Skip to content

mvrl/RCME

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Global and Local Entailment Learning for Natural World Imagery

arXiv Project Page Hugging Face Models

Srikumar Sastry*, Aayush Dhakal, Eric Xing, Subash Khanal, Nathan Jacobs (*Corresponding Author)

ICCV 2025

Radial Cross-Modal Embeddings (RCME) is a state-of-the-art hierarchical image-text ordering and retrieval method in the embedding space.

🔥 Textual Entailment and Ordering

📦 Models

Model Architecture HuggingFace
CLIP ViT-B/16 MVRL/rcme-vit-base-patch16
CLIP ViT-L/14 MVRL/rcme-vit-large-patch14
TreeofLife ViT-B/16 MVRL/rcme-tol-vit-base-patch16

⚙️ Setup

Setting up

  1. Clone this repository:
git clone https://github.com/mvrl/RCME.git
  1. Install dependencies:
cd RCME && pip install -r requirements.txt

🗂️ Data

  1. Use BioCLIP's scripts to download TreeofLife-10M dataset:
rcme/data/bioclip/scripts/setup_download_tol-10m_components.bash && \
rcme/data/bioclip/scripts/submit_download_tol-10m_components.bash

Hint: Setup paths and other variables in setup_download_tol-10m_components.bash script.

  1. Use our script to convert TreeofLife-10M dataset into iNaturalist-2021 style naming:
python rcme/data/bioclip/write_imgs.py

Hint: Setup paths and other variables in our script.
Hint: Currently only supports num_workers=1

🔥 Training

  1. Setup all hyperparameters in rcme/config.py file.
  2. Run training by specifying the model:
python rcme/train.py --model="rcme"

Hint: Currently supports rcme, radial, atmg and meru.

✅ Evaluation

Scripts and documentation coming soon...

📑 Citation

@inproceedings{sastry2025global,
    title={Global and Local Entailment Learning for Natural World Imagery},
    author={Sastry, Srikumar and Dhakal, Aayush and Xing, Eric and Khanal, Subash and Jacobs, Nathan},
    booktitle={International Conference on Computer Vision},
    year={2025},
    organization={IEEE/CVF}
}

🔍 Additional Links

Check out our lab website for other interesting works on geospatial understanding and mapping:

  • Multi-Modal Vision Research Lab (MVRL) - Link
  • Related Works from MVRL - Link

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •