Skip to content

New York AI Hackathon Use Cases - Complete implementation guides for building AI solutions using Microsoft technologies

Notifications You must be signed in to change notification settings

msftsean/ai-hackathon-use-cases

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

20 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ›οΈAI Hackathon Accelerators for Government Services

Accelerators Tests Python 3.11+ .NET 9 Semantic Kernel


πŸ“‹ Executive Summary

What Are Accelerators?

Accelerators are a Microsoft term for complete, working applications that serve as production-ready starting points for your own solutions. Rather than building from scratch, accelerators let you:

  • βœ… Learn faster - See real-world implementations of AI patterns and best practices
  • βœ… Build securely - Start with security, compliance, and responsible AI already built in
  • βœ… Ship sooner - Extend working code instead of writing boilerplate from zero
  • βœ… Reduce risk - Leverage tested, validated architectures designed for government use

Think of accelerators as fully-functional blueprints - they work out of the box, but are designed for you to customize and extend for your specific agency needs.

This Repository

This repository contains 7 AI accelerators designed to transform how NY State government agencies serve constituents. Each accelerator is a complete application built with Microsoft Azure AI services and the Semantic Kernel framework, demonstrating practical AI solutions for:

Challenge Accelerator Solution
πŸ“ž Citizens can't find answers AI chatbot with citations
πŸ“„ Document processing backlogs Automated OCR & validation
🚨 Emergency coordination gaps Multi-agent planning system
πŸ“‹ Policy compliance burden Automated document review
πŸ” Siloed agency knowledge Cross-agency secure search
πŸ™οΈ NYC citizen services (.NET) RAG-powered .NET chatbot
πŸ€– NYC citizen services (Python) RAG-powered Python chatbot

All accelerators comply with NY State's LOADinG Act and RAISE Act requirements for transparent, accountable AI in government.


πŸ“Š Revision Matrix

Version Date Changes Status
2.2.0 Jan 13, 2026 Added Python Virtual Citizen Assistant, 267 tests βœ… Current
2.1.0 Jan 12, 2026 Added .NET Virtual Citizen Assistant, 265 tests βœ… Stable
2.0.0 Jan 12, 2026 Production release with 5 accelerators βœ… Stable
1.5.0 Jan 10, 2026 Added Inter-Agency Knowledge Hub accelerator βœ… Stable
1.4.0 Jan 9, 2026 Added Policy Compliance Checker accelerator βœ… Stable
1.3.0 Jan 8, 2026 Added Emergency Response Agent accelerator βœ… Stable
1.2.0 Jan 7, 2026 Added Document Eligibility Agent accelerator βœ… Stable
1.1.0 Jan 6, 2026 Added Constituent Services Agent accelerator βœ… Stable
1.0.0 Jan 5, 2026 Initial repository setup with shared infrastructure βœ… Stable

πŸš€ The 7 AI Accelerators

1️⃣ Constituent Services Agent

Status Tests Demo

🎯 Purpose: AI-powered chatbot answering citizen questions about NY State services

✨ Key Features:

  • πŸ’¬ Natural language Q&A about SNAP benefits, driver's licenses, unemployment, Medicaid
  • πŸ“š Citation-backed responses with source documents
  • πŸ“Š Confidence scoring and human escalation when uncertain
  • 🌍 Multi-language support (English, Spanish, Chinese, Arabic, Russian, Korean, Haitian Creole, Bengali)
  • β™Ώ WCAG 2.1 AA accessible web interface

πŸ› οΈ Tech Stack: Azure AI Foundry + Foundry IQ + Semantic Kernel + Flask

▢️ Demo Command:

cd Constituent-Services-Agent
pip install -r requirements.txt
python demo.py

πŸ’‘ Sample Queries:

  • "How do I apply for SNAP benefits?"
  • "How do I renew my driver's license?"
  • "Am I eligible for Medicaid?"

