes
- AGENTS.md - Guidance for AI assistants working with this codebase
Validation results from actual services:
communicator service:
- 77.8% pass rate (7/9 checks)
- Well-configured modern service
- Minor improvements needed
webhooks service:
- 44.4% pass rate (4/9 checks)
- Legacy configuration needing updates
- Multiple deprecated patterns identified
See examples/VALIDATION_FINDINGS.md for detailed analysis.
# Install with development dependencies
make install
# Run tests
make test
# Run linting and formatting
make check
# Run specific test
uv run pytest tests/test_dockerfile_validator.py -vSee docs/CONTRIBUTING.md for detailed development guide.
datadog-validator/
├── docs/ # Comprehensive documentation
│ ├── README.md # Documentation overview
│ ├── USER_GUIDE.md # Complete usage guide
│ ├── ARCHITECTURE.md # System design
│ ├── INTEGRATION.md # CI/CD patterns
│ ├── TROUBLESHOOTING.md # Common issues
│ ├── CONTRIBUTING.md # Development guide
│ └── CHANGELOG.md # Version history
├── src/
│ └── datadog_validator/
│ ├── cli.py # CLI commands
│ ├── api_client.py # Datadog API client
│ ├── validators/ # Local configuration validators
│ └── output/ # Output formatters
├── tests/ # Test suite
├── examples/ # Real-world validation examples
├── AGENTS.md # AI assistant guidance
└── README.md # This file
- Documentation: Start with docs/README.md
- Issues: Report bugs via GitHub Issues
- Contributing: See docs/CONTRIBUTING.md
MIT
Built with the Amplifier philosophy: Ruthless simplicity, pure code solutions, and clear separation of concerns.