Dimensionality reduction using CUR decomposition (
- A : numpy.array, default=None, n x m dataset matrix (n: number of features, m: number of instances)
- n_components : int, default=2, Desired dimensionality of output data
- sampling : str, default='deim', Sampling method for column and row selection
- n_iter : int, default=10, Number of iterations for CUR approximations
- C : numpy.array, Matrix containing selected columns of A
- Cpinv : numpy.array, Pseudo inverse of C
- R : numpy.array, Matrix containing selected rows of A
- Rpinv : numpy.array, Pseudo inverse of R
- U : numpy.array, U = Cpinv @ A @ Rpinv
- colidx : list, List of selected column indices for constructing C
- rowidx : list, List of selected row indices for constructing R
import numpy as np
import curd
from sklearn.datasets import load_wine
n_components = 10
A = load_wine().data.T
cur = curd.CURdecomposition(A=A, n_components=n_components)
cur_error = np.linalg.norm(A - cur.C @ cur.Cpinv @ A)
print(f"[CUR] reconstruction error: {cur_error:.4f}")# Output
[CUR] reconstruction error: 4.8897