2️⃣ Document Eligibility Agent

Status Tests Demo

🎯 Purpose: Automated processing of eligibility documents (W-2s, pay stubs, utility bills)

✨ Key Features:

  • πŸ“§ Email inbox monitoring for document submissions
  • πŸ” OCR and intelligent data extraction using Azure Document Intelligence
  • πŸ“Š Confidence scoring for all extracted fields
  • πŸ”’ PII detection and automatic masking
  • βœ… Validation rules (document age, completeness)
  • πŸ“‹ Case routing and workload distribution

πŸ› οΈ Tech Stack: Azure Document Intelligence + Microsoft Graph + Semantic Kernel + Flask

▢️ Demo Command:

cd Document-Eligibility-Agent
pip install -r requirements.txt
python demo.py

πŸ“„ Supported Document Types:

Document Fields Extracted
W-2 Forms Wages, employer, tax year
Pay Stubs Gross pay, period, date
Utility Bills Provider, address, date
Bank Statements Institution, balance
Driver's Licenses Name, DOB, expiration
Birth Certificates Name, DOB, parents
Lease Agreements Landlord, address, rent

3️⃣ Emergency Response Agent

Status Tests Multi-Agent

🎯 Purpose: Multi-agent system for emergency response planning and coordination

✨ Key Features:

  • πŸŒ€ Emergency scenario simulation (hurricane, fire, flood, winter storm, public health, earthquake)
  • 🌀️ Real-time weather integration
  • πŸ›οΈ Multi-agency resource coordination (FDNY, NYPD, OEM, DOT, MTA)
  • πŸš— Evacuation route planning with bottleneck analysis
  • πŸ“œ Historical incident analysis for lessons learned
  • ⏱️ Response plans with timeline milestones

πŸ› οΈ Tech Stack: Semantic Kernel + Azure AI Foundry + Weather APIs + Multi-Agent Orchestration

🚨 Supported Emergency Types:

Type Lead Agency Key Resources
πŸŒ€ Hurricane OEM Evacuation, shelters
πŸ”₯ Fire FDNY Firefighters, equipment
🌊 Flooding OEM Pumps, rescue boats
❄️ Winter Storm DOT Plows, salt trucks
πŸ₯ Public Health DOH Healthcare workers, vaccines
🏚️ Earthquake OEM Search & rescue teams
⚑ Infrastructure Utilities Emergency generators

4️⃣ Policy Compliance Checker

Status Tests AI Powered

🎯 Purpose: Automated review of policy documents against compliance rules

✨ Key Features:

  • πŸ“„ Document parsing (PDF, DOCX, Markdown)
  • πŸ” Rule-based compliance checking with regex patterns
  • ⚠️ Severity categorization (Critical, High, Medium, Low)
  • πŸ“Š Compliance scoring (0-100)
  • πŸ€– AI-powered analysis with Azure OpenAI
  • πŸ’‘ Detailed recommendations for each violation
  • πŸ”„ Version comparison for policy changes

πŸ› οΈ Tech Stack: Azure AI Foundry + Semantic Kernel + Document AI

▢️ Demo Command:

cd Policy-Compliance-Checker
pip install -r requirements.txt
python demo.py

πŸ“‹ Compliance Categories:

Category Description Examples
Data Privacy PII handling rules Encryption, retention
Accessibility WCAG compliance Alt text, contrast
Security Security standards Authentication, logging
Documentation Policy requirements Version control, approval

5️⃣ Inter-Agency Knowledge Hub

Status Tests Cross-Agency

🎯 Purpose: Cross-agency document search with permission-aware results

✨ Key Features:

  • πŸ” Unified search across 5+ agency knowledge bases (DMV, DOL, OTDA, DOH, OGS)
  • πŸ” Entra ID authentication with role-based access
  • πŸ›‘οΈ Permission-aware result filtering
  • πŸ“š Citation tracking for LOADinG Act compliance
  • πŸ”— Cross-agency policy cross-references
  • πŸ‘€ Human-in-the-loop for complex queries
  • πŸ“‹ 7-year audit log retention

πŸ› οΈ Tech Stack: Microsoft Foundry + Foundry IQ + Azure AI Search + Entra ID

▢️ Demo Command:

cd Inter-Agency-Knowledge-Hub
pip install -r requirements.txt
python demo.py

πŸ›οΈ Supported Agencies:

Agency Domain Documents
DMV Transportation Licensing, registration
DOL Labor Employment, wages
OTDA Social Services Benefits, assistance
DOH Health Public health, regulations
OGS General Services Procurement, facilities

6️⃣ Virtual Citizen Assistant (.NET)

Status Tests .NET 9

🎯 Purpose: RAG-powered AI assistant for NYC government services built with .NET

✨ Key Features:

