Unofficial Python API for FinViz
v2.0.0 is a major update that fixes all scraping issues caused by FinViz website changes:
- Fixed
get_stock()- now returns 90+ data points - Fixed
Screener- table parsing and header extraction - Fixed
get_news()- handles new timestamp formats - Fixed
get_insider()- supports new table structure - Fixed
get_analyst_price_targets()- updated selectors - Python 3.10+ required (dropped 3.9 support)
- Comprehensive test suite with real API testing
See CHANGELOG.md for full details.
pip install finvizOr install the latest development version:
pip install git+https://github.com/mariostoev/finviz@v2-developmentFinViz aims to make market information accessible and provides a lot of data in visual snapshots, allowing traders and investors to quickly find the stock, future or forex pair they are looking for. The site provides advanced screeners, market maps, analysis, comparative tools, and charts.
Important Information
Any quotes data displayed on finviz.com is delayed by 15 minutes for NASDAQ, and 20 minutes for NYSE and AMEX. This API should NOT be used for live trading, it's main purpose is financial analysis, research, and data scraping.
import finviz
# Get stock data
stock = finviz.get_stock('AAPL')
print(stock['Price'], stock['P/E'], stock['Market Cap'])
# Get news
news = finviz.get_news('AAPL')
for timestamp, headline, url, source in news[:5]:
print(f"{timestamp} - {headline} ({source})")
# Get insider transactions
insiders = finviz.get_insider('AAPL')
for trade in insiders[:3]:
print(trade['Insider Trading'], trade['Transaction'], trade['Value ($)'])
# Get analyst price targets
targets = finviz.get_analyst_price_targets('AAPL')
for target in targets:
print(target['analyst'], target['rating'], target.get('target_to'))The Screener allows you to filter stocks based on various criteria. You can either build filters programmatically or copy them from the FinViz website URL.
from finviz.screener import Screener
# Screen for large-cap NASDAQ stocks in the S&P 500
filters = ['exch_nasd', 'idx_sp500', 'cap_largeover']
stock_list = Screener(filters=filters, table='Overview', order='price')
print(f"Found {len(stock_list)} stocks")
for stock in stock_list[:10]:
print(stock['Ticker'], stock['Company'], stock['Market Cap'])
# Export to CSV
stock_list.to_csv("stocks.csv")
# Export to SQLite
stock_list.to_sqlite("stocks.sqlite3")
# Export to pandas DataFrame (requires pandas)
df = stock_list.to_dataframe()Available Tables:
Overview- Basic company info, market cap, priceValuation- P/E, P/S, P/B, PEG ratiosFinancial- ROA, ROE, ROI, marginsOwnership- Insider/institutional ownership, short interestPerformance- Price performance across timeframesTechnical- RSI, SMA, volatility, beta
Initialize from URL:
# Copy filters directly from FinViz website URL
url = "https://finviz.com/screener.ashx?v=111&f=cap_largeover,exch_nasd&o=-marketcap"
stock_list = Screener.init_from_url(url)Get Available Filters:
# Get all available filter options
filters = Screener.load_filter_dict()
print(filters.keys()) # ['Exchange', 'Index', 'Sector', 'Industry', ...]import finviz
# Comprehensive stock data (90+ metrics)
stock = finviz.get_stock('AAPL')
# Returns: {'Ticker': 'AAPL', 'Company': 'Apple Inc', 'Sector': 'Technology',
# 'P/E': '34.26', 'Market Cap': '3755.76B', 'Price': '255.53', ...}
# Recent news with timestamps
news = finviz.get_news('AAPL')
# Returns: [('2024-01-15 12:00', 'Headline...', 'https://...', 'MarketWatch'), ...]
# Insider trading activity
insiders = finviz.get_insider('AAPL')
# Returns: [{'Insider Trading': 'COOK TIMOTHY D', 'Relationship': 'CEO',
# 'Transaction': 'Sale', 'Value ($)': '41,530,891', ...}, ...]
# Analyst ratings and price targets
targets = finviz.get_analyst_price_targets('AAPL', last_ratings=10)
# Returns: [{'date': '2024-01-09', 'analyst': 'Morgan Stanley',
# 'rating': 'Overweight', 'target_from': 200, 'target_to': 220}, ...]
# All market news (not ticker-specific)
all_news = finviz.get_all_news()from finviz.portfolio import Portfolio
portfolio = Portfolio('<email>', '<password>', '<portfolio-name>')
print(portfolio)
# Create portfolio from CSV
portfolio.create_portfolio('My Portfolio', 'positions.csv')CSV format for portfolio import:
| Ticker | Transaction | Date (Opt.) | Shares | Price (Opt.) |
|---|---|---|---|---|
| AAPL | 1 | 05-25-2024 | 34 | 185.50 |
| NVDA | 1 | 100 |
Transaction: 1 = Buy, 2 = Sell. Empty optional fields use today's data.
stock_list.get_charts(period='d', chart_type='c', size='l', ta='1')
# period: 'd' (daily), 'w' (weekly), 'm' (monthly)
# chart_type: 'c' (candle), 'l' (line)
# size: 's' (small), 'l' (large)
# ta: '1' (show technical analysis), '0' (hide)Environment Variables:
DISABLE_TQDM=1- Disable progress bars
Async Support:
The Screener supports async requests for faster data fetching:
stock_list = Screener(filters=filters, request_method="async")# Clone and install in development mode
git clone https://github.com/mariostoev/finviz
cd finviz
pip install -e ".[dev]"
# Run tests
pytest finviz/tests/ -v
# Run tests (skip slow ones)
pytest finviz/tests/ -v -m "not slow"You can also buy me a coffee!
Using this library to acquire data from FinViz may be against their Terms of Service. Use it responsibly and at your own risk. This library is built for educational purposes.