ldp.py: The main function of classLDPispartition_z().ldp_utils.py: ClassLDPUtilsprovides some basic helper functions for experiments.data_generation.py: ClassDataGenerationprovides a basic linear-Gaussian data generating process for demonstration purposes.ldp_demo.py: This script provides a demo of LDP functionality on a linear-Gaussian DAG.- Software environment: We provide both
environment.ymlandrequirements.txt, either of which can be used to recreate the environment used to execute LDP and reproduce all experiments.
We provide a script to demo LDP on a linear-Gaussian DAG using the Fisher-z independence test. This DAG can optionally contain an M-structure, a butterfly structure, or both. X can be a direct cause of Y, or have no direct effect.
python ldp_demo.py -x=1 -m=0 -b=0 -n=5000 -a=0.005 -r=10 -e=0Arguments:
-x(int): whether X directly causes Y or not (1 = True, 0 = False).-m(int): whether the DAG contains an M-structure or not (1 = True, 0 = False).-b(int): whether the DAG contains a butterfly structure or not (1 = True, 0 = False).-n(int): sample size.-a(float): alpha for p-value of independence test.-r(int): total replicate DAGs to run.-e(int): whether to export results or not (1 = True, 0 = False).