Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12,583 changes: 9,205 additions & 3,378 deletions PyEIS/PyEIS.py

Large diffs are not rendered by default.

143 changes: 84 additions & 59 deletions PyEIS/PyEIS_Advanced_tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,142 +12,167 @@
import numpy as np

from scipy.constants import codata
F = codata.physical_constants['Faraday constant'][0]
qe = codata.physical_constants['elementary charge'][0]
R = codata.physical_constants['molar gas constant'][0]
kB = codata.physical_constants['Boltzmann constant'][0]
kB_eV = codata.physical_constants['Boltzmann constant in eV/K'][0]
N_A = codata.physical_constants['Avogadro constant'][0]

F = codata.physical_constants["Faraday constant"][0]
qe = codata.physical_constants["elementary charge"][0]
R = codata.physical_constants["molar gas constant"][0]
kB = codata.physical_constants["Boltzmann constant"][0]
kB_eV = codata.physical_constants["Boltzmann constant in eV/K"][0]
N_A = codata.physical_constants["Avogadro constant"][0]
F, R, qe, kB, kB_eV, N_A

### Normalization of constant phase elements
##
#
def norm_nonFara_Q_C(Rs, Q, n, L='none'):
'''
def norm_nonFara_Q_C(Rs, Q, n, L="none"):
"""
Normalziation of a non-faradaic interfacial capacitance (Blocking Electrode)

Following Brug and Hirschorn's normalization of distribtuion of relaxation times
Ref.:
- G.J.Brug et al., J.Electroanal. Chem. Interfacial Electrochem., 176, 275 (1984)

Kristian B. Knudsen (kknu@berkeley.edu || kristianbknudsen@gmail.com)

Inputs
------------------
Q = Constant phase element [s^n/ohm]
n = Exponent of CPE [-]
Rs = Series Resistance [ohm]

Optional Inputs
------------------
L = Thickness/length of electrode, used in Porous Electrode Theory [cm]

Returns
------------------
C_eff = normalized capacitance for a non-faradaic electrode [s/ohm = F]
'''
if L == 'none':
C_eff = (Q * Rs**(1-n))**(1/n)
"""
if L == "none":
C_eff = (Q * Rs ** (1 - n)) ** (1 / n)
else:
C_eff = ((Q*L) * Rs**(1-n))**(1/n)
C_eff = ((Q * L) * Rs ** (1 - n)) ** (1 / n)
return C_eff

def norm_Fara_Q_C(Rs, Rct, n, Q='none', fs='none', L='none'):
'''

def norm_Fara_Q_C(Rs, Rct, n, Q="none", fs="none", L="none"):
"""
Normalziation of a faradaic interfacial capacitance (Blocking Electrode)

Contains option to use summit frequency (fs) instead of CPE (Q) - valueable for outputs of fits

Following Brug and Hirschorn's normalization of distribtuion of relaxation times
Ref.:
- G.J.Brug et al., J.Electroanal. Chem. Interfacial Electrochem., 176, 275 (1984)
- B.Hirschorn, et al., ElectrochimicaActa, 55, 6218 (2010)

Kristian B. Knudsen (kknu@berkeley.edu || kristianbknudsen@gmail.com)

Inputs
----------
n = Exponent of CPE [-]
Rs = Series Resistance [ohm]
Rct = Charge Transfer Resistance [ohm]

Optional Inputs
------------------
Q = Constant phase element [s^n/ohm]
fs = summit frequencey of fitted spectra [Hz]

Returns
----------
C_eff = normalized capacitance for a faradaic electrode [s/ohm = F]
'''
if Q == 'none':
if L == 'none':
Q = (1/(Rct*(2*np.pi*fs)**n))
C_eff = Q**(1/n) * ((Rs*Rct)/(Rs*Rct))**((1-n)/n)
if L != 'none':
"""
if Q == "none":
if L == "none":
Q = 1 / (Rct * (2 * np.pi * fs) ** n)
C_eff = Q ** (1 / n) * ((Rs * Rct) / (Rs * Rct)) ** ((1 - n) / n)
if L != "none":
Rct_norm = Rct / L
Q = (1/(Rct_norm*(2*np.pi*fs)**n))
C_eff = Q**(1/n) * ((Rs*Rct_norm)/(Rs*Rct_norm))**((1-n)/n)
if fs == 'none':
C_eff = Q**(1/n) * ((Rs*Rct)/(Rs*Rct))**((1-n)/n)
Q = 1 / (Rct_norm * (2 * np.pi * fs) ** n)
C_eff = Q ** (1 / n) * ((Rs * Rct_norm) / (Rs * Rct_norm)) ** ((1 - n) / n)
if fs == "none":
C_eff = Q ** (1 / n) * ((Rs * Rct) / (Rs * Rct)) ** ((1 - n) / n)
return C_eff