  • πŸ’¬ AI chat assistant with source citations
  • πŸ” Semantic, keyword, and hybrid search modes
  • πŸ“‚ Category browser with visual grid layout
  • πŸ“„ Document details with print and share
  • πŸ› οΈ Data upload utility for Azure AI Search
  • 🎨 Bootstrap 5.3 responsive UI

πŸ› οΈ Tech Stack: .NET 9 + ASP.NET Core MVC + Semantic Kernel 1.65 + Azure AI Search + Azure OpenAI

▢️ Demo Command:

cd DotNet-Virtual-Citizen-Assistant
dotnet restore
dotnet run --project VirtualCitizenAgent

πŸ’‘ Sample Features:

  • Chat with AI about NYC services
  • Search documents semantically
  • Browse by service category

7️⃣ Virtual Citizen Assistant (Python)

Status Tests RAG

🎯 Purpose: RAG-powered AI assistant for city government services built with Python

✨ Key Features:

  • πŸ’¬ Natural language Q&A about city services (trash pickup, permits, emergency alerts)
  • πŸ” Vector search + keyword search + hybrid search modes
  • πŸ”Œ Plugin architecture with Semantic Kernel 1.37
  • πŸ“… Appointment scheduling with mock service
  • πŸ“š Citation-backed responses with source documents
  • πŸ§ͺ Built-in test framework for validation

πŸ› οΈ Tech Stack: Semantic Kernel 1.37 + Azure AI Search + Azure OpenAI + Flask

▢️ Demo Command:

cd Virtual-Citizen-Assistant
pip install -r requirements.txt
python test_setup.py      # Validate setup
python test_plugins.py    # Test plugins
python src/main.py        # Run interactive assistant

πŸ’‘ Sample Queries:

  • "When is my next trash pickup?"
  • "How do I apply for a business permit?"
  • "Are there any current emergency alerts in my area?"

πŸ”Œ Available Plugins:

Plugin Functions Purpose
DocumentRetrieval search_city_services, get_service_by_category Search city service information
Scheduling check_availability, scheduling_info, list_schedulable_services Appointment management

πŸ—οΈ Technical Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     πŸ–₯️ Frontend Layer                           β”‚
β”‚   Flask Web UI  β”‚  REST APIs  β”‚  WCAG 2.1 AA Accessible        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
                              β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                  πŸ€– AI Orchestration Layer                      β”‚
β”‚   Semantic Kernel  β”‚  Foundry IQ  β”‚  Multi-Agent Patterns      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
                              β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                   ☁️ Azure AI Services                          β”‚
β”‚  Azure OpenAI GPT-4o  β”‚  Document Intelligence  β”‚  AI Search   β”‚
β”‚  Microsoft Graph      β”‚  Translator            β”‚  Entra ID     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
                              β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      πŸ’Ύ Data Layer                              β”‚
β”‚   SQLite/Azure SQL  β”‚  Blob Storage  β”‚  Vector DBs             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ›‘οΈ Compliance & Responsible AI

πŸ“œ NY LOADinG Act Compliance

  • βœ… All AI decisions are logged with rationale
  • βœ… Human-in-the-loop for benefits determinations
  • βœ… Transparent citation of data sources
  • βœ… Bias testing across demographic groups

πŸ“‹ NY RAISE Act Requirements

  • βœ… AI assistance clearly disclosed to users
  • βœ… Accountability measures for automated decisions
  • βœ… Regular auditing and evaluation frameworks
  • βœ… Azure AI Evaluation integration for red-teaming

πŸ”’ Security & Privacy

  • πŸ›οΈ Azure GCC (Government Community Cloud) compatible
  • πŸ” PII detection and automatic masking
  • πŸ‘€ Role-based access control via Entra ID
  • πŸ”’ Encrypted data at rest and in transit
  • πŸ—‘οΈ 30-day conversation data purge policy