def Theta(E, E0, n, T=298.15, F=F, R=R):
'''
"""
See explantion in C_redox_Estep_semiinfinite()
Kristian B. Knudsen (kknu@berkeley.edu || Kristianbknudsen@gmail.com)
'''
return np.exp(((n*F)/(R*T))*(E-E0))
"""
return np.exp(((n * F) / (R * T)) * (E - E0))


def Varsigma(D_ox, D_red):
'''
"""
See explantion in C_redox_Estep_semiinfinite()
Kristian B. Knudsen (kknu@berkeley.edu || Kristianbknudsen@gmail.com)
'''
return (D_ox/D_red)**(1/2)
"""
return (D_ox / D_red) ** (1 / 2)


def C_redox_Estep_semiinfinite(E, E0, n, C_ox, D_ox, D_red, T=298.15, R=R, F=F):
'''
The concentration at the electrode surface (x=0) as a function of potential following Nernst eq.
"""
The concentration at the electrode surface (x=0) as a function of potential following Nernst eq.
during semi-infinite linear diffusion (Macro disk electrode)

O + ne- --> R

Ref: Bard A.J., Faulkner L. R., ISBN: 0-471-04372-9 (2001) "Electrochemical methods: Fundamentals and applications". New York: Wiley.

Author: Kristian B. Knudsen (kknu@berkeley.edu || Kristianbknudsen@gmail.com)

returns
----------
[0] = C_red at x=0
[1] = C_ox at x=0
'''
C_red0 = C_ox * (Varsigma(D_ox=D_ox, D_red=D_red)/(1+(Varsigma(D_ox=D_ox, D_red=D_red)*Theta(E=E, E0=E0, n=n, T=T, F=F, R=R))))
C_ox0 = C_ox * ((Varsigma(D_ox=D_ox, D_red=D_red)*Theta(E=E, E0=E0, n=n, T=T, F=F, R=R))/(1+(Varsigma(D_ox=D_ox, D_red=D_red)*Theta(E=E, E0=E0, n=n, T=T, F=F, R=R))))
"""
C_red0 = C_ox * (
Varsigma(D_ox=D_ox, D_red=D_red)
/ (
1
+ (Varsigma(D_ox=D_ox, D_red=D_red) * Theta(E=E, E0=E0, n=n, T=T, F=F, R=R))
)
)
C_ox0 = C_ox * (
(Varsigma(D_ox=D_ox, D_red=D_red) * Theta(E=E, E0=E0, n=n, T=T, F=F, R=R))
/ (
1
+ (Varsigma(D_ox=D_ox, D_red=D_red) * Theta(E=E, E0=E0, n=n, T=T, F=F, R=R))
)
)
return C_red0, C_ox0


def C_redox_Estep_semihemisperhical(E, E0, n, C_ox, D_ox, D_red, T=298.15, R=R, F=F):
'''
The concentration at the electrode surface (x=0) as a function of potential following Nernst eq.
"""
The concentration at the electrode surface (x=0) as a function of potential following Nernst eq.
during semi-infinite hemispherical diffusion (Micro disk electrode)

O + ne- --> R

Note: This equation applies only for a reversible system with rapid kinetics

Ref: Bard A.J., Faulkner L. R., ISBN: 0-471-04372-9 (2001) "Electrochemical methods: Fundamentals and applications". New York: Wiley.

Author: Kristian B. Knudsen (kknu@berkeley.edu || Kristianbknudsen@gmail.com)

returns
----------
[0] = C_red at x=0
[1] = C_ox at x=0
'''
C_red0 = C_ox * ((Varsigma(D_ox, D_red)**2)/(1+Varsigma(D_ox, D_red)**2 * Theta(E, E0, n, T, F, R)))
C_ox0 = C_ox * (1- (1/(1+Varsigma(D_ox, D_red)**2 * Theta(E, E0, n, T, F, R))))
"""
C_red0 = C_ox * (
(Varsigma(D_ox, D_red) ** 2)
/ (1 + Varsigma(D_ox, D_red) ** 2 * Theta(E, E0, n, T, F, R))
)
C_ox0 = C_ox * (
1 - (1 / (1 + Varsigma(D_ox, D_red) ** 2 * Theta(E, E0, n, T, F, R)))
)
return C_red0, C_ox0


#
#print()
#print('---> EIS Advanced Tools Loaded (v. 0.0.2 - 06/15/18)')
# print()
# print('---> EIS Advanced Tools Loaded (v. 0.0.2 - 06/15/18)')
Loading