πŸ“ Project Structure

newyork/
β”œβ”€β”€ πŸ“‚ Constituent-Services-Agent/     # πŸ’¬ Citizen Q&A chatbot
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ agent/                     # AI agent components
β”‚   β”‚   β”œβ”€β”€ api/                       # Flask routes
β”‚   β”‚   β”œβ”€β”€ models/                    # Data models
β”‚   β”‚   └── services/                  # Knowledge service
β”‚   β”œβ”€β”€ demo.py                        # Interactive demo
β”‚   └── requirements.txt
β”‚
β”œβ”€β”€ πŸ“‚ Document-Eligibility-Agent/     # πŸ“„ Document processing
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ agent/                     # Processing agents
β”‚   β”‚   β”œβ”€β”€ api/                       # REST endpoints
β”‚   β”‚   β”œβ”€β”€ models/                    # Document models
β”‚   β”‚   └── services/                  # OCR, email, storage
β”‚   β”œβ”€β”€ demo.py
β”‚   └── sample_documents/
β”‚
β”œβ”€β”€ πŸ“‚ Emergency-Response-Agent/       # 🚨 Emergency planning
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ models/                    # Emergency models
β”‚   β”‚   β”œβ”€β”€ orchestration/             # Multi-agent coordinator
β”‚   β”‚   └── services/                  # Weather, traffic APIs
β”‚   └── requirements.txt
β”‚
β”œβ”€β”€ πŸ“‚ Policy-Compliance-Checker/      # πŸ“‹ Compliance checking
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ models/                    # Compliance models
β”‚   β”‚   β”œβ”€β”€ services/                  # Rule engine, parsing
β”‚   β”‚   └── api/                       # Flask routes
β”‚   └── requirements.txt
β”‚
β”œβ”€β”€ πŸ“‚ Inter-Agency-Knowledge-Hub/     # πŸ” Cross-agency search
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ models/                    # Search models
β”‚   β”‚   β”œβ”€β”€ services/                  # Search, auth services
β”‚   β”‚   └── api/                       # Flask routes
β”‚   └── requirements.txt
β”‚
β”œβ”€β”€ πŸ“‚ DotNet-Virtual-Citizen-Assistant/  # πŸ™οΈ NYC .NET chatbot
β”‚   β”œβ”€β”€ VirtualCitizenAgent/           # Main web application
β”‚   β”‚   β”œβ”€β”€ Controllers/               # MVC and API controllers
β”‚   β”‚   β”œβ”€β”€ Services/                  # Business logic
β”‚   β”‚   β”œβ”€β”€ Plugins/                   # Semantic Kernel plugins
β”‚   β”‚   └── Views/                     # Razor views
β”‚   β”œβ”€β”€ VirtualCitizenAgent.Tests/     # xUnit tests
β”‚   └── AzureSearchUploader/           # Data upload utility
β”‚
β”œβ”€β”€ πŸ“‚ Virtual-Citizen-Assistant/        # πŸ€– NYC Python chatbot
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ config/                    # Configuration settings
β”‚   β”‚   β”œβ”€β”€ models/                    # Data models
β”‚   β”‚   β”œβ”€β”€ plugins/                   # Semantic Kernel plugins
β”‚   β”‚   └── main.py                    # Main application
β”‚   β”œβ”€β”€ test_setup.py                  # Setup validation
β”‚   β”œβ”€β”€ test_plugins.py                # Plugin tests
β”‚   └── requirements.txt
β”‚
β”œβ”€β”€ πŸ“‚ docs/                             # πŸ“– Documentation
β”‚   β”œβ”€β”€ QUICKSTART.md                    # Quick start guide
β”‚   β”œβ”€β”€ EVAL_GUIDE.md                    # Evaluation guide
β”‚   └── SPEC_TEMPLATE.md                 # Specification template
β”‚
β”œβ”€β”€ πŸ“‚ evaluation/                       # πŸ§ͺ AI evaluation framework
β”‚   β”œβ”€β”€ eval_config.py                   # Evaluation configuration
β”‚   β”œβ”€β”€ run_evals.py                     # Run evaluations
β”‚   β”œβ”€β”€ red_team.yaml                    # Red team test config
β”‚   └── test_cases.jsonl                 # Test cases
β”‚
└── πŸ“‚ specs/                            # πŸ“‹ Feature specifications
    β”œβ”€β”€ 001-constituent-services-agent/
    β”œβ”€β”€ 002-document-eligibility-agent/
    β”œβ”€β”€ 003-emergency-response-agent/
    β”œβ”€β”€ 004-policy-compliance-checker/
    └── 005-inter-agency-knowledge-hub/

⚑ Quick Start (Any Accelerator)

# 1️⃣ Clone and navigate
cd newyork

# 2️⃣ Choose an accelerator
cd Constituent-Services-Agent  # or any other accelerator

# 3️⃣ Create virtual environment
python -m venv venv
venv\Scripts\activate  # Windows
# source venv/bin/activate  # Mac/Linux

# 4️⃣ Install dependencies
pip install -r requirements.txt

# 5️⃣ Run demo (mock mode - no Azure required)
python demo.py

# 6️⃣ Run web interface
python -m src.main

πŸ’‘ Mock Mode: All accelerators work without Azure services using mock data for offline development. No API keys required to get started!


πŸ”§ Key Technologies

Technology Purpose Badge
Azure AI Foundry AI development platform Azure
Foundry IQ Intelligent document retrieval Foundry IQ
Semantic Kernel AI orchestration framework SK
Azure OpenAI GPT-4o Language model for Q&A OpenAI
Azure Document Intelligence OCR and document parsing Doc Intel
Azure AI Search Vector search with security filters Search
Microsoft Graph Email and document access Graph
Entra ID Authentication and authorization Entra
Flask Web framework for APIs Flask
Pydantic Data validation Pydantic

πŸ§ͺ Testing & Evaluation

βœ… Test Coverage

Accelerator Tests Status
Constituent Services Agent 43 βœ… All Passing
Document Eligibility Agent 86 βœ… All Passing
Emergency Response Agent 62 βœ… All Passing
Policy Compliance Checker 14 βœ… All Passing
Inter-Agency Knowledge Hub 38 βœ… All Passing
Virtual Citizen Assistant (.NET) 22 βœ… All Passing
Virtual Citizen Assistant (Python) 2 βœ… All Passing
Total 267 βœ… Production Ready

πŸ€– AI Evaluation Framework

  • Quality Evaluators: Groundedness, Relevance, Coherence, Fluency
  • Safety Evaluators: Content safety, PII detection
  • Red Team Tests: Jailbreak, PII extraction, authority spoofing, hallucination
# Run tests for Python accelerators
cd [Accelerator-Directory]
python -m pytest tests/ -v

# Run tests for .NET accelerator
cd DotNet-Virtual-Citizen-Assistant
dotnet test

# Run AI evaluations
python -m shared.evaluation.eval_config

πŸ“ˆ Success Metrics

Accelerator Key Metric Target Status
πŸ’¬ Constituent Services Response time < 5 seconds βœ…
πŸ’¬ Constituent Services Citation accuracy > 95% βœ…
πŸ“„ Document Eligibility Processing time < 2 minutes βœ…
πŸ“„ Document Eligibility Extraction accuracy > 95% βœ…
🚨 Emergency Response Plan generation < 5 seconds βœ…
πŸ“‹ Policy Compliance Analysis time < 30 seconds βœ…
πŸ” Knowledge Hub Search response < 3 seconds βœ…

🎯 Hackathon Impact

πŸ‘₯ For Citizens

  • ⚑ Faster answers: Get information about government services instantly
  • 🌍 Accessible: Multi-language support, WCAG 2.1 AA compliant
  • πŸ“š Transparent: See sources for all information provided

πŸ‘” For Agency Staff

  • πŸ“‰ Reduced workload: AI handles routine inquiries, staff focus on complex cases
  • ⏱️ Faster processing: Documents processed in minutes, not hours
  • 🀝 Better coordination: Cross-agency visibility and emergency planning

πŸ›οΈ For Government

  • βœ… Compliance: Built-in LOADinG Act and RAISE Act compliance
  • πŸ“ˆ Scalability: Handles high volumes during crises
  • πŸ“‹ Accountability: Complete audit trails for all AI decisions

🀝 Collaboration & Access

Getting Access to This Repository

For Microsoft Enterprise Users: If you have a Microsoft enterprise account and are having trouble accessing this repository, please see our detailed Collaboration Guide for step-by-step instructions.

Quick Access Steps:

  1. Ensure your GitHub account has 2FA enabled
  2. Link your Microsoft enterprise email to your GitHub account
  3. Request access from the repository owner (@msftsean)
  4. For detailed instructions, see COLLABORATION.md

Contributing

We welcome contributions! Please see our Contributing Guidelines for:

  • Code standards and best practices
  • Pull request process
  • Testing requirements
  • Security considerations

Quick Start for Contributors:

# Fork and clone the repository
git clone https://github.com/msftsean/ai-hackathon-use-cases.git

# Create a feature branch
git checkout -b feature/your-feature-name

# Make changes and run tests
pytest tests/ -v  # Python projects
dotnet test       # .NET project

# Submit a pull request

πŸ“š Additional Resources


πŸ›οΈ Shaping the Future of Responsible AI in New York State πŸ